
Model Checking Invariant Security Properties in OpenFlow

Sooel Son
University of Texas at Austin

Seungwon Shin
Texas A&M University

Vinod Yegneswaran
SRI International

Phillip Porras
SRI International

Guofei Gu
Texas A&M University

Abstract—The OpenFlow (OF) switching specification repre-
sents an innovative and open standard for enabling the dynamic
programming of flow control policies in production networks.
Unfortunately, thus far researchers have paid little attention
to the development of methods for verifying that dynamic flow
policies inserted within an OpenFlow network do not violate the
network’s underlying security policy. We introduce FLOVER, a
model checking system which verifies that the aggregate of
flow policies instantiated within an OpenFlow network does
not violate the network’s security policy. We have implemented
FLOVER using the Yices SMT solver, which we then integrated
into NOX, a popular OpenFlow network controller. FLOVER
provides NOX a formal validation of the OpenFlow network’s
security posture.

I. INTRODUCTION

OpenFlow (OF), an offshoot of the clean-slate network
research initiative [5], [6], [8], is a new and open standard
for enabling programmability and dynamic orchestration of
enterprise networks. By design, OpenFlow allows network
administrators to run custom and third-party applications
on a network controller device, which can insert dynamic
control flow policies by modifying flow tables at each
switch and enable compelling applications such as virtual
machine mobility, load balancing, and threat mitigation.
However, OpenFlow provides no built-in mechanisms for
administrators to vet applications, either statically or at
runtime, for compliance with network security policies. We
argue that systematic support for automatic security policy
enforcement, i.e., the ability to validate that dynamically
produced flow rule updates preserve all security properties
specified in the network security policy, is vital to the wide
adoption of OpenFlow.

We propose a provably correct and automatic method for
verifying that a given non-bypass property holds with respect
to a set of flow rules committed by an OpenFlow controller.
Non-bypassability is a basic security property, which is
enforced by most firewalls and switches. This property stip-
ulates that packets or flows satisfying specified conditions
must adhere to a predefined action, such as forward or drop.
Since flow tables of switches in OpenFlow environments
can include a large number of prioritized flow entries,
manual verification of the non-bypass property on large flow
tables across switches is challenging. Furthermore, given the
dynamic nature of flow tables, the heterogeneity of vendor
implementation in flow table ordering and management, and
complex flow rule constructs such as set operations that
can alter packet content, even automated security evaluation

systems are challenged by OpenFlow. Here, we address this
challenge of verifying the compliance of a flow rule set
against an invariant security policy.

Our contributions. The contributions of our work include
the following:
• We present a formal approach to prove the conformance

of dynamically produced OpenFlow flow rules against
non-bypass security properties, including those with set
and goto table actions.

• Using FLOVER we demonstrate how to translate Open-
Flow rules and a network security policy into an
assertion set, which can then be processed and verified
by an SMT solver.

• Our experimental evaluation of FLOVER performance
shows that our prototype implementation on Yices can
detect coverage and modify violations of up to 200 rules
in under 131 ms and 120 ms respectively.

II. RELATED WORK
Our work is informed by prior work on modeling firewall

security policies [11], [12]. These studies, however, do
not address the dynamic nature of flow rules in software-
defined networks. Our work is most similar to FlowChecker,
which encodes OF flow tables into Binary Decision Dia-
grams(BDD) and uses model checking [2] to verify security
properties and Veriflow which proposes to slice the OF
network into equivalence classes to efficiently check for
invariant property violations [10]. However, these systems
do not explicitly address intermediate actions such as set
and goto commands. Our work extends beyond these by
including formal modeling and verification of set and goto
table action commands. Instead of resolving all intermediate
actions when modeling flow rules, our work leverages the
capability of a fast and sound SMT solver to resolve all
intermediate actions during flow rule verification. NICE uses
symbolic execution to verify conformance of OF applica-
tions [4]. However, such path exploration approaches do not
scale well for large applications.

III. BACKGROUND

OpenFlow facilitates dynamic network orchestration
through the separation of control-path and data-path and by
enabling dynamic programmability of the control-path. In
an OpenFlow network, an OF-controller provides interfaces
for creating applications that handle network flow rules
dynamically. This greatly simplifies the management of

OF-switches as the OF-switch simply enforces flow rules
(providing the data path), received from an OF-controller.
An OF-switch operates as a generic network switch, except
for the OF-protocol extension that enables it to dynamically
incorporate flow rules provided by the OF-controller. If an
OF-switch receives a network packet for which there is no
corresponding flow rule, it reports the packet to an OF-
controller, which returns a flow rule that enables the switch
to handle subsequent packets from that flow.

Controller applications are in charge of creating flow rules
for OF-switches. When an OF-controller receives a flow
request from an OF-switch, the OF-controller delivers such
requests to a controller application. The application then
creates a set of flow rules and sends it to the switch through
an encrypted network link. As a controller application may
communicate with multiple OF-switches simultaneously, an
application can distribute a set of coordinated flow rules
across the switches to direct routing or optimize tunneling
in a way that may dramatically improves the efficiency of
traffic flows, while enabling much greater dynamic control
of flows that is hardly achievable using traditional network
infrastructure.

A. Non-Bypass Security Property Violations

FLOVER addresses the problem of verifying that the
current state of flow rules inserted in a switch’s flow table(s)
remain consistent with the current network security policy.
We decompose the network security policy into a set of
assertions, which we refer to as Non-bypass properties.
Intuitively, a Non-bypass property is commonly observable
in modern networks as the flow deny and allow rule, which
are statically defined to restrict or enable flows throughout
and across the network. A Non-bypass property specifies
whether a certain packet/flow matching a set of conditions
should be dropped or forwarded to its destination (we
formalize this notion in Section IV-A).

For the purpose of verifying a non-bypass property across
an OF-network, it is necessary to verify all flow tables within
the OF-network. Table I is a simple instance of our proposed
flow rule set model with no overlaps. For simplicity, we
denote IP addresses as non-negative integers and provide a
formal definition of our OF flow rule set in Section IV. Each
entry of the flow rule set consists of conditions over defined
fields and a set of actions. We assume that if a given packet
matches all conditions of multiple entries, any set of actions
corresponding to the matching entry may be performed.

This paper addresses two types of violations of the non-
bypass security property that may be present in an OF flow
rule set instance. For the first type of violation, we assume
that Table I is evaluated against the following non-bypass
property: every packet that goes from source IP [5,6] to
destination IP 6 must be dropped. However, an OF switch
using Table I will forward any packet that has 6 for both
the source and destination IP address because of the third
entry in the first flow table. That is, the final action for

Condition
Flow Field 1 Field 2 Field 3 Field 4 Action
Table Src IP Src Port Dst IP Dst port Set

1 5 [0,19] 6 [0,19] { (drop) }
1 5 [0,19] [7,8] [0,19] { (set field1 10),

(goto 2) }
1 6 [0,19] [6,8] [0,19] { (forward) }

2 [10,12] [0,19] [0,12] [0,19] { (set field3 6),
(forward) }

Table I: Example OpenFlow rule set used to illustrate
coverage and modify violations

every packet satisfying the conditions of a given non-bypass
property is inconsistent with the action of the property (and
thus some packets can bypass the constraints). We call this
kind of misconfiguration a coverage violation.

The second type of violation arises due to the set com-
mand in an OF flow table. In this example, we define
another non-bypass property such that every packet which
goes from source IP address 5 to destination IP address
6 must be dropped. However, an adversary may tunnel the
packet through a series of one or more intermediate receivers
such that the transmission chain originates from IP address
5 and ends at destination IP address 6, which is a violation
of the non-bypass property. For example, when an adversary
sends a malicious packet p whose source and destination IP
addresses are 5 and 7 respectively, the packet p is changed
into p′ that goes from source IP 10 to destination IP 6.
Then, the packet p′ is forwarded to another switch or the
host whose IP address is 6 by the first rule of flow table 2.
Thus, packet p′ which originates from source IP 5 finally
arrives at destination IP 6, which is a clear violation of the
specified property. We call this type of violation a modify
violation.

B. SMT Solving in Yices
Yices is a Satisfiability Modulo Theories (SMT) solver,

developed at SRI. The core of Yices implements an efficient
SAT solver based on the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm [7]. Yices is provided with an input
file modeling given first order logic. If a given model is
satisfiable, i.e., there exists at least one instance satisfying all
model constraints, Yices outputs such a satisfying example.
Otherwise, Yices reports the model to be unsatisfiable. We
leverage the soundness of Yices and its ability to efficiently
find satisfying examples, to verify flow rule sets.

IV. FLOW VERIFICATION

FLOVER is implemented as an OF application that runs on
an OF-controller. Whenever an OF-controller delivers newly
created flow rules to an OF-switch, FLOVER verifies a set
of specified non-bypass properties against the updated flow
rule set. Specifically, if FLOVER receives a flow rule request
from an OF-switch, it first creates an update or add command
consisting of at least one flow rule 1, and then verifies pre-
defined non-bypass properties against the set of created rules

1For creating a flow rule, we use a built-in function of NOX controller.

!"#$%&'
!()*'+,-(.'%/0)1.2'

345%6'
6.
07
28
9:
'

;2
)<

.2
9:
'

!(
)*

'+
,-
(.
='

6,
>=
?,
-8
(89
:'

#!'6*890@'A'

#!'6*890@'B'

#!'6*890@'C'

D,9,';,9@'

!()*'+,-(.''
E<1,9.='

#!'5)/92)((.2'

Figure 1: Overview of FLOVER

and previously committed flow rules. Figure 1 illustrates this
interaction.

FLOVER internally consists of a flow table encoder and the
Yices SMT solver. First, FLOVER encodes the flow rule set,
a collection of flow rules and specified non-bypass properties
into Yices code. Yices then verifies whether the non-bypass
property holds on the encoded model. As long as an OF-
controller verifies every committed flow update under its
control, FLOVER can prevent an OF network from violating
a specified set of non-bypass properties. FLOVER supports
two execution modes: in-line and batch modes. In its in-line
mode FLOVER performs flow rule validation with each flow
rule update while in the batch mode, verification is done
periodically to improve the controller response time.

We now formalize two key components of our framework:
non-bypass security property and flow rule set. We then
present a method of modeling both components in Yices to
verify that a flow rule set is free from coverage and modify
violations.

A. Non-bypass Property Representation
A non-bypass security property asserts a feature within a

given flow rule set. Formally, a non-bypass security property
is a form of first order logic consisting of universal quanti-
fier, conditions and an action. An action can be forward or
drop. The conditions part of a non-bypass security property
is a conjunction of boolean expressions over flow rule set
fields. The maximum number of fields is up to 15 [1]. The
condition for each field is encoded with a boolean expression
specifying a range of non-negative integers because every
field consists of a number of bits whose length varies from
3 to 64.

To assert non-bypass properties within a flow rule set
against coverage and modify violations, FLOVER uses two
forms of non-bypass security properties, respectively. The
formal representation of a non-bypass property denoting that
a flow rule set is free from coverage violations is as follows:

Non-bypass propertyc = ∀p(
n∧

j=1

Cj(p)→ a), a ∈ {forward, drop}

Cj(p) = Fj(p) ∈ [iLowj , iHighj], Fj(p) = j th field of p

This property denotes that if an initial packet, before
modification by an OF-switch, matches the conditions then
its final result must be consistent with the action of the
property.

The formal representation of a non-bypass property prov-
ing that a flow rule set has no modify violation is as follows:

Non-bypass propertym = ∀(p, p′)(
2∧

j=1

Cj(p)
n∧

k=3

Ck(p
′
)→ a),

a ∈ {forward, drop}

(p, p
′
) = a pair of initial packet p and its final packet p′

F1(p) = source IP field of packet p, F2(p) = source port field of packet p

This property dictates that if the initial packet p before
modification by an OF-switch matches the source IP and
port conditions and its final packet p′ matches the remaining
conditions of the property then, the final result for packet p
must be consistent with the action specified by the property.

We assume that the administrator of an OF network has
a priori knowledge of what non-bypass properties must be
enforced within the network. FLOVER checks whether the
specified non-bypass properties hold for the rule evaluation
sequence imposed by the switch.

B. Flow Rule Set Representation

Table I is an instance of our flow rule set. Each flow
entry (rule) has a flow table number indicating where it
belongs. Each flow rule has conditions over fields and a set
of actions. The condition for each field is a range of non-
negative integers, which supports wildcard expression. The
action set for each flow rule must contain one of forward,
drop or goto as a final action. The action set for a flow
rule can have multiple set commands that alter the packet
matching the condition of the flow entry. nomatch represents
that a flow table has no matching flow rule. When there is
no matching rule for an input packet, an OF-switch submits
the packet to the OF controller and requests a flow rule in
the default setting2. Thus, for packet p, the possible final
action set of FlowRulei in FlowTablek can be modeled
using the following logic forms.

FlowRulei ∈ FlowTablek, Condi(p) =

n∧
j=0

Fj(p) ∈ [iLowi,j , iHighi,j]

FlowRulei(p) = {a|a = actionfinal of FlowRulei s.t Condi(p) = true }

Since the action set of flow entries has a forward, drop or
goto action (an intermediate decision delegated to another
flow table), the final action of each flow entry is modeled
as follows. p′ models the after state of the initial packet p
that could have been changed due to set commands.

actionfinal ∈ {forward, drop, FlowTablel(p
′
) } s.t. l > k

Considering an OF-switch always starts matching packets
from the first flow table, all possible final actions matching

2An administrator can change the default behavior into forward or drop

1 (define−type s t a t e s (s c a l a r f o r w a r d drop nomatch go to))
2 (define−type p a c k e t (record F i e l d 1 : : i n t F i e l d 2 : : i n t F i e l d 3 : : i n t F i e l d 4 : : i n t))
3 (define−type m i x s t a t e (record d0 : : p a c k e t d1 : : s t a t e s))
4 (d e f i n e p : : p a c k e t)
5 (d e f i n e a f i n a l : : m i x s t a t e)
6 (d e f i n e Cond3::(−> p a c k e t boo l) (lambda (x : : p a c k e t) (and
7 (>= (s e l e c t x F i e l d 0) 10) (<= (s e l e c t x F i e l d 0) 12)
8 (>= (s e l e c t x F i e l d 1) 0) (<= (s e l e c t x F i e l d 1) 19)
9 (>= (s e l e c t x F i e l d 2) 0) (<= (s e l e c t x F i e l d 2) 12)

10 (>= (s e l e c t x F i e l d 3) 0) (<= (s e l e c t x F i e l d 3) 19))))
11 (d e f i n e Rule3::(−> p a c k e t m i x s t a t e) (lambda (x : : p a c k e t)
12 (i f (Cond3 x) ; ; C o n d i t i o n o f t h e 1 s t e n t r y i n f l o w t a b l e 2
13 ; ; f o rward f o r t r u e branch
14 (mk−record d0 : : (u p d a t e x F i e l d 3 6) d1 : : f o r w a r d)
15 (mk−record d0 : : x d1 : : nomatch) ; ; Nomatch f o r f a l s e branch
16)))
17 (d e f i n e Cond2::(−> p a c k e t boo l) (lambda (x : : p a c k e t) (and
18 (>= (s e l e c t x F i e l d 1) 6) (<= (s e l e c t x F i e l d 1) 6)
19 (>= (s e l e c t x F i e l d 2) 0) (<= (s e l e c t x F i e l d 2) 19)
20 (>= (s e l e c t x F i e l d 3) 6) (<= (s e l e c t x F i e l d 3) 8)
21 (>= (s e l e c t x F i e l d 4) 0) (<= (s e l e c t x F i e l d 4) 19))))
22 (d e f i n e Rule2::(−> p a c k e t m i x s t a t e) (lambda (x : : p a c k e t)
23 (i f (Cond2 x) ; ; C o n d i t i o n o f t h e 3 rd e n t r y i n f l o w t a b l e 1
24 (mk−record d0 : : x d1 : : f o r w a r d) ; ; Forward f o r t r u e branch
25 (mk−record d0 : : x d1 : : nomatch) ; ; Nomatch f o r f a l s e branch
26)))
27 (d e f i n e Cond1::(−> p a c k e t boo l) (lambda (x : : p a c k e t) (and
28 (>= (s e l e c t x F i e l d 1) 5) (<= (s e l e c t x F i e l d 1) 5)
29 (>= (s e l e c t x F i e l d 2) 0) (<= (s e l e c t x F i e l d 2) 19)
30 (>= (s e l e c t x F i e l d 3) 7) (<= (s e l e c t x F i e l d 3) 8)
31 (>= (s e l e c t x F i e l d 4) 0) (<= (s e l e c t x F i e l d 4) 19))))
32 (d e f i n e Rule1::(−> p a c k e t m i x s t a t e) (lambda (x : : p a c k e t)
33 (i f (Cond1 x) ; ; C o n d i t i o n o f t h e 2nd e n t r y i n f l o w t a b l e 1
34 ; ; D e l e g a t e t h e d e c i s i o n t o a n o t h e r f l o w t a b l e
35 (mk−record d0 : : (u p d a t e x F i e l d 1 10) d1 : : go to)
36 (mk−record d0 : : x d1 : : nomatch) ; ; Nomatch f o r f a l s e branch
37)))
38 (d e f i n e Cond0::(−> p a c k e t boo l) (lambda (x : : p a c k e t) (and
39 (>= (s e l e c t x F i e l d 1) 5) (<= (s e l e c t x F i e l d 1) 5)
40 (>= (s e l e c t x F i e l d 2) 0) (<= (s e l e c t x F i e l d 2) 19)
41 (>= (s e l e c t x F i e l d 3) 6) (<= (s e l e c t x F i e l d 3) 6)
42 (>= (s e l e c t x F i e l d 4) 0) (<= (s e l e c t x F i e l d 4) 19))))
43 (d e f i n e Rule0::(−> p a c k e t m i x s t a t e) (lambda (x : : p a c k e t)
44 (i f (Cond0 x) ; ; C o n d i t i o n o f t h e 1 s t e n t r y i n f l o w t a b l e 1
45 (mk−record d0 : : x d1 : : d rop) ; ; Drop f o r t r u e branch
46 (mk−record d0 : : x d1 : : nomatch) ; ; Nomatch f o r f a l s e branch
47)))

Figure 2: Example of transformed Yices code

a given packet p is modeled with the following logic form.

FlowTable1(p) = { a|a = actionfinal of FlowRulei s.t. Condi(p) = true}
(1)

FlowRulei ∈ FlowTable1, Condi(p) =

n∧
j=0

Fj(p) ∈ [iLowi,j , iHighi,j]

C. Encoding Flow Rule Sets into Yices

For the purpose of verifying non-bypass properties,
FLOVER transforms a given flow rule set into an Yices code
specifying all possible pairs of a packet and its final action.
Figure 2 shows the transformed Yices input code obtained
from the flow rule set in Table I.

Line 1 defines the state type, which denotes possible
final actions. The set action is also covered with an update
command that modifies an input packet state. Line 2 defines
a record type, packet, consisting of a number of integer
field values. Line 3 defines the mixstate record type, which
represents an output state of a Rulei function: mixstate
consists of packet and states type values. The mixstate record
type denotes a pair of a flow rule action and a packet state
after applying actions in the flow rule.

FLOVER generates Rulei and Condi functions for each
flow entry. The Condi function is a conjunction of every
condition over fields at the i th flow entry. Therefore, Condi
gets a packet type input and outputs true if a given packet
matches all conditions. Otherwise, it outputs false. The
Condi function is a representation of the following logic
expression: Condi(p) =

∧n
j=0 Fj(p) ∈ [iLowi,j , iHighi,j].

1 (d e f i n e c o n d b y p a s s p r o p e r t y ::(−> p a c k e t boo l)
2 (lambda (x : : p a c k e t) (and
3 (>= (s e l e c t x F i e l d 1) 5) (<= (s e l e c t x F i e l d 1) 5)
4 (>= (s e l e c t x F i e l d 2) 0) (<= (s e l e c t x F i e l d 2) 9)
5 (>= (s e l e c t x F i e l d 3) 6) (<= (s e l e c t x F i e l d 3) 6)
6 (>= (s e l e c t x F i e l d 4) 0) (<= (s e l e c t x F i e l d 4) 9)
7)))
8 (a s s e r t (c o n d b y p a s s p r o p e r t y) p))
9 (a s s e r t (/ = (s e l e c t a f i n a l d1) nomatch))

10 (a s s e r t (= (s e l e c t a f i n a l d1) f o r w a r d)) ; ; n e g a t i o n o f t h e a c t i o n i n t h e
non−bypass p r o p e r t y

Figure 3: Non-bypass property for coverage misconfigura-
tions

The Rulei function models flow entry (rule) matching
and modifications to the matched packets. Rulei receives
a packet type input and outputs a mixstate type, which
is a record of the action and the after state for an input
packet. More specifically, Rulei receives a packet and
checks if Condi is true. If Condi is false, then Rulei outputs
nomatch, denoting that Rulei cannot decide an action for
the input packet. When i indicates the last entry of the
flow rule set, the action type corresponding to the false
branch is also nomatch (i.e., the given packet does not
match any condition). If the corresponding actions for the ith
flow entry contain set commands, the set action is encoded
into (update x fieldc valc). Lines 11 and 32 show such an
instance of the Rulei function.

D. Verifying Non-Bypass Property Against Coverage and
Modify Violations

To test for coverage violations, FLOVER checks if the
given non-bypass property is satisfied by a flow rule set.
That is, for all packets whose final action can be resolved
to forward or drop by the flow rule set, the action of
a given non-bypass property must be consistent with the
final action corresponding to every packet which satisfies
the conditions of the non-bypass property. Otherwise, there
exists at least one packet whose final action is not the same
as the non-bypass property, but satisfies the conditions of
the security property. Figure 3 shows our transformed Yices
code denoting the following non-bypass property.

Non-bypass propertyc = ∀p(
4∧

j=1

Cj(p)→ drop)

C1(p) = F1(p) ∈ [5, 5], C2(p) = F2(p) ∈ [0, 9]

C3(p) = F3(p) ∈ [6, 6], C4(p) = F4(p) ∈ [0, 9]

FLOVER asserts packet p at line 8 and 9, as it considers
all packets (i) that satisfy the conditions of a non-bypass
security property and (ii) for those that can be resolved to
forward or drop. Since Yices is a counterexample finder, we
negate the right hand side of P at line 10, which is forward.

Yices takes this code as input data and shows whether the
given code is unsatisfiable or satisfiable with a satisfying
example. An outcome of unsat means that a non-bypass
property holds in the given flow rule set because Yices
cannot find any packet that (1) satisfies the conditions of the
non-bypass property, and (2) its final action is not consistent
with the action of the non-bypass property. Otherwise, a

1 (d e f i n e cond wholedomains::(−> p a c k e t boo l) (lambda (x : : p a c k e t) (and
2 (>= (s e l e c t x F i e l d 1) 0) (< (s e l e c t x F i e l d 1) 20)
3 (>= (s e l e c t x F i e l d 2) 0) (< (s e l e c t x F i e l d 2) 20)
4 (>= (s e l e c t x F i e l d 3) 0) (< (s e l e c t x F i e l d 3) 20)
5 (>= (s e l e c t x F i e l d 4) 0) (< (s e l e c t x F i e l d 4) 20)
6)))
7 (d e f i n e c o n d b y p a s s p r o p e r t y b e f o r e ::(−> p a c k e t boo l) (lambda (x : : p a c k e t) (

and
8 (>= (s e l e c t x F i e l d 1) 5) (<= (s e l e c t x F i e l d 1) 5) ; ; d e n o t e s o u r c e IP

f i e l d
9 (>= (s e l e c t x F i e l d 2) 0) (<= (s e l e c t x F i e l d 2) 9) ; ; d e n o t e s o u r c e p o r t

f i e l d
10)))
11 (d e f i n e c o n d b y p a s s p r o p e r t y a f t e r ::(−> p a c k e t boo l) (lambda (x : : p a c k e t) (and
12 (>= (s e l e c t x F i e l d 3) 6) (<= (s e l e c t x F i e l d 3) 6) ; ; d e n o t e d e s t IP f i e l d
13 (>= (s e l e c t x F i e l d 4) 0) (<= (s e l e c t x F i e l d 4) 9) ; ; d e n o t e d e s t p o r t

f i e l d
14)))
15 (a s s e r t (cond wholedomains p))
16 (a s s e r t (/ = (s e l e c t a f i n a l d1) nomatch))
17 (a s s e r t (= (s e l e c t a f i n a l d1) f o r w a r d)) ; ; n e g a t i o n o f t h e a c t i o n i n t h e

non−bypass p r o p e r t y
18 (a s s e r t (and
19 (c o n d s e c u r i t y p r o p e r t y b e f o r e p)
20 (c o n d s e c u r i t y p r o p e r t y a f t e r (s e l e c t a f i n a l d0))
21)))

Figure 4: Non-bypass property for modify misconfigurations

non-bypass property does not hold in the flow rule set for a
certain packet.

To find a modify violation, FLOVER considers not only a
final action but also the final packet state p′ for the entire
packet domain. Let us suppose that the non-bypass property
for finding modify violations is the following:

Non-bypass propertym = ∀(p, p′)(
2∧

j=1

Cj(p)

4∧
k=3

Ck(p
′
)→ drop)

C1(p) = F1(p) ∈ [5, 5], C2(p) = F2(p) ∈ [0, 9]

C3(p) = F3(p) ∈ [6, 6], C4(p) = F4(p) ∈ [0, 9]

To find such modify violations, we pick source IP and
source port as the fields to check for an initial state. The
remaining fields are used for checking the final state of a
packet. Here, the objective of Yices is to find one counter
packet such that (i) its resolved final action is inconsistent
with the action of the security property, (ii) its initial packet
state matches the conditions of the non-bypass property for
the source IP and source port fields, and (iii) the final packet
state matches the condition of the non-bypass property for
the remaining fields. This intuition is modeled in Figure 4.

Line 15 asserts a domain range of initial packet p to con-
sider all possible packets. Lines 16 and 17 asserts mixstate
t whose final action is neither drop nor nomatch, which is
a negation of an action part of a given non-bypass property.
Line 19 asserts that the initial packet state of p should match
the conditions of the non-bypass property for source IP and
source port fields. Line 20 also asserts that packet state
of a final should match the condition of the non-bypass
property for destination IP and destination port fields. If
there exists at least one satisfying example, it denotes that
the target flow rule set can create the packet that clearly
violates a given non-bypass property at the end. If Yices
outputs unsat, FLOVER reports that the flow rule set satisfies
a given non-bypass property against modify violations.

V. EVALUATION

To evaluate FLOVER, we used Mininet [3], a virtual envi-
ronment to emulate OF-switches, hosts, and OF-controllers.

1 10 20 30 40 50 60
5

10

15

20

25

30

35

40

45

50

Number of non−bypass properties
 (Coverage)

Ve
rif

ic
at

io
n

tim
e

[m
s]

1 10 20 30 40 50 60
5

10

15

20

25

30

35

40

Number of non−bypass properties
 (Modify)

Ve
rif

ic
at

io
n

tim
e

[m
s]

Figure 5: Performance analysis of FLOVER In-Line mode

In Mininet, we built a virtual OpenFlow network consisting
of one OF-switch, two hosts connected to the switch, and
one OF-controller. We implemented FLOVER as an applica-
tion running on NOX [13]. The application was implemented
in C++ and linked with the Yices library. The experiments
were conducted on a Linux workstation with Intel Core i3
CPU and 4 GB memory.

A. In-Line Mode Test

In its in-line mode operation, FLOVER enforces non-
bypass properties whenever it receives a flow rule request
from an OF-switch. When FLOVER receives such request,
FLOVER first creates a set of flow rules and then checks
whether such a flow rule set is in conflict with predefined
non-bypass properties while recording all created flow rules.
If the created rules has no goto action then, it is sufficient to
verify non-bypass properties against just the newly created
rules, rather than all committed rules. Because FLOVER does
not commit any rule (1) that can be resolved to forward or
drop and (2) conflicts with non-bypass properties, when an
OF-switch selects a flow rule for an input packet, such flow
rule is already verified3. When the created rule has goto table
action, we merge a set of created flow rules with recorded
flow rules to verify non-bypass properties.

We measure the performance of FLOVER in terms of the
flow rule verification time for both coverage and modify
violations. Specifically, we investigate the time FLOVER
takes to determine whether a created rule set is in conflict
with non-bypass properties, as increasing the number of non-
bypass properties. Figure 5 shows the evaluation result of
applying FLOVER in our test environment. As the number
of non-bypass properties increases, the verification time also
increases, from around 10 ms (with 5 non-bypass properties)
to under 46 ms (with 55 non-bypass properties). Such 10-46
ms penalty is only imposed on the first (SYN or SYN/ACK)
packet of every connection.

To put these numbers in perspective, the median inter-
arrival time for flows at a datacenter is around 30 ms [9].
Furthermore, our current implementation is unoptimized.
We consider two performance optimizations as obvious
extensions to enable deployment in large data centers. The

3We omit the formal proof due to the page limit

1 10 100 200 300 400 500
0

100

200

300

400

500

600

number of flow rules

ve
rif

ic
at

io
n

tim
e

[m
s]

1 non−bypass property
10 non−bypass properties
20 non−bypass properties
40 non−bypass properties
60 non−bypass properties

Fig. 10: Time analysis of Batch
mode on flow rule sets having at
least one coverage violation

1 10 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

number of flow rules

ve
rif

ic
at

io
n

tim
e

[m
s]

1 non−bypass property
10 non−bypass properties
20 non−bypass properties
40 non−bypass properties
60 non−bypass properties

Fig. 11: Time analysis of Batch
mode having at least one modify vi-
olation

between, e.g., 200 rules with 80 security properties and a penalty of 130 ms
(which is typically incurred only on the first packet of each connection).

Furthermore, the difference in verification times for finding coverage and
modify violations lies on an unoptimized Yices model of finding coverage viola-
tions, which gives us additional opportunity for performance improvement.

If a network administrator determines that performance carries more weight
than security in a network, she may choose to conduct validation of certain
security properties in passive batch mode where packets are forwarded without
verification (but she can still investigate violations with some delay). Of course,
this batch mode may cause some security concerns, because Flover passes
flow rules without verification in real time. However, we argue that this mode
might provide a reasonable tradeoff between security concerns and performance
in certain networks. In this mode, we do not leave security out of consideration,
but provide more options to a network administrator.

7 Conclusion

In this paper, we proposed a new way of modeling OpenFlow flow tables with the
Yices SMT solver to check for non-bypass property violations. To the best of our
knowledge, this approach is the first attempt to formally model the complete set
of commands in an OpenFlow table. We developed a prototype implementation
of our flow verification tool (Flover), which translates a given flow table into
a series of Yices assertions, and then detects if these assertions are inconsistent
with respect to a network security policy. In our evaluation in an OpenFlow
network environment, Flover can detect modify and coverage violations of
up to 200 rules in less than 124 milliseconds and 116 milliseconds respectively.
Furthermore, Flover provides in-line and batch modes to support the critical
needs for both real-time and delayed verifications of OpenFlow networks.

For future work, we will continue working on optimizing Flover. Since Yices
is a counter-example finder, we believe that providing an accurate search space
can directly lead to the improved performance in finding counter-examples.

1 10 100 200 300 400 500
0

100

200

300

400

500

600

number of flow rules

ve
rif

ic
at

io
n

tim
e

[m
s]

1 non−bypass property
10 non−bypass properties
20 non−bypass properties
40 non−bypass properties
60 non−bypass properties

Fig. 10: Time analysis of Batch
mode on flow rule sets having at
least one coverage violation

1 10 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

number of flow rules

ve
rif

ic
at

io
n

tim
e

[m
s]

1 non−bypass property
10 non−bypass properties
20 non−bypass properties
40 non−bypass properties
60 non−bypass properties

Fig. 11: Time analysis of Batch
mode having at least one modify vi-
olation

between, e.g., 200 rules with 80 security properties and a penalty of 130 ms
(which is typically incurred only on the first packet of each connection).

Furthermore, the difference in verification times for finding coverage and
modify violations lies on an unoptimized Yices model of finding coverage viola-
tions, which gives us additional opportunity for performance improvement.

If a network administrator determines that performance carries more weight
than security in a network, she may choose to conduct validation of certain
security properties in passive batch mode where packets are forwarded without
verification (but she can still investigate violations with some delay). Of course,
this batch mode may cause some security concerns, because Flover passes
flow rules without verification in real time. However, we argue that this mode
might provide a reasonable tradeoff between security concerns and performance
in certain networks. In this mode, we do not leave security out of consideration,
but provide more options to a network administrator.

7 Conclusion

In this paper, we proposed a new way of modeling OpenFlow flow tables with the
Yices SMT solver to check for non-bypass property violations. To the best of our
knowledge, this approach is the first attempt to formally model the complete set
of commands in an OpenFlow table. We developed a prototype implementation
of our flow verification tool (Flover), which translates a given flow table into
a series of Yices assertions, and then detects if these assertions are inconsistent
with respect to a network security policy. In our evaluation in an OpenFlow
network environment, Flover can detect modify and coverage violations of
up to 200 rules in less than 124 milliseconds and 116 milliseconds respectively.
Furthermore, Flover provides in-line and batch modes to support the critical
needs for both real-time and delayed verifications of OpenFlow networks.

For future work, we will continue working on optimizing Flover. Since Yices
is a counter-example finder, we believe that providing an accurate search space
can directly lead to the improved performance in finding counter-examples.

Figure 6: Performance of FLOVER Batch mode on flow rule
sets having at least one coverage violation (left) and at least
one modify violation (right)

operation for Yices to remove the startup cost associated with each flow verifi-
cation, which we leave for future work.

6.2 Batch Mode Test

In the batch mode, Flover implements a delayed verification procedure, which
aims to reduce the burden of an OF-controller. The batch mode verifies a set of
non-bypass properties against the aggregated flow rule set collected since the last
verification round. Verifying flow tables consisting of many flow rule sets against
non-bypass properties in real time may cause noticeable latency when processing
a lot of new network connections. The batch mode of Flover addresses such
issues through the following three steps: (1) if the number of passed rule sets is
larger than a threshold θ, Flover performs verification on all updated (but not
verified) rule sets, (2) Flover reports if (a) collected flow rule set(s) violate(s)
non-bypass properties and (3) optionally, Flover operates in a passive batch
mode where it passes a created rule set to OF-switches without verification but
continues recording all flow rule sets,

1 10 100 200 300 400 500
0

100

200

300

400

500

600

700

800

number of flow rules

ve
rif

ic
at

io
n

tim
e

[m
s]

20 non−bypass properties
40 non−bypass properties
60 non−bypass properties
80 non−bypass properties
100 non−bypass properties

Fig. 8: Time analysis of Batch mode
on flow rule sets having no coverage
violation

1 10 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

number of flow rules

ve
rif

ic
at

io
n

tim
e

[m
s]

20 non−bypass properties
40 non−bypass properties
60 non−bypass properties
80 non−bypass properties
100 non−bypass properties

Fig. 9: Time analysis of Batch mode
having no modify violation

For the batch mode experiment, we also measure the execution time of
Flover as increasing θ values (i.e., the number of flow rules which can be
enforced without verification) to understand the effect of θ values to the per-
formance. Figures 10 and11 show the verification times of the batch mode for
finding both coverage and modify violations respectively. Figures 8 and9 show
the verification times of the batch mode for verifing non-bypass properties when
a flow rule set is free from modify and coverage violations.

Detecting coverage and modify violations takes around 15 ms in the best case
(i.e., verifying 10 flow rules with 1 security property) and 750 ms in the worst
case (i.e., verifying 500 flow rules with 100 security properties). Our results show
that Flover can verify hundreds of flow rules with tens of security properties
in a short time. A sweet spot for practical deployment is likely somewhere in

operation for Yices to remove the startup cost associated with each flow verifi-
cation, which we leave for future work.

6.2 Batch Mode Test

In the batch mode, Flover implements a delayed verification procedure, which
aims to reduce the burden of an OF-controller. The batch mode verifies a set of
non-bypass properties against the aggregated flow rule set collected since the last
verification round. Verifying flow tables consisting of many flow rule sets against
non-bypass properties in real time may cause noticeable latency when processing
a lot of new network connections. The batch mode of Flover addresses such
issues through the following three steps: (1) if the number of passed rule sets is
larger than a threshold θ, Flover performs verification on all updated (but not
verified) rule sets, (2) Flover reports if (a) collected flow rule set(s) violate(s)
non-bypass properties and (3) optionally, Flover operates in a passive batch
mode where it passes a created rule set to OF-switches without verification but
continues recording all flow rule sets,

1 10 100 200 300 400 500
0

100

200

300

400

500

600

700

800

number of flow rules

ve
rif

ic
at

io
n

tim
e

[m
s]

20 non−bypass properties
40 non−bypass properties
60 non−bypass properties
80 non−bypass properties
100 non−bypass properties

Fig. 8: Time analysis of Batch mode
on flow rule sets having no coverage
violation

1 10 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

number of flow rules

ve
rif

ic
at

io
n

tim
e

[m
s]

20 non−bypass properties
40 non−bypass properties
60 non−bypass properties
80 non−bypass properties
100 non−bypass properties

Fig. 9: Time analysis of Batch mode
having no modify violation

For the batch mode experiment, we also measure the execution time of
Flover as increasing θ values (i.e., the number of flow rules which can be
enforced without verification) to understand the effect of θ values to the per-
formance. Figures 10 and11 show the verification times of the batch mode for
finding both coverage and modify violations respectively. Figures 8 and9 show
the verification times of the batch mode for verifing non-bypass properties when
a flow rule set is free from modify and coverage violations.

Detecting coverage and modify violations takes around 15 ms in the best case
(i.e., verifying 10 flow rules with 1 security property) and 750 ms in the worst
case (i.e., verifying 500 flow rules with 100 security properties). Our results show
that Flover can verify hundreds of flow rules with tens of security properties
in a short time. A sweet spot for practical deployment is likely somewhere in

Figure 7: Performance of FLOVER Batch mode on flow
rule sets having no coverage violations (left) and no modify
violations (right)

first is support for batch-mode operation, that we describe
below. The second is enabling a daemon mode operation for
Yices to remove the start-up cost associated with each flow
verification, which we leave for future work.

B. Batch Mode Test

FLOVER also implements a delayed verification proce-
dure, which aims to reduce connection-setup latency. The
batch mode verifies a set of non-bypass properties against the
aggregated flow rule set collected since the last verification
round through the following three steps: (1) if the number
of passed rule sets is larger than a threshold θ, FLOVER
performs verification on all updated (but not verified) rule
sets, (2) FLOVER reports if (a) collected flow rule set(s)
violate(s) non-bypass properties and (3) optionally, FLOVER
operates in a passive batch mode where it passes a created
rule set to OF-switches without verification but continues
recording all flow rule sets.

For the batch mode experiment, we also measure the
execution time of FLOVER with increasing θ values (i.e.,
the number of flow rules which can be enforced without
verification). Figure 6 shows the verification times of the
batch mode for finding both coverage and modify violations
respectively. Figure 7 illustrates the verification times of the
batch mode for verifying non-bypass properties when a flow
rule set is free from modify and coverage violations.

Detecting coverage and modify violations takes around
15 ms in the best case (i.e., verifying 10 flow rules with
1 security property) and 750 ms in the worst case (i.e.,
verifying 500 flow rules with 100 security properties). A
sweet spot for practical deployment is likely somewhere in

between, e.g., 200 rules with 60 security properties and a
penalty of 130 ms (which is typically incurred only on the
first packet of each connection).

VI. CONCLUSION

We proposed a new way of modeling OpenFlow flow
tables with the Yices SMT solver to check for non-bypass
property violations. We developed a prototype implementa-
tion of our flow verification tool (FLOVER), which translates
a given flow table into a series of Yices assertions, and then
detects if these assertions are inconsistent with respect to
a network security policy. In our evaluation, we find that
FLOVER can detect modify and coverage violations of up to
200 rules in less than 120 ms and 131 ms respectively.

REFERENCES

[1] OpenFlow Switch Specification version 1.1.0. 2011. http:
//www.openflow.org/documents/openflow-spec-v1.1.0.pdf.

[2] E. Al-Shaer and S. Al-Haj. Flowchecker: configuration
analysis and verification of federated openflow infrastructures.
In Proceedings of the 3rd ACM workshop on Assurable and
Usable Security Configuration, 2010.

[3] B. Lantz. Mininet. http://yuba.stanford.edu/foswiki/bin/view/
OpenFlow/Mininet.

[4] M. Canini, D. Venzano, P. Pereŝı́ni, D. Kostić, and J. Rexford.
A NICE Way to Test OpenFlow Applications. In Proceedings
of NSDI, 2012.

[5] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking Control of the Enterprise. In
Proceedings of ACM SIGCOMM, 2007.

[6] M. Casado, T. Garfinkel, M. Freedman, A. Akella, D. Boneh,
N. McKeowon, and S. Shenker. SANE: A Protection Archi-
tecture for Enterprise Networks. In Proceedings of Usenix
Security Symposium, 2006.

[7] B. Dutetre and L. Moura. The YICES SMT solver. Technical
report, SRI, 2006.

[8] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A Clean
Slate 4D Approach to Network Control and Management. In
ACM Computer Communications Review, 2005.

[9] S. Kandula, S. Sengupta, A. Greenberg, and P. Patel. The
nature of datacenter traffic: Measurements and analysis. In
In Proceedings of Usenix/ACM IMC, 2009.

[10] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Ver-
iFlow: Verifying Network-Wide Invariants in Real Time. In
Proceedings of ACM Sigcomm HotSDN Workshop, 2012.

[11] A. Liu. Formal verification of firewall policies. In Proceed-
ings of ICC, 2008.

[12] A. Liu and M. Gouda. Diverse firewall design. IEEE
Transactions on Parallel and Distributed Systems, 2008.

[13] NOX. NOX. http://noxrepo.org/wp/.

