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Abstract
In this work, we conduct a security analysis of container

networks, identifying a number of concerns that arise from the
exposure of unnecessary network operations by containerized
applications and discuss their implications. We then present a
new high-performance security enforcement network stack,
called BASTION, which extends the container hosting platform
with an intelligent container-aware communication sandbox.
BASTION introduces (i) a network visibility service that pro-
vides fine-grained control over the visible network topology
per container application, and (ii) a traffic visibility service,
which securely isolates and forwards inter-container traffic
in a point-to-point manner, preventing the exposure of this
traffic to other peer containers. Our evaluation demonstrates
how BASTION can effectively mitigate several adversarial
attacks in container networks while improving the overall
performance up to 25.4% within single-host containers, and
17.7% for cross-host container communications.

1 Introduction

Among the leading trends in virtualization is that of container-
ized application deployment at industrial scales across private
and public cloud infrastructures. For example, Google has
been a significant adopter of container-based software de-
ployment using its container orchestrater, Kubernetes [26] to
spawn more than two billion containers per week [17]. Yelp
uses containers to migrate their code onto AWS, and launches
more than one million containers per day [56]. Netflix spawns
more than 3 million containers per week within Amazon EC2
using its Titus container management platform [25].

With this growing attention toward the large-scale instan-
tiation of containerized applications also comes a potential
for even small security cracks within the container software
ecosystem to produce hugely destructive impacts. For exam-
ple, Tripwire’s container security report [50] found that 60%
of organizations already had experiences of security incidents
in 2018, assessing that these incidents arose primarily due

to the pressures to achieve deployment speed over the risks
from deploying insecure containers. In recognition of such
risks, several efforts [10, 14, 36] have arisen to help identify
and warn of possible vulnerabilities in containers.

In addition, the shared kernel-resource model used by con-
tainers also introduces critical security concerns regarding
the ability of the host OS to maintain isolation once a single
container is infected. Indeed, many researchers (and indus-
try) have proposed strategies to address the issue of container
isolation. For example, AppArmor [1], Seccomp [40], and
SELinux [41] can provide much stronger isolation of contain-
ers by preventing various system resource abuses. In fact, sev-
eral commercial products introduce container security frame-
works [2, 44, 51], which can monitor containers at runtime
and impose dynamic policy controls.

However, while there continues to emerge a variety of ap-
proaches to secure containerized applications, less attention
has been paid to bounding these applications’ access to the
container network. Specifically, there has been significant
adoption of containers as microservices [31], in which contain-
ers are used to create complex cloud and data-center services.
Although current container platforms often utilize IP-based
access control to restrict each container’s network interactions,
there are limitations in such controls that offer opportunities
for significant container abuse.

This paper begins by discussing several of the challenges
that arise from the current reliance on the host OS net-
work stack and virtual networking features to provide robust
container-network security policies. The paper will present
five examples of inherent limitations that arise in using the
Host OS network stack to manage the communications of
container ecosystems as they are deployed today. Informed
by these existing limitations, we introduce BASTION, a new
extension to container network stack isolation and protection.
BASTION instantiates a security network stack per container,
offering isolation, performance efficiency, and a fine-grained
network security policy specification that implements the least
privileged network access for each container. This approach
also provides better network policy scalability in network pol-



icy management as the number for hosted containers increases,
and greater dynamic control of the container ecosystem as
containers are dynamically instantiated and removed.

BASTION is composed of a manager and per-container net-
work stacks. The manager solicits network and policy infor-
mation from active containers, and deploys a security enforce-
ment network stack into each container. Then, in the network
stack, all security enforcement is conducted through two ma-
jor security services: a network visibility service and a traffic
visibility service. Based on a set of inter-container depen-
dencies, the network visibility service mediates the container
discovery process, filtering out any access to containers and
hosts that are deemed irrelevant given the dependency map.
The traffic visibility service controls network traffic between
the container and other peer containers, while also verifying
the sources of the traffic. This service enables traffic to flow
among the containers through an efficient forwarding mech-
anism that also isolates network communications between
senders and recipients. Whenever there is any change in con-
tainer environments, the manager dynamically updates the
network stack of each container with no service interruption.

The paper explains how BASTION mitigates a range of
existing security challenges, while also demonstrating that
BASTION can improve the overall performance up to 25.4%
within the same host and 17.7% across hosts.
Contributions. Our paper contributions are as follows:
• A security assessment of container networks, illustrating

security challenges that arise in current container network
stacks and security mechanisms.
• The introduction of a novel security-enforcement network

stack for containers, which restricts the network visibility of
containers and isolates network traffic among peer containers
with high performance.
• The presentation of the prototype system, BASTION, in-

cluding an analysis of how it addresses network security chal-
lenges in current container environments.

2 Background and Motivation

Here, we provide the background of container networks and
identify how the underlying architectural limitations of cur-
rent network security services impact container environments.

2.1 Current Container Networks
Docker Platform: Docker [12] uses bridge networks to pro-
vide inter-container connectivity, by default. As an exam-
ple, Figure 1 illustrates the architecture of two microservices.
The microservice chains that compose a network service are
shown in the upper panel, while the logical networking of the
microservice containers, which are networked under separate
bridges, is depicted in the lower panel. To provide network
flow control, Docker applies network and security policies
into bridge networks using iptables [34].
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Figure 1: Overview of Docker Bridge Networking. Upper
panel: a conceptual microservice architecture involving two
independent services. Lower panel: separate bridged networks
are instantiated to manage container network flows.

Kubernetes Orchestration System: Kubernetes [26] sup-
ports the management of large numbers of Docker contain-
ers across multiple nodes (e.g., physical host servers), en-
abling cross-host container applications to work as a logical
unit. Thus, while Docker uses bridge networks for containers
within the same host (node), Kubernetes uses various overlay
networks (e.g., Flannel [11], Weave [55], Calico [49]) to pro-
vide inter-container connectivity across multiple nodes. For
example, in the Weave overlay network [55], each node has
a special bridge interface, called weave, to connect all local
containers. The weave bridges, run at each node, are logically
linked as a single network. While Kubernetes uses Docker
containers, it does not utilize Docker networking features to
manage network flow control. Rather, it separately applies net-
work policies using iptables. Calico [49] similarly applies
network and security policies using iptables. In the case
that operators want further security enforcement, they may
use Cilium [7], a security extension that conducts API-aware
access control (e.g., HTTP method) by redirecting all network
traffic to its containerized security service (envoy).

Network-privileged Containers: Besides the typical use
of containers, there are special cases in which an operator
wants to directly expose containerized services using the host
IP address (e.g., HAProxy [8], OpenVPN [28], and MemSQL
[30]). In such cases, by sharing the host namespace with a
container, the container is provided access to the host network
interfaces, and directly exposes its services. In this work, we
refer to such cases as network-privileged containers.

2.2 Challenges in Container Networks

While current container platforms mostly utilize OS-level IP-
based access control (e.g., iptables) to enforce container
network security policies, there are significant limitations in
their ability to constrain the communication privileges of
today’s container topologies. The following are five concerns
that arise from these current OS-level architectural limitations,
which motivate the BASTION design.
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Figure 2: Five critical challenges in container networks: (1)
Loss of container context, (2) Limitations of IP-based access
controls, (3) Network policy explosion (performance degra-
dation), (4) Unrestricted host access, and (5) No restriction
on network-privileged containers.

(1) Loss of container context: As shown in Figure 2, each
container has its own virtual interface, but this is only visible
inside of the container. Thus, container platforms effectively
create a twin virtual interface corresponding to it on a host.
This virtual interface is connected to the bridge, enabling
connectivity with others. Unfortunately, one security-relevant
problem of this design is that each packet produced by a con-
tainer will lose its association with the source container at the
moment that it transitions into the host network namespace,
which means that the packet already flows into a container
network. Hence, all decisions for further security inspection
(e.g., source verification and network flow control) and packet
forwarding should be solely made based on the packet header
information, and a malicious container can directly forge pack-
ets on behalf of any other containers, allowing lateral attacks
and traffic poisoning when any container is compromised.

(2) Limitations of IP-based access controls: The pri-
mary method for imposing network flow control among con-
tainer platforms is through iptables, an IP-based access con-
trol provided by a Linux kernel. However, the IP addresses
of containers can be dynamic, and adjustments are then re-
quired whenever containers are spun up and down. Thus, it
can be a challenge to specify security policies for containers
in terms of both performance and security, since these policies
must be updated whenever containers are re-created, and the
policy tables of iptables should be also locked during pol-
icy updates. Furthermore, although operators enforce various
security policies, container networks are still vulnerable to
layer-2 attacks, due to the limited scope of iptables.

(3) Network policy explosion: Finer grained network
policies inherently require larger sets of network policies.
Further, since each container may require different policies,
the overall number of policies will tend to increase with the
heterogeneity and size of the container ecosystem. Unfortu-
nately, iptables is a centralized mechanism for all network
interfaces in the host, which results in monolithic network
rules that can be daunting to manage and at worst produce

Figure 3: Host service access through the gateway IP address
of a container network. A container scans and accesses the
services running in the host without any restriction.

(a) Network interfaces visible by a general container

(b) Network interfaces visible by a network-privileged container

Figure 4: Network visibility according to container privileges:
upper panel - a general container sees only its own network
interfaces, lower panel - a network-privileged container shares
the network namespace with a host; thus, it can see all network
interfaces in the host.

a network policy explosion (the number of security policies
will rapidly increase as a large number of containers are de-
ployed). Consequentially, if the number of security policies in
iptables increases beyond hundreds, the container ecosys-
tem may face a significant performance degradation [37].

(4) Unrestricted host access: Each container network has
a gateway interface for external accesses, which is connected
to the host network, as shown in Figure 2. Unfortunately, an
inherent security concern arises as a container can thus access
a service launched at the host-side. In Kubernetes, containers
can even access all other hosts (nodes) through the gateway
IP addresses assigned to them. If a service running in a host
opens a certain network port, as shown in Figure 3, a container
can directly access the service through the gateway IP address.
In the worst case, a malicious container can exploit the service
in a manner that can subvert/harm the availability of the host.

(5) No restriction on network-privileged containers:
While a network-privileged container can gain a performance
advantage as its traffic does not pass through additional net-
work stacks (e.g., container networks), such a container also
raises significant concerns with respect to operational isola-
tion. As shown in Figure 4, network-privileged containers
can access not only the host network interfaces, but can also
monitor all network traffic from deployed containers in the



Network Threats Docker [12] Flannel [11] WeaveNet [55] Calico [49] Open vSwitch [27] Cilium [7] BASTION
L2 attack (e.g., ARP Spoofing) 4 4 4 8 s 8 8

Traffic Eavesdropping 4 4 4 8 s 8 8

L3/L4 attack (e.g., IP Spoofing) 4 4 4 4 s s 8

Host Service Access 4 4 4 8 s s 8

Host Network Namespace Abuse 4 4 4 4 4 4 8

Table 1: Potential of network attacks across container network interface plugins. Feasible (4): network attack can be successfully
executed over the container network interface plugin. Probable (s): network attack remains possible, but may be blocked with
appropriate application of network security policies. Infeasible (8): network attack is always blocked.

host and are unrestrained in their ability to inject malicious
packets into container networks. Furthermore, current security
solutions do not consider security policies for such contain-
ers; hence, operators must design and specify a secure policy
configuration for the containers by themselves.

2.3 Assumptions and Threat Model
Assumptions: Consider the case of containers connected to
each other in order to operate as microservices using Docker
or Kubernetes network configurations. Let us assume that
an attacker possesses enough skill (e.g., gaining a remote
shell to execute arbitrary commands inside a container) to
perform a remote hijacking of an Internet-accessible container
application that is operating as a part of a microservice, using
published container vulnerabilities [45,52]. For example, even
certain images provided by the official Docker hub include
known vulnerabilities [47]. Given this, we consider what an
attacker may do after getting into the subverted container.

Threat Model: The scope of threat models considered in
this work focuses on network-based lateral attacks launched
from a compromised container, rather than system-based at-
tacks that may occur within a container. Unlike network-based
attacks, system-based attacks have been actively explored in
other work, such as abusing privileged and unprivileged con-
tainers [33] and modifying Linux capabilities within a con-
tainer [53], and defense techniques based on status inspection
of namespaces [24]. Thus, we believe that an operator would
properly deploy containers with system-wide security poli-
cies, and we therefore do not consider system-wide threats
(e.g., attacks against the host kernel) in this paper.

Here, a specific attack case involves one in which a compro-
mised container is employed “as is”, as the launching point for
these lateral attacks, where no privilege escalation is required
within the container to conduct further exploitation. Also, an
attacker can acquire a base understanding of the compromised
container’s network configuration by investigating several sys-
tem files (e.g., /proc/net/arp, /proc/net/route).

2.4 Limitations of Container Network
Interface Plugins

Here, we briefly discuss the limitations of current container
networking plugins. Table 1 presents the feasibility of network

threats that abuse the above security challenges.
Docker, Flannel, WeaveNet: Docker [12], Flannel [11],

WeaveNet [55] operate on bridge-based L2 forwarding, which
is tightly coupled with the networking features and the IP-
based access control provided by the host OS. Hence, they
have the same security challenges discussed in Section 2.2
and are vulnerable to all network threats presented in Table 1.

Calico: Calico [49] employs IP-in-IP-based L3 routing,
and uses a single MAC address (EE:EE:EE:EE:EE:EE) for
all containers which makes L2 attacks infeasible. However,
it remains vulnerable to L3/4 attacks (e.g., TCP SYN floods,
DNS reflection attacks, ICMP spoofing attacks etc.). In addi-
tion, while the host-service abuse is infeasible because Calico
uses a virtual gateway IP address (169.254.1.1) for all con-
tainers, it does not provide security mechanisms that guard
against the host-network namespace abuse.

Open vSwitch: Open vSwitch (OVS) [27] provides more
flexible networking features than the host OS; thus, it might
be viewed as an alternate solution for bolstering container net-
work security. OVS can derive which virtual port a container
is connected to and this could be used to prevent spoofing
attacks. However, one critical concern is that OVS does not
support a NOT operation, meaning that we need to install
all possible flow rules from each container to other contain-
ers, which at least contain (the virtual port and the MAC/IP
addresses of a source container, the IP address and the service
port of a destination one) matching fields for source verifi-
cation and spoofing attack prevention. In addition, frequent
rule updates are inevitable (as in the case of iptables) when-
ever containers are spun up and down. While OVS may be
able to block unauthorized host IP address accesses, it still
allows containers to access host services using gateway IP
addresses since OVS is located at the host network names-
pace. Unfortunately, OVS would still need a large number of
security policies against all possible host accesses from each
container. In addition, OVS provides no protection in the case
of network-privileged containers.

Cilium: Cilium [7] operates at the L3 routing level and pro-
vides advanced network security mechanisms for implement-
ing L3-7 firewalls. In addition, L2 attacks are not feasible, as
in the case of Calico. However, other network threats remain
possible. Although Cilium provides support for a range of net-
work policies (e.g., identity and label-based policies), which
can block accesses to specific containers or hosts, the feasibil-



ity of such network threats depend on the operator and deploy-
ment considerations. For example, even though an operator
carefully defines network policies to restrict service-to-service
communications based on container identities, containers may
still conduct L3/4-based lateral attacks to neighbors in the
same service. Network-privileged containers are beyond its
threat model, meaning that Cilium is still vulnerable to them.

BASTION: BASTION is designed as a transparent
container-network security extension that protects against
diverse security challenges discussed in Section2.2. Unlike
existing container network interface plugins that rely on
operator-defined network policies to protect containers from
various network threats, BASTION automatically discovers
inter-container dependencies from container platforms, and
provides an intelligent container-aware communication sand-
box that protects inter-container communications. In the fol-
lowing section, we will describe BASTION in greater detail.

3 BASTION Design

As we discussed in Section 2.2, many of the security limita-
tion that arise from the use of the OS network stack to service
container process are less well studied than other container se-
curity mechanisms. To address these limitations, we begin by
identifying the design considerations that BASTION addresses,
followed by a presentation of its design.

R1: Container-aware least privilege communications en-
forcement. A container’s connectivity should be a function
of the interdependencies between itself and those containers
whose communications are required to compose a service.

R2: Scalable and fine-grained network policy expression.
Network policy expression and enforcement performance
within the container network should scale well to the dy-
namism and size of modern host container topologies.

R3: Policy control over intra-container communications.
While the gateway interface plays as a key role in the commu-
nications with external networks, the network stack should
filter out the direct access of the gateway interface to prevent
the abuse of the host namespace.

R4: Policy enforcement for network-privileged contain-
ers. Network policy enforcement should be capable of fine-
grained access control over network-privilege-enabled con-
tainers that share the host network namespace for the direct
access of the host interfaces.

R5: Unauthorized eavesdropping and spoofing prevention.
Communication mediation should prevent access to third-
party packets (i.e., eavesdropping) and false packet produc-
tion (i.e., preventing both ARP spoofing and traffic injection
among local containers).

R6: Competitive performance that scales well with any
container topology. The network stack should deliver low
latency and high throughput communications while securing
container networks.
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Figure 5: BASTION Architecture Overview. Orange box:
BASTION network stack. Red box: manager that maintains the
global view of container networks. Green box: network visi-
bility service that restricts container reachability. Blue box:
traffic visibility service that controls inter-container traffic
while concealing irrelevant traffic from containers.

3.1 Architectural Overview

BASTION represents the opposite spectrum of prior container
network stack designs, which implement network policy en-
forcement in a centralized manner. BASTION implements a de-
centralized, per-container, network stack. That is, all BASTION
security enforcement occurs before a container’s packets are
delivered into the container network. This approach enables
BASTION to provide individualized control over the network
traffic coming from each container, mitigating the security
challenges discussed in Section 2.2.

Figure 5 illustrates the overall architecture of BASTION.
BASTION is composed of a manager, which maintains the
global network view of all containers with their security de-
pendencies, and per-container network stacks that include two
security services (i.e., network and traffic visibility services).
A BASTION network stack maintains the container network
map for the corresponding container, which includes the net-
work information of all reachable containers that have peer
dependencies (e.g., microservice composition), and an inter-
container dependency map, including the security policies on
dependent containers only (R2).

When packets arrive at the BASTION network stack, the
network visibility service proactively filters any discovery pro-
cesses of irrelevant containers by dealing with ARP requests
based on the container network map (R1, R5), and restricts
the communications between containers according to security
policies specified in the inter-container dependency map (R1).
In addition, a special IP-handler restricts unauthorized access
to special IP addresses (e.g., gateway IP addresses) (R3). The
traffic visibility service conducts secure packet-forwarding
between containers. This service first verifies the packets with
the identity of the container (R4-5), directly passing packets



ContainerID Network ContainerSet Interface IP address MAC address

WebApp-X1 WebService WebApp vethwepl6f964e8 10.32.0.2 96:0e:73:ef:86:fe

WebApp-X2 WebService WebApp vethweplb89dc35 10.32.0.3 6e:81:0f:a7:db:c7

Service-Y1 WebService Service vethweplb957e84 10.32.0.4 D6:bc:7b:20:32:c5

Database-Z1 WebService Database vethweplc5ee33c 10.32.0.5 42:a0:ae:b7:f5:97
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Figure 6: BASTION computes a container network map that
captures the network interface attributes for each hosted con-
tainer, and an inter-container dependency map that indicates
the links and dependencies between containers.

from the source container to the destination containers using
their interface information (R6). Since this direct packet for-
warding occurs at the network interface level, packets are no
longer passed through the container network (host-side), elim-
inating any chance for unauthorized network traffic exposure
(even to network-privileged ones) (R4-5).

In terms of cross-host inter-container communications, a
specialized BASTION network stack is utilized at the exter-
nal interface of each node. It only maintains the container
network map for all containers deployed in each node since
all security decisions are already made at the network stack
of each container. Thus, when it receives packets from other
nodes, it simply conducts a secure forwarding from the ex-
ternal interface to destination containers. Overlay network
composition among hosts (nodes) are beyond the coverage
of BASTION; thus, it utilizes existing overlay networks (e.g.,
WeaveNet over IPSec). BASTION also retains the existing
mechanisms of container platforms to handle inbound traffic
from external networks.

3.2 BASTION Manager
The BASTION manager performs two primary roles. It col-
lects the network information of all active containers from
container platforms and manages the BASTION network stacks
deployed to the active containers.

(1) Container Collection. The BASTION manager first
maintains two hash maps (i.e., a global container network
map and the inter-container dependency map for all contain-
ers) for the security evaluation of each container. As shown
in Figure 6, BASTION uses a container platform to retrieve
the network information for all containers, and to build the
inter-container dependency map by extracting the dependen-
cies among containers based on the retrieved information
and their ingress/egress security policies. In addition, because
containers can be dynamically spun up and down, the man-
ager periodically retrieves containers’ network information
to update the maps. While a notification-based mechanism
would provide greater efficiency, a polling-based mechanism
was selected to provide a transparent and compatible solu-

Algorithm 1 Extracting Inter-Container Dependencies
1: Input: C, which is the set of all active containers
2: for each container u ∈C do
3: for each container v ∈C where u 6= v do
4: if v ∈ u.explicitDependents then
5: puv = u.EgressPolicies ∩ v.IngressPolicies
6: add v into u.dependencyMap with puv
7: else if u.containerSet 6= v.containerSet then
8: for each service pair s ∈ Sset(v.ContainerSet) do
9: pus = u.EgressPolicies ∩ s.Port

10: add s.IP into u.dependencyMap with pus

11: for each service pair s ∈ Smicroservice do
12: pus = u.EgressPolicies ∩ s.Port
13: add s.IP into u.dependencyMap with pus

tion that can be integrated with already-deployed container
environments without any required modifications.

Extracting inter-container dependencies: BASTION au-
tomatically extracts dependencies among containers. To do
this, a container network model is defined, in which a mi-
croservice is composed of one or more container sets, and
each container set has one or more containers that play the
same role (due to scaling and load-balancing). Each container
set exposes internal service ports to communicate with other
container sets, while a microservice exposes global service
ports to redirect accesses from the outside world to some of
the internal service ports. We then define four constraints for
implicit dependencies in inter-container communications: (1)
containers with the same container set are not granted inter-
connectivity, (2) containers in different container sets only
communicate via internal service ports (explicitly exposed by
configurations), (3) containers that are unrelated to each other
may talk through global service ports, (4) all other commu-
nications are not allowed by default. Based on the container
network model, all inter-container dependencies are extracted
using Algorithm 1.

Discovering inter-container dependencies: As no con-
tainer network can be made secure without proper network
policies that restrict communications to the minimum required
access, BASTION also discovers inter-container dependencies
not explicitly defined by a container operator. During the flow
control of inter-container traffic, BASTION produces network
logs that capture the network accesses from/to containers. At
the same time, it compares these logs with the inter-container
dependency map, classifying them into three cases: legitimate
accesses, missing policies, and excessive policies.

If the pair of observed containers are not in the pre-
computed inter-container dependency map, BASTION con-
siders that there is either a missing network policy or an
invalid access. Then, it informs an operator to review the
specific flows to determine whether to produce a missing
network policy. In addition, it identifies network policies for
which no flows have been encountered. Such cases may repre-
sent an over-specification of policies that enable unnecessary



flows for the container network’s operations. In these cases,
BASTION informs an operator to review the specific policy
that may require to be updated in the current configuration.

(2) Network Stack Management. The manager main-
tains the BASTION secure network stack for each container.
For newly spawned containers, it installs the network stacks at
their interfaces with the container network and inter-container
dependency maps. With respect to map size, each container
only requires a part of the network information to commu-
nicate with dependent neighbors. Thus, to reduce the size
of security services, BASTION filters irrelevant information
per container. The manager also performs change detection
of inter-container dependencies, automatically updating the
maps in the network stacks of the corresponding containers.

3.3 Network Visibility Service

The network visibility service restricts unnecessary connec-
tivity among containers and between containers and external
hosts. To do this, the following three security components
are introduced to handle container discovery, inter-container
communications, gateway/service-IP accesses, respectively.

3.3.1 Direct ARP Handler

For inter-container networking, container discovery is the
first step to identify other containers (communication targets).
Containers use ARP requests to identify the necessary net-
work information (i.e., MAC addresses) of target containers.
Unfortunately, this discovery process can be exploited to scan
all containers connected to the same network by malicious
containers, as current network stacks do not prevent ARP scan.
Indeed, they offer no mechanism to control non-IP-based com-
munications.

BASTION’s direct ARP handler filters out any unnecessary
container discovery that does not pertain to the present con-
tainer’s dependency map. When a container sends an ARP
request, the handler intercepts the request before it is broad-
casted, verifying if the source container has a dependency
on the destination container. This analysis is done using the
inter-container dependency map. If accessible, the handler
generates an ARP reply with the MAC address of the desti-
nation container in the container network map, and sends the
reply back to the source container (while no ARP requests
flow into the container network). If not, it drops the request.

3.3.2 Inter-container Communications Handler

Although the direct ARP handler prevents containers from
performing unbounded topology discovery, its coverage is
limited to container-level isolation. It does not address mali-
cious accesses among dependent containers. Hence, to further
restrict the reachability of containers, a second component
implements container-aware network isolation.
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… Database Vethweplc5e… 10.32.0.5 42:a0:ae:b7:f5:97

Src: 10.32.0.2(5000)
Dst: 10.32.0.5(3306)

KEY: YYY (10.32.0.5)
KEY Policy
YYY TCP:3306

(1) Packet interception (2) Hash map lookup (3) Policy matches

DP:3306 = TCP:3306

Forwarding the packet
to following component

Packet coming 
from the WebApp

Figure 7: Workflow of container-aware network isolation.
The WebApp container accesses a service of the Database
container in a container network shown in Figure 6, and the
container-aware network isolation in the WebApp’s network
stack inspects their dependency and security policies.

To illustrate how BASTION implements container-aware
network isolation, we consider the example in Figure 6, which
illustrates an interdependence between WebApp and Database
containers. In mediating the WebApp’s packets, as shown in
Figure 7, BASTION first checks the dependency between the
WebApp and the destination by examining the inter-container
dependency map using the destination IP address as a key. If
any policies exist in the map, it concludes that the WebApp
has a dependency on the destination - in this case the Database.
The connection is allowed if matched to the policy for the
Database, otherwise it is dropped.

BASTION implements a per-container rule partitioning strat-
egy, which simplifies rule conflict evaluation, as only the
container-relevant rules are considered, at deployment and
evaluation times. In addition, it offers a minimized policy en-
forcement performance impact, as the match set is container-
specific rather than host-global (as occurs with iptables).
This approach offers an inherent key advantage over host
global network policy rule enforcement as the number of con-
tainers increases. A natural strategy for managing large sets of
global (host layer) network security rules is to apply a global
rule optimization algorithm (e.g., aggregating the rules into
a reduced set). Unfortunately, as containers are dynamically
spun up and down, particularly within large orchestrated con-
tainer ecosystems, their corresponding security rules would
also require frequent updating. In such situations, global rule
optimization could prove less effective and even be a new
performance bottleneck over our rule partitioning strategy.

3.3.3 Gateway and Service-IP Handler

In container environments, it is possible for a subverted con-
tainer to exploit the gateway to probe services within the host
OS. To address this concern, BASTION’s gateway-IP handler
filters direct host accesses. When a network connection tar-
gets non-local container addresses, it includes the gateway
MAC address and the IP address of the actual destination.
Based on this fact, the gateway-IP handler blocks any direct
host accesses by checking if both IP and MAC addresses be-
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Figure 8: An illustration of the network packet processing
sequence performed within the Linux kernel. While packets
are filtered after delivered into the network stack, those can
be still exposed during packet capture with nothing missed.

long to the gateway. It would be also possible that a network
flow might access the gateways of other container networks,
since these gateways are connected to the host network as
well. Hence, the gateway-IP handler also filters unauthorized
host accesses by comparing packets with the other gateways.

In Kubernetes environments, there is another special IP
address, called a service IP address that is a virtual IP address
used for the redirection to actual containers. Unfortunately,
since service IP addresses do not belong to container net-
works, they can be simply considered as external IP addresses.
Thus, BASTION additionally extracts the pairs of {service
IP address, port} and {corresponding container IP address,
port} from Kubernetes, and maintains a service map in each
BASTION network stack. Then, when a container sends a
packet with a service IP address and port, the service-IP han-
dler overwrites the service IP address and port to an actual
container IP address and port according to the service map.
As a result, all inter-container communications can be con-
ducted with the existent IP addresses, and the other security
components can process packets as intended.

3.4 Traffic Visibility Service
The traffic visibility service provides point-to-point integrity
and confidentiality among container network flows. Here, we
present how BASTION hides irrelevant traffic from containers
using two security components: source verification and end-
to-end direct forwarding.

3.4.1 Source Verification

To precisely track the actual source of inter-container traffic,
BASTION leverages the kernel metadata of incoming packets
(e.g., ingress network interface index). The BASTION network
stack of each container statically contains the network infor-
mation (i.e., IP/MAC addresses and the metadata of container-
side and host-side interfaces) of the corresponding container,
and BASTION verifies the incoming traffic by comparing not
only the packet header information but also its metadata to
the container’s information embedded in the BASTION net-
work stack. If either the packet header information or the
metadata is not matched with the container network infor-
mation, BASTION identifies the incoming traffic as spoofed

BastionBastion

Container Network

Container A Container B
Internal Interface Internal Interface

Container A’s 
host-side Interface

A à BA à B

End-to-end direct forwarding

No traffic?Nothing?

Original path

Container B’s 
host-side InterfaceNothing?

Figure 9: An illustration of how BASTION implements end-
to-end direct packet forwarding to bypass exposure of intra-
container traffic to other containers.

and drops it. Furthermore, even though network-privileged
containers can inject spoofed packets into other containers,
BASTION will drop their spoofed packets since the packet
metadata would not be matched with the container network
information. As a result, BASTION can effectively eliminate
the spectrum of disruption and spoofing threats.

3.4.2 End-to-end Direct Forwarding

Current network stacks cannot prevent the exposure of inter-
container traffic from other containers as the filter position is
behind the capture point, as illustrated in Figure 8. Thus, if a
malicious container has a capability to redirect the traffic of
a target container to itself, it can monitor the traffic without
restriction. In the case of network-privileged containers, they
have the full visibility of all container networks: they can
directly monitor the network traffic of others with no need to
redirect the traffic.

To implement least-privilege traffic exposure, BASTION
provides an end-to-end direct forwarding component. As
shown in Figure 9, this component performs direct packet
delivery between source and destination containers in the net-
work interface level, bypassing not only their original network
stacks (container-side) but also bridge interfaces (host-side);
thus, it can prevent eavesdropping by peer containers. As soon
as BASTION receives an incoming network connection from
a container, it retrieves the interface information of a desti-
nation from the container network map. If the destination is
a container in the same node, BASTION directly injects the
packet stream into the destination container. If the destination
is a container in another node, BASTION injects the packet
to the external interface of a host. Then, once the special
BASTION network stack of the external interface at the target
node receives the packet, it directly injects the packet stream
into the destination container. This traffic isolation prevents
any traffic disclosure by other containers, preventing even
network-privileged containers to view third-party traffic.

4 Implementation

We implement BASTION with 2.2K lines of C code and 5.1K
lines of Python code on the Linux 4.16 kernel, which include
two subsystems: a manager, and a network stack.
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Figure 10: An example attack scenario within a Kubernetes
environment. A compromised container from one service
conducts a series of network attacks to hijack communications
between other containers in a peer service.

BASTION Manager: For container collection, the man-
ager periodically captures the attributes (e.g., NetworkSet-
tings) of active containers from the Docker engine and the
Kubernetes API server. Especially, in terms of explicit inter-
container dependencies, it utilizes specific keywords (e.g.,
“link” and “depends_on”). In the case of Kubernetes, it does
not have a way to explicitly define inter-container depen-
dencies; thus, the manager utilizes labels to define explicit
inter-container dependencies (e.g., “dependencies: container
A”). In terms of network security policies, it extracts “ingress”
and “egress” network security policies from iptables in a
host and Kubernetes.

BASTION Network Stack: The security enforcement net-
work stack for each container is implemented using eBPF [22]
and XDP [19, 21], and the security services in the network
stack inspect raw incoming packets in the xdp_md structure
provided by XDP. During the inspection, they look up two
hash maps (i.e., the container network and inter-container de-
pendency maps), and these maps are synchronized with the
maps in the corresponding management thread of the man-
ager using BPF syscalls. Then, they use three types of XDP
actions: ‘XDP_TX’ sends a packet back to the incoming con-
tainer (the direct ARP handler), ‘XDP_REDIRECT’ injects a
packet into the transmit queue of a destination (the end-to-end
direct forwarding), and ‘XDP_DROP’ drops packets.

5 Security Evaluation

This section introduces a scenario that abuses the security
holes in the current container network with real containers,
and demonstrates how BASTION mitigates network attacks.

5.1 Scenario Validation
Figure 10 illustrates two independent services that are de-
ployed along with common microservices [20, 54] in a Ku-
bernetes environment. One is a service for legitimate users,
and the other is a service for guest users. These services use
Nginx [35] and Redis [38] container images retrieved from
Docker Hub [13]. In this scenario, an attacker forges legit-
imate user requests, after infiltrating into the public-facing
Nginx server by exploiting web application vulnerabilities.

(a) Probing neighbor containers in a network (Nginx-Guest’s view)

(b) Spoofing target containers (Nginx-User’s view)

(c) Capturing redirected packets from targets (Nginx-Guest’s view)

(d) Injecting packets with forged contents (before / after)

à Redis-User

à The number of all deployed containers

The MAC address of Nginx-Guest

Nginx-User The original MAC address of Redis-User

à Nginx-Guest

Figure 11: Screenshots demonstrating the attack scenario in a
Kubernetes environment between two services.

In this attack kill chain, the attacker leverages three
network-based attacks to compromise the Nginx-Guest con-
tainer and successfully execute a man-in-the-middle attack.
In the first step, he discovers active containers around the
network through ARP-based scanning. Since all containers
are connected to an overlay network and ARP packets are
not filtered by iptables, the attacker can easily collect the
network information of containers as shown in Figure 11-
(a). Then, the attacker injects fake ARP responses into the
network to make all traffic between the Nginx-User and the
Redis-User containers passes through the Nginx-Guest. As
shown in Figure 11-(b), we can see that the MAC address of
the Redis-User in the ARP table of the Nginx-User is replaced
with that of the Nginx-Guest, and the attacker monitors all
traffic between the Nginx-User and the Redis-User (Figure
11-(c)). Lastly, the attacker replaces the response for the le-
gitimate user with forged contents by internally dropping the
packets delivered from the Redis-User and injecting forged
packets. Then, the Nginx-User returns the forged contents
back to the user instead of the original ones (Figure 11-(d)).
In the end, the user receives forged contents as the attacker
intended.

5.2 Effectiveness of Security Functions
Here, we focus on validating the effectiveness of BASTION
against a range of network-oriented attacks. For the following
experiments, we disabled some of BASTION’s security func-
tions to show the before and after differences.

Container Discovery: When a compromised container
is used to conduct peer discovery to locate other contain-
ers, as shown in Figure 11-(a), the current container network
stack allows an attacker to discover all neighboring contain-
ers. On the other hand, as shown in Figure 12, BASTION’s
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