Computing Summaries
for Interprocedural Analysis

Ashish Tiwari
Tiwari@csl.sri.com

Computer Science Laboratory
SRI International
Menlo Park CA 94025
http://www.csl.sri.com/~tiwari

Joint work with Sumit Gulwani, Microsoft Research
Outline of this Talk

- The Assertion Checking Problem
- Example
- Interprocedural Analysis
- A methodology for interprocedural backward analysis
- Special Cases: Abstract domains defined by
 - Linear Arithmetic
 - Uninterpreted Symbols
- Conclusion
Assertion Checking Problem

Given a program P annotated with an assertion ϕ
verify that ϕ evaluates to true in every run of P

$$P \in \mathbb{P}, \quad \mathbb{P} := \text{set of all programs in some programming model}$$
$$\phi \in \Phi, \quad \Phi := \text{set of all assertions in some assertion language}$$

This problem is undecidable for even simple \mathbb{P} and Φ
P() { // inputs: u, v
 x := u;
 y := v;
 while (*) {
 x := x + 1;
 y := y - 1;
 }
 // return x, y
}
main() {
 u := 0 ;
 v := n ;
 Call P() ;
 u := x + 1 ;
 v := y ;
 Call P() ;
 assert(x + y == n+1)
}
Program Model

Programming Model in the example:

- **Assignments:** \(x := e, \ x := ? \)
- **Nondeterministic conditionals:** \(\text{if} \ (\ast) \)
- **Join:** Control flow merge
- **Procedure call node:** Call P()
Known Results on Assertion Checking

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)-(d)</td>
<td>Lin Arith</td>
<td>PTime</td>
<td>[Karr 77,...]</td>
</tr>
<tr>
<td>(a)-(d)</td>
<td>UFS</td>
<td>PTime</td>
<td>[(Gulwani,Necula 04), (Müller-Olm, Rüthing, Seidl)]</td>
</tr>
<tr>
<td>(a)-(d)</td>
<td>UFS + LA</td>
<td>co-NP-hard</td>
<td>[Gulwani,T. 06]</td>
</tr>
<tr>
<td>(a)-(d)*</td>
<td>UFS + LA</td>
<td>decidable</td>
<td>[Gulwani,T. 06]</td>
</tr>
</tbody>
</table>

For generalizations of above results to other abstract domains and program models, see [Gulwani, T. VMCAI 07]

What about program models with procedure calls?
Present a general framework for interprocedural analysis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)-(e)</td>
<td>Lin Arith</td>
<td>PTime</td>
<td>[Müller-Olm and Seidl ’04, this paper]</td>
</tr>
<tr>
<td>(a)-(e)</td>
<td>Unary UFS</td>
<td>PTime</td>
<td>[this paper]</td>
</tr>
<tr>
<td>(a)-(e)</td>
<td>UFS</td>
<td>Open</td>
<td></td>
</tr>
</tbody>
</table>

Some results on interprocedural analysis on UFS abstraction, but under restrictions, given by Müller-Olm, Seidl, and Steffen (ESOP’05)
Interprocedural Analysis

Two approaches for interprocedural analysis:

1. Inlining

2. Computing Summaries
Interprocedural Analysis: Inlining

P() {
 [u + v == n+1]
 x := u;
 y := v;
 [x + y == n+1]
 while (*) {
 x++; y--;
 }
 [x + y == n+1]
}

main() {
 u := 0;
 v := n;
 Call P();
 [x + 1 + y == n+1]
 u := x + 1;
 v := y;
 [u + v == n+1]
 Call P();
 [x + y == n+1]
 assert(x + y == n+1)
}
Interprocedural Analysis: Inlining

P() {

[u + v == n]

x := u;
y := v;

[x + y == n]

while (*) {
 x++; y--;
}

[x + y == n]
}

main() {

[n + 0 == n]

u := 0;
v := n;

[u + v == n]

Call P();

[x + 1 + y == n+1]

u := x + 1;
v := y;

[u + v == n+1]

Call P();

[x + y == n+1]

assert(x + y == n+1)
}
Interprocedural Analysis

Inlining: Re-analyzes P()

Summary Computation: Compute a summary of a procedure just once and use it to backward propagate across Call P() nodes

In the example, we required:

\[
\begin{align*}
[?] & \quad \text{Call P()} \quad [x + y = n + 1] \\
[?] & \quad \text{Call P()} \quad [x + y = n]
\end{align*}
\]

Main idea: Propagate back a set of generic assertions

For example: \(\alpha x + \beta y = \gamma \)
Generic Assertions

Assertion that involves context-variables apart from regular program variables.

Examples of context-variables and their possible instantiations:

\[\alpha(-) \mapsto f(f(-)), 2(-), - + 1 \]
\[\beta(-1, -2) \mapsto 2(-1) + -2, f(-1, f(-2)) \]

A generic term: \(\alpha(x) + \beta(y) \)

A generic assertion: \(\alpha(x) + \beta(y) = \gamma \)
Complete Set of Generic Assertions

A is a complete set of generic assertions if,
for any generic assertion A_1, there exists $A_2 \in A$ s.t.

$$A_1 = A_2 \sigma$$

<table>
<thead>
<tr>
<th>Expr. Lang.</th>
<th>Complete Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lin. Arith.</td>
<td>${ \sum_{i \in V} \alpha_i x_i = \alpha }$</td>
</tr>
<tr>
<td>Unary UFS</td>
<td>${ \alpha(x_1) = \beta(x_2) \mid x_1, x_2 \in V, x_1 \neq x_2 }$</td>
</tr>
</tbody>
</table>

We need a finite complete set of generic assertions
Computing Procedure Summaries

Summary := \{(\psi_i, A_i) \mid [\psi_i] \text{Call P}(A_i), \ A_i \in \mathcal{A}\}

Method to compute procedure summaries:

1. WP based backward propagation over generic assertions

2. For procedure call nodes: requires matching current \(\psi\) with an assertion in \(\mathcal{A}\) and using its current summary

\[
\left[\bigwedge_i \psi'_i \sigma_i \right] \text{Call P} \left[\bigwedge_i B_i \right]
\]

if \((\psi'_i, A_i)\) is in current summary of \(\text{P}\) and \(B_i = A_i \sigma_i\).
Computing Summaries: Linear Arithmetic

P() {
 [true]
 x := u;
 y := v;
 [α(x + 1) + β(y - 1) == γ, αx + βy == γ]
 while (*) {
 x ++;
 y --;
 }
 [αx + βy == γ]
}

Summary: {((α == β ∧ αu + βv == γ, αx + βy == γ))

P() {
 [α - β == 0, αu + βv == γ]
 x := u;
 y := v;
 [α - β == 0, αx + βy == γ]
 while (*) {
 x ++;
 y --;
 }
 [αx + βy == γ]}

Ashish Tiwari, SRI

Computing Procedure Summaries for Interprocedural Analysis: 16
Termination: There can be at most $k^2 + k + 1$ independent facts over the variables $\{\alpha_i x_j, \alpha_i, \gamma\}$ where $i, j \in \{1, \ldots, k\}$

Since every fact is a linear equation over these $k^2 + k + 1$ variables

Complexity of interprocedural assertion checking: $O(nk^{10})$
where $n =$ number of program points and $k =$ live variables

Assuming arithmetic operations take $O(1)$ time
Using Summaries: Linear Arithmetic

main() {
 \[0 + n == n\]
 \(u := 0;\)
 \(v := n;\)
 \[1 - 1 == 0, u + v == n\]
 Call P(); // \(\alpha \mapsto 1, \beta \mapsto 1, \gamma \mapsto n\)
 \[x + 1 + y == n + 1\]
 \(u := x + 1;\)
 \(v := y;\)
 \[1 - 1 == 0, u + v == n + 1\]
 Call P(); // \(\alpha \mapsto 1, \beta \mapsto 1, \gamma \mapsto n + 1\)
 \[x + y == n + 1\]
 assert\((x + y == n + 1)\)
}
The same general idea works.

- **Complete Set of Generic Assertions:** \(\{\alpha(x) == \beta(y) \mid x, y \in V\} \), \(\alpha \) and \(\beta \) are strings over the unary symbols
- **Backward propagation gives generic assertions:** \(\{\alpha(C(x)) == \beta(D(y))\} \)
- **Termination:** Any finite set of such assertions is essentially equivalent to a set containing at most two equations
- **Summary:**
 \(\{(\psi_{xy}, \alpha(x) == \beta(y)) \mid x, y \in V, \ [\psi_{xy}] \text{Call P} [\alpha(x) == \beta(y)]\} \)
 where \(\psi_{xy} \) contains at most \(k(k - 1)/2 + 1 \) equations
- **All this takes polynomial number of string operations**

However, programs can succinctly represent really large strings
Consider the n procedures P_0, \ldots, P_{n-1}:

$$P_i(x_i) \{ t := P_{i-1}(x_i); \ y_i := P_{i-1}(t); \ return(y_i); \}$$

$$P_0(x_0) \{ \ y_0 := f x_0; \ return(y_0); \}$$

The summary of procedure P_i is:

$$\alpha == f^{2^i} \land \beta = \epsilon, \ \alpha x_i == \beta y_i$$
Computing Summaries: Unary UFS: Representation

- **SCFGs**: *singleton context-free grammars*
 A CFG where each nonterminal represents *exactly* one (terminal) string.

- An SCFG can represent strings in an exponentially succinct way

- We use SCFGs to represent strings during our interprocedural analysis

- Plandowski (1994) showed that equality (largest common prefix) checking of two strings represented as SCFGs can be done in PTime

- Summaries can be computed in time $O(nk^6T_{base}(n))$ on the abstraction of unary symbols.
Computing Summaries: General Case

Interprocedural analysis on a logical lattice defined by Th:

- Finite complete set of generic assertions
- Finite essential ascending chain property: Every increasing sequence of generic assertions (over k regular variables) finitely essentially converges

What is essential equivalence?
In case of non-deterministic programs, do not need to distinguish between ϕ and $Unif(\phi)$

ψ is essentially equivalent to ψ' if $\psi\sigma$ and $\psi'\sigma$ have the same set of unifiers for every σ that assigns context variables to a ground term with holes
Conclusion

Presented a general framework for interprocedural analysis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)-(e)</td>
<td>Lin Arith</td>
<td>PTime</td>
<td>[Müller-Olm and Seidl ’04, this paper]</td>
</tr>
<tr>
<td>(a)-(e)</td>
<td>Unary UFS</td>
<td>PTime</td>
<td>[this paper]</td>
</tr>
<tr>
<td>(a)-(e)</td>
<td>UFS</td>
<td>Open</td>
<td></td>
</tr>
</tbody>
</table>

Main ideas:

- Summary computation requires dealing with context variables
- Context unification can be used to simplify assertions to essentially equivalent assertions for non-det programs