
Relational Abstractions For Continuous and

Hybrid Systems

Sriram Sankaranarayanan1 and Ashish Tiwari2

1. University of Colorado, Boulder, CO. srirams@colorado.edu
2. SRI International, Menlo Park, CA. ashish.tiwari@sri.com

Abstract. There has been much recent progress on invariant genera-
tion techniques for continuous systems whose dynamics are described
by Ordinary Differential Equations (ODE). In this paper, we present
a simple abstraction scheme for hybrid systems that abstracts contin-
uous dynamics by relating any state of the system to a state that can
potentially be reached at some future time instant. Such relations are
then interpreted as discrete transitions that model the continuous evolu-
tion of states over time. We adapt template-based invariant generation
techniques for continuous dynamics to derive relational abstractions for
continuous systems with linear as well as non-linear dynamics. Once a re-
lational abstraction has been derived, the resulting system is a purely dis-
crete, infinite-state system. Therefore, techniques such as k-induction can
be directly applied to this abstraction to prove properties, and bounded
model-checking techniques applied to find potential falsifications. We
present the basic underpinnings of our approach and demonstrate its use
on many benchmark systems to derive simple and usable abstractions.

1 Introduction

Hybrid automata model systems that run in different modes. In each mode, a
hybrid system behaves as a continuous dynamical system, whose dynamics is
specified through Ordinary Differential Equations (ODEs). However, the system
can also transition between modes. These transitions are specified by means of
logical assertions over the current and next state variables known as transition
relations.

In this paper, we present relational abstractions of hybrid systems. Relational
abstraction transforms a given hybrid system into a purely discrete transition
system by summarizing the effect of the continuous evolution of states over time
using relations. The abstract discrete system is an infinite-state system that
can be analyzed using standard techniques for verifying such systems such as
k-induction and bounded model checking.

Relational abstractions preserve the discrete behavior of the hybrid system
and only abstract its continuous behavior. They work by replacing the continuous
dynamics in each mode by means of a relation R(x0,x). The relation R relates
a continuous state x0 with a state x that can be potentially reached at some
future time instant, through some time trajectory of the system starting from x0.

Such a relation R can be interpreted in two ways: (a) As a positive invariant set
for an associated dynamical system over x0,x, and (b) As a discrete transition
relation that abstracts the evolution of the continuous states over time.

The two views above provide two key advantages of the relational abstraction
approach. As a consequence of the first view above, we can use techniques for
generating invariants for continuous systems to generate a relational abstraction.
We propose simple extensions of template-based invariant generation techniques,
which can abstract systems with linear as well as non-linear dynamics, to con-
struct relational abstractions. Template-based techniques allow us to specify the
form of the relational abstraction [11, 21]. Therefore, our technique can be used
to obtain relational abstractions in linear arithmetic for systems with either
linear or non-linear dynamics.

As a consequence of the second view above, we obtain discrete infinite-state
abstractions of hybrid systems. This enables us to use techniques such as k-
induction using decision procedures [43], abstract interpretation [13, 23], or vir-
tually any technique for discrete systems, to analyze hybrid systems.

It is well known that the problem of verifying hybrid systems is quite hard,
both in theory and in practice. Recently, there have been many advances that
have yielded remarkably efficient tools for integrating affine ODEs over sets and
that work over large state spaces [27, 6, 45, 18, 40, 19]. However, we have observed
that a significant gap in performance remains when these techniques are used
to perform symbolic model checking, along the lines of tools such as HyTech
and PHAVer [25, 17]. In our experience, this gap stems from the need to han-
dle the dynamics repeatedly for the same mode, often with small variations
between sub-problems. In this paper, we hypothesize that the situation with
continuous dynamics is analogous to that of function calls encountered during
program analysis. During inter-procedural program analysis, it is often observed
that the analysis of each function call, given the state at the entry to the call, is
quite efficient. However, the overall inter-procedural analysis is often not scalable
due to repeated analysis of the same function with different actual parameters.
Therefore, as in the case of function calls in program analysis, we propose sum-
marization techniques that abstract the effect of the dynamics in each mode by
a discrete transition. As a result, our technique can efficiently handle contin-
uous dynamics. However, on the flip side, our approach may lose precision if
the relational abstraction is too conservative. Furthermore, the computation of
relational invariants implicitly doubles the number of state variables.

Our approach is able to prove safety properties of hybrid systems using tech-
niques such as k-induction, as well as to discover potential violations through
bounded model checking. To evaluate the idea of using relational abstractions
of hybrid systems, we generate relational abstractions of some standard bench-
marks and model check these abstractions. We generate relational abstractions
using a combination of quantifier elimination tools (REDLOG, QEPCAD) to
search for templatized invariants [48, 10, 44], and polyhedral analysis of ODEs
using fixed point iteration over cones [42]. We analyze the resulting relational
abstractions using the SAL framework from SRI [37, 47]. Our preliminary ex-

2

periments are quite promising: our approach has the ability to prove properties
of hybrid systems that are known to be complex, while at the same performing
much more efficiently than symbolic model checkers. The data from our exper-
iments along with an extended version of this paper with proofs will be made
available on-line 1.

We now discuss other related ideas in the literature.

Transition Invariants and Variance Analysis: The idea of defining “progress”
invariant predicates over pairs of states, x, x, is well-known in the field of pro-
gram analysis. The abstraction (or summarization) of loops and function calls
in programs by means of relations is a standard approach for verifying safety
as well as liveness properties in programs [30]. There has been a lot of work on
verifying liveness properties using ranking functions, transition invariants and
progress invariants [5, 33, 12, 20]. However, there are some important distinctions
between these various forms of relational invariants. Transition invariants [33]
capture the relationship between the current state and any previous state (at a
particular program location). Transition invariants were used to prove termina-
tion. Progress invariants capture the relationship between the current state and
the immediately previous state (at a particular program location) [20]. Progress
invariants were used to compute complexity bounds of programs. The relational
abstractions presented here have a subtle difference: they capture the relation-
ship between the current state and all previous states after the current mode was
entered. When combined with the entry and exit conditions of a mode, relational
invariants are exactly summaries of that mode. We use relational invariants to
create abstractions of hybrid systems that can be used to analyze the hybrid
systems; for example, to verify safety properties.

Podelski and Wagner provide a verification procedure for (region) stability
properties of hybrid systems [34], where they derive binary reachability relations
over trajectories of a hybrid system, similar to what is being proposed here.
However, there are two key differences in our methodology: (a) Our approach
deals with the dynamics at each mode upfront, deriving relational abstractions.
On the other hand, Podelski et al.’s technique transforms the entire hybrid sys-
tem, relying on safety verification built into a tool such as Phaver to derive the
relations [17]. Our goal in this paper is to make the process more efficient us-
ing constraint-based approaches and improve hybrid system safety verification
in the first place. (b) Secondly, our ultimate goal is to verify safety properties
efficiently as opposed to verifying stability.

Abstractions of Hybrid Systems: Many different types of discrete abstrac-
tions have been studied for hybrid systems including predicate abstraction [3,
46] and abstractions based on invariants [31]. The use of counter-example guided
abstraction-refinement for iterative refinement has also been investigated in the
past (Cf. Alur et al. [2] and Clarke et al. [8], for example). In this paper, the
proposed abstraction yields a discrete but infinite state system.

Hybridization is a technique for converting non-linear systems into affine
systems by subdividing the invariant region into numerous sub-regions and ap-

1 Cf. http://www.csl.sri.com/~tiwari/relational-abstraction/

3

proximating the dynamics as a hybrid system by means of a linear differential
inclusion in each region [26, 4, 14]. However, such a subdivision can be expensive
as the number of dimensions increases and may not be feasible if the invariant
region is unbounded.

Reachability Analysis: Reasoning about the reachable set of states for flows
of non-linear systems is an important primitive that is used repeatedly in the
analysis of non-linear hybrid systems. This has been addressed using a wide va-
riety of techniques in the past, including algebraic and semi-algebraic geometric
techniques, interval analysis, constraint propagation and Bernstein polynomi-
als [35, 29, 32, 36, 15].

2 Preliminaries

In this section, we present the basic definitions and properties of continuous
systems defined by Ordinary Differential Equations (ODE). Let R denote the
set of real numbers. We use a, . . . , z with subscripts to denote (column) vectors
and A, . . . , Z to denote matrices. For a m× n matrix A, the row vector Ai, for
1 ≤ i ≤ m, denotes the ith row. We define continuous systems using vector fields.

Definition 1 (Vector Field). A vector field F over a set X ⊆ R
n is a function

F : X 7→ R
n mapping each x ∈ X with a field direction F(x).

Vector fields commonly arise from the definition of time invariant systems.
A time invariant system defined by the ODE dx1

dt
= f1(x), . . . ,

dxn

dt
= fn(x)

can be identified with the vector field F(x) = (f1(x), . . . , fn(x)). Therefore, a
continuous system S : 〈F, X〉 is defined by a tuple consisting of the vector field
F and a domain (also referred to as a mode invariant) X ⊆ R

n. We now define
the time trajectories of a continuous system:

Definition 2 (Time Trajectories). A time trajectory of a continuous system
S : 〈F, X〉 is a function τ : [0, T) 7→ R

n for some T > 0, such that: τ(t) ∈ X,
for all t ∈ [0, T) and dτ

dt
= F(τ(t)), ∀ t ∈ [0, T).

Note 1. To facilitate presentation, we have (deliberately) restricted our atten-
tion to time invariant and autonomous systems. The full generalization to time
variant, non-autonomous systems will be presented in an extended version.

If the continuous system S is defined by a Lipschitz continuous vector field F,
then for any x0 ∈ X , we can guarantee the existence of a unique time trajectory τ
such that τ(0) = x0 [28]. Henceforth, we will assume that the systems considered
are defined by Lipschitz continuous vector fields.

An affine system S is a continuous system whose dynamics are defined by an
affine vector field dx

dt
= Ax+ b.

If f(x) is continuous and differentiable over x then we write ∂xf to denote
the vector of its partial derivatives w.r.t each xi. The Lie derivative of a function
g with respect to a field F is given by LF (g) := (∂xg) · F(x), where ‘·’ computes
the dot product of two vectors.

4

Positive Invariant Set: A set M ⊆ X is an invariant set for the system S iff
for any x ∈ M , and for each time trajectory τ : [0, T) 7→ X such that τ(0) = x

is entirely contained in M ; that is, (∀ t ∈ [0, T)) τ(t) ∈M .
LetM be a closed set defined by the assertion

∧m

j=1 gj(x) ≤ 0 for some finite
m. For technical reasons, as suggested by Blanchini and Miani, we assume that
each gj(x) is a continuous and differentiable, and is a “practical set” satisfying
the constraint qualification (Cf. Blanchini & Miani [7], page 104)

(∀ x ∈ X), (∃z) gj(x) + ∂xgj · z < 0 . (1)

Informally, the constraint qualifications ensure that
∧

j gj(x) < 0 represents the
(relative) interior of the setM and

∨

j gj(x) = 0 represents the boundary. It can
be shown that all affine functions gj and positive-semidefinite quadratic forms
(defining n-dimensional ellipsoids) satisfy these conditions.

Theorem 1. The set M :
∧m

j=1 gj(x) ≤ 0 is a positive invariant for the vector
field F if for each j ∈ [1,m] the following assertion holds true: ∀ x ∈ X : gj(x) =
0 ∧

∧

i6=j gi(x) ≤ 0 ⇒ LF (gj) < 0.

The theorem states that under appropriate conditions, a closed set M is a
positive invariant set if the vector field F lies in the tangent cone at each point
on the boundary of the set. It is a direct consequence of Nagumo’s theorem,
a more general result that holds for non-Lipschitz continuous dynamics and
non “practical” sets as well. The interested reader is referred to Blanchini and
Miani (Chapter 4) for further details [7]. The theorem above provides a basis
for various techniques for generating invariants for continuous systems using
quantifier elimination and constraint solving [35, 42, 21, 32].

Hybrid Systems: Hybrid systems combine the continuous evolution of state
with discrete, instantaneous jumps that can alter the state as well as the dynam-
ics of a system. We present the standard definition for hybrid systems following
Henzinger [24].

Definition 3 (Hybrid System). A hybrid system H is defined by a set of
discrete modes 〈m1, . . . ,mk〉, wherein, each mode mi is defined by a continuous
system Si : 〈Fi, Xi〉. The system can change modes through a set of discrete
transitions τ1, . . . , τm. Each transition is defined by a prior mode m0, a post-
mode m1 and a transition relation ρ[x,x′] ⊆ Xm0

×Xm1
, that relates the state

x ∈ Xm0
before the transition to the state x′ ∈ Xm1

obtained as a result of
taking the transition. The initial conditions are given by the initial mode minit

with the initial state set Θ ⊆ Xinit.

A hybrid system is a switched system if each discrete transition of the system
does not modify the continuous state variables. In other words, each discrete
transition relation ρ[x,x′] can be written as ρ : γ(x) ∧ x′ = x, for guard γ(x).

Example 1 (Switched system). Figure 1 shows the circuit diagram for a voltage
controlled switch that closes whenever the voltage across the capacitor (VC)
exceeds 4V , and open whenever VC goes below 1V .

5

R1 = 2KOhm

L = 1mH

R2 = 1KOhm

5V 1mF
S

VC

VL

Fig. 1. Circuit diagram for an LCR circuit with a voltage controlled switch S.

With the switch S open, the dynamics of the voltage across capacitor VC
and the voltage across the inductor VL are given by dVC

dt
= 5−VC −VL,

dVL

dt
=

−5 + VC − VL.
Likewise, with the switch S closed, the dynamics of the voltage across the

inductor is given by: dVC

dt
= 5−3VC−VL,

dVL

dt
= −5+3VC−VL. In each mode,

we assume the mode invariant (VC , VL) ∈ [−10, 10]× [−10, 10].

2.1 Constraint-Based Invariant Generation

Constraint-based invariant generation techniques fix a template form for the de-
sired invariant and derive constraints over the unknown parameters that ensure
that any solution is an invariant. A template form is specified as g(c,x) ≤ 0,
wherein g is a continuous function over unknown parameters in c and system
variables x. A simple example consists of affine templates:

c0 + c1x1 + . . .+ cmxm ≤ 0

The overall technique for computing invariants using templates consists of the
following key steps:

1. We first fix a template form for the desired linear invariants. The template
form involves the program variables as well as unknown parameters. We
represent the template as

g1(c1,x) ≤ 0 ∧ g2(c2,x) ≤ 0 ∧ · · · ∧ gm(cm,x) ≤ 0 ,

over program variables x and unknowns c1, . . . , cm. We assume that each
gj satisfies the constraint qualification stated in Equation (1) (Cf. page 5).
While our presentation here focusses on conjunctions of template inequali-
ties, it is possible to extend this technique to arbitrary Boolean combinations
of templates.

2. We encode the conditions required for the template to be an invariant of
the system. For the case of ODEs, we encode the condition in Theorem 1,

6

recalled below, for each j ∈ [1,m]:

(∀ x ∈ X), gj(cj ,x) = 0 ∧
∧

i6=j

gi(ci,x) ≤ 0 ⇒ ∂x(gj(cj ,x))F(x) < 0 . (2)

3. Eliminating the universally quantified variables in front of each of these
assertions yields a system of constraints Ψ over c1, . . . , cm. Solutions to these
constraints upon instantiation yield the required invariants.

The key conceptual step consists of eliminating the universally quantified
constraints in condition (2). If each of the templatized functions gj(cj ,x) is a
polynomial, this can be performed by using standard techniques for quantifier
elimination (QE) over the theory of reals such as cylindrical algebraic decompo-
sition. On the other hand, eliminating quantifiers over reals is often quite expen-
sive and yields constraints that are hard to solve. Therefore, a standard approach
consists of dualizing the condition (2) using Farkas’ Lemma or Lagrangian relax-
ation. This converts the universal quantifiers into existential quantifiers, yielding
the constraints:

(∃ λ, µ) λ ≥ 0 ∧ (µgj +
∑

i6=j

λigi ≡ (∂xgj)F(x)) . (3)

Note that we use a(c,x) ≡ b(c,x) for two polynomial expressions over x to
signify that coefficients for each monomial on the LHS is equal to the coefficient
on the RHS.

Example 2. Consider the problem of computing invariants of the LCR circuit
from Example 1. We consider the mode with switch S open. We recall that the
system variables are VC , VL with invariant (VC , VL) ∈ [−10, 10]× [−10, 10]. The
dynamics in this mode are recalled below:

dVC
dt

= 5− VC − VL,
dVL
dt

= −5 + VC − VL

for the initial condition Vc ∈ [0, 1], VL ∈ [0, 1]. Let us assume that the required
invariant is of the form

c0 + c1VC + c2VL ≤ 0 ,

for unknown parameters c0, . . . , c2.
We first encode the initial condition as:

(∀VC , VL)VC ∈ [0, 1] ∧ VL ∈ [0, 1] ⇒ c0 + c1VC + c2VL ≤ 0

Dualizing using Farkas’ Lemma and eliminating the resulting multipliers, we
obtain the system for initiation:

c0 ≤ 0 ∧ c0 + c1 ≤ 0 ∧ c0 + c2 ≤ 0 ∧ c0 + c1 + c2 ≤ 0 .

Additionally, we encode that the dynamics are preserved by the flow

c0 + c1VC + c2VL = 0 ∧ (VC , VL) ∈ [−10, 10]2 ⇒

(c1 − c2) + (c2 − c1)Vc − (c1 + c2)VL < 0

7

Dualizing using Farkas’ lemma, yields the constraints:

λ1, λ2, λ3, λ4 ≥ 0
µc1 − λ1 + λ2 = c2 − c1
µc2 − λ3 + λ4 = −c1 − c2

µc0 − 10λ1 + 10λ2 − 10λ3 + 10λ4 > (c1 − c2)

,

wherein λ, µ are existentially quantified multiplier variables.

In general, the application of Farkas’ lemma (or equivalently Lagrangian relax-
ation) yields a system of constraints of the following form:

(∃λ, µ) λ ≥ 0 ∧ D(λ, c, µ) (4)

whereinD is a set of bilinear inequalities involving multipliers λ, µ and unknowns
c. There are many ways of eliminating the multipliers from this system:

1. Use quantifier elimination over reals, especially elimination techniques that
take advantage of the fact that all polynomials in D are quadratic [11].

2. Use techniques based on constraint-logic programming to search for instan-
tiations of λ, µ by factoring so that the remaining constraints can be lin-
earized [41].

3. Use bit-vector solvers to consider finite bit width instantiations for λ, µ, c [21]
4. Obtain constraints for c by simulating the dynamics. These constraints are

linear, assuming that the templates are all linear over c, and can be used to
search for solutions of the system of constraints (4) [22].

2.2 Fixed Point Iteration

An alternative to template based invariant generation is a fixed point iteration
over polyhedral cone. We present this approach at a high level. For more de-
tails, we refer the reader to prior work by one of the authors [42, 39, 38]. The
tool TimePass (open source version developed at Stanford University) imple-
ments fixed point iteration for linear systems in conjunction with a flow pipe
construction technique.

Like constraint based methods, the overall idea behind fixed point iteration
is to fix a template of the form

g1(c1,x) ≤ 0 ∧ g2(c2,x) ≤ 0 ∧ · · · ∧ gm(cm,x) ≤ 0 .

Assuming that each of the functions gj is linear over cj , we may conclude that
the set of possible solutions form a cone. To obtain solutions that are also positive
invariants, the technique starts from an initial cone C0 containing all possible
instantiations for c : (c1, . . . , cm), and iteratively removes some of the inadmis-
sible solutions c which fail to satisfy condition (2), using a monotone refinement
operator. The refinement operator is iterated until a fixed point is obtained. The
generators of the fixed point cone, when instantiated into the template yields
the required invariants. Abstract interpretation techniques such as widening can
be used to accelerate convergence to an approximate but sound invariant.

8

2.3 Flowpipe Construction

Flowpipe construction is a technique for computing sets of states that are guar-
anteed to enclose the reachable states over time instances that lie inside an
interval I : [∆1, ∆2]. There are numerous techniques for flowpipe constructions;
too many to list here. These techniques differ based on the type of sets used to
enclose the flowpipes and the class of dynamical systems treated.

3 Relational Abstractions

In this section, we define relational abstractions for continuous systems, and
present proof rules for checking that a given relation is an abstraction of the
time trajectories of a continuous system defined by ODEs.

Let S : 〈F, X〉 be a continuous system defined by the vector field F, and
domain (invariant) X . It is assumed that S arises from a mode of a larger
hybrid system. Let R(x,y) be a relation over X ×X .

Definition 4 (Relational Abstraction Without Time). The relation R ⊆
R

2n is a (timeless) relational abstraction of a continuous system S if for all
time trajectories τ : [0, T) 7→ X of the system S, it is the case that (∀ t ∈
[0, T)) (τ(0), τ(t)) ∈ R.

Thus, for a time invariant system, a relational abstraction R captures all pairs
of states (x,y) such that it is possible to reach y from x in a finite amount of
time by evolving according to the dynamics of the system.

A relational abstraction R ⊆ X ×X is said to be complete for a system S if
whenever R(x,y) holds, then there exists a time trajectory τ : [0, T) 7→ X such
that τ(0) = x and τ(t) = y, for some time 0 ≤ t < T . Likewise, a relational
abstraction R is linear if it can be expressed as an assertion in the theory of
linear arithmetic over reals.

Note 2. A continuous system whose dynamics are defined by constants (such
as, a mode of a multi-rate hybrid automaton) has a complete, linear relational
abstraction. For instance, the evolution of the ODE dx

dt
= 2, dy

dt
= −3 can be

abstracted by the relation

R(x, y, x′, y′) := x′ − x ≥ 0 ∧
1

2
(x′ − x) =

−1

3
(y′ − y) .

In fact, we can show that hybrid systems with constant dynamics in each mode
are bisimilar to a purely discrete transition system through relationalization. On
the other hand, linear vector fields can fail to have complete abstractions.

We now define an “extended system” S ′ from a given system S such that
invariants of S ′ will yield relational abstractions for S.

Definition 5 (Extended System). Let S be a continuous system over x ∈ R
n

defined by vector field F and invariant region X. The extended system S ′ has state
variables (x,y) ∈ R

2n with the dynamics.

dy

dt
= F(y),

dx

dt
= 0 , (5)

9

invariant region given by X×X and with the initial conditions x(0) = y(0) ∈ X.

We now refine the notion of positive invariants from Section 2 to account for
the presence of initial conditions in the system.

Definition 6 (Initialized Positive Invariant). A set M is an initialized pos-
itive invariant for the system S with initial conditions X0 ⊆ M iff for all time
trajectories τ : [0, T) 7→ R

n of S starting from τ(0) ∈ X0 we have τ(t) ∈ M for
all t ∈ [0, T).

An initialized positive invariant is an over-approximation of all states reach-
able through a time trajectory starting from some pre-specified set of initial
states. This is, in fact, the true analog of an invariant for a program.

Note that every positive invariant setM (following the definition in Section 2)
that contains the initial set X0 is an initialized positive invariant. On the other
hand, an initialized positive invariant may not be a general positive invariant.
This is because, it may be possible for trajectories that start from some state in
the set M −X0 to exit the invariant set M .

Lemma 1. A relation R is a relational abstraction of S if and only if R is an
initialized positive invariant for S ′.

Proof. For a tuple of states (x,y) ∈ R
2n, we will use the notation π1(x,y) to

refer to x ∈ R
n and π2(x,y) to refer to y ∈ R

n.
Consider a time trajectory σ : [0, T) 7→ R

2n for (5) with initial conditions
σ(0) = (x0,x0). Let us define y(t) = π2(σ(t)). We observe that y(t) is a time
trajectory of S with y(0) = x0. To prove this, simply verify that y indeed evolves
according to the vector field in S and stays inside the invariant region X .

Likewise, for each time trajectory τ of S, the trajectory σ : [0, T) 7→ (τ(0), τ(t))
is a time trajectory of system (5).

[⇐] Assume that setM is an initialized positive invariant set for the extended
system S ′ defined according to (5). The following facts are true as a consequence:

1. (x,x) ∈M for all x ∈ X .
2. For every trajectory σ of S ′, with initial conditions σ(0) = (x,x), we have
σ(t) ∈M for all t ∈ [0, T).

Let us take any trajectory τ of S, we know that the trajectory σ(t) : (τ(0), τ(t))
is a valid trajectory for system (5) that is initialized in the set x(0) = y(0) =
τ(0) ∈ X . Therefore, (τ(0), τ(t)) ∈M for all time instances t for τ . This suffices
to show that M is a relational abstraction for S.

[⇒] Let a relation R be a relational abstraction for system S. Consider any
trajectory σ : [0, T) 7→ R

2n of S ′ such that σ(0) satisfies the initial conditions for
S ′. We wish to prove that σ(t) ∈ R for all t ∈ [0, T) in order to show that R is
an initialized positive invariant. Since σ(0) satisfies the initial conditions x(0) =
y(0), we can write σ(t) as (τ(0), τ(t)) for some trajectory τ of S. Therefore, by
definition of the relational abstraction R, we conclude that (τ(0), τ(t)) ∈ R and
in turn that σ(t) ∈ R. As a result R is a positive invariant for the system (5).

10

Therefore, if we can compute initialized positive invariants of the extended
system S ′ with initial states x(0) = y(0), we may use them to obtain relational
abstractions. In this work, we use various techniques that can compute positive
invariants M (using the definition in Section 2) of systems S that contain some
initial set of states X0.

Theorem 2. Let M be a positive invariant of the extended system S ′ containing
the initial states X0 = {(x,x) | x ∈ X}. Then M is a relational abstraction of
the system S.

Proof. We note that a positive invariant M containing the initial states X0 is
also an initialized positive invariant. I.e, for any trajectory σ starting from X0,
we know that σ(t) ∈ M since σ(0) ∈ M . The rest of the proof simply relies on
Lemma 1.

The converse of the theorem above does not hold, in general. As discussed
above, a positive invariant M containing the initial set of states X0 is not nec-
essarily an initialized positive invariant.

Note 3. The extended system can be expressed, equivalently, using the (time
reversed) system instead of the system (5).

dy

dt
= 0,

dx

dt
= −F(x) (6)

with the initial conditions x(0) = y(0).
In other words, a relational abstraction R(x,y) is a positive invariant of one

of two dynamical systems: System 5 where x is frozen in time and y evolves
according to the vector field F, and System 6 where y is frozen in time and x

evolves according to the time reversed field −F.

Proof Rule for Relational Abstractions The proof rule for relational ab-
stractions can be derived from the proof rule for invariant sets. Furthermore,
techniques for synthesizing invariants can be directly used to synthesize rela-
tional abstractions. We now present a proof rule for checking if a relation R is a
sound abstraction. We assume that the relation R is specified as an assertion of
the form:

R(x,y) : g1(x,y) ≤ 0 ∧ . . . ∧ gm(x,y) ≤ 0 ,

wherein g1, . . . , gm are continuous and differentiable functions over R2n. Further-
more, for technical reasons, we assume that the set R ∩ (X ×X) in R

2n defined
by the relation R restricted to X is a closed set and gj satisfy the constraint
qualifications in (1).

Definition 7. The following rules allow us to conclude that the relation R, as
specified above, is a relational abstraction of a continuous system S:

Initialization: ∀ x ∈ X, R(x,x) , and

11

Flow Preservation: We may use the rule for forward time:

∀j ∈ [1,m], ∀ x,y ∈ X,
∧

i6=j

gi(x,y) ≤ 0 ∧ gj(x,y) = 0 ⇒ (∂ygj)·F(y) < 0 ,

or the rule for time reversed dynamics:

∀j ∈ [1,m], ∀ x,y ∈ X,
∧

i6=j

gi(x,y) ≤ 0 ∧ gj(x,y) = 0 ⇒ (∂xgj)·(−F(x)) < 0 .

Example 3. We now consider relationalizations for the LCR circuit in Example 1.
Consider the mode when the switch is open with dynamics given by dVC

dt
=

5− VC − VL,
dVL

dt
= −5 + VC − VL.

We wish to show that the relation R(VC0, VL0, VC , VL), represented by the
assertion below, is a relational abstraction: (VC0, VC , VL0, VL) ∈ [−10, 10]4 ∧
VC + 5VL ≤ VC0 + 50 ∧ 4VL ≤ VL0 + 30 ∧ 2VL − 3VC ≤ 2VL0 + 30.

Let us consider the inequality VC + 5VL − VC0 − 50 ≤ 0. For the initial
condition, we set VC = VC0 and VL = VL0 and verify that 5VL0 ≤ 50 holds over
the invariant region (VC0, VL0) ∈ [−10, 10]2. Likewise, the Lie derivative of the
LHS expression is given by 4VC − 6VL − 20. We verify the following entailment
using an SMT solver

R(VC0, VL0, VC , VL) ∧ VC + 5VL − VC0 − 50 = 0 |= 4VC − 6VL − 20 < 0 .

The remaining constraints are similarly verified.

Disjunctive Relational Abstraction Often, the relational abstraction can be
represented as the disjunction R(x,y) :

∨m
j=1 Rj(x,y) of finitely many relations

R1, . . . , Rm, such that (a) each relation Rj is represented by an assertion over
x,y satisfying the flow preservation proof rule in Def. 7, and (b) the disjunctive
relation R(x,y) satisfies the initialization rule.

Example 4. Consider, once again, the LCR circuit in Example 1. The relation
below is a disjunctive relational abstraction for the switch open mode:

|VL| ≤ max(|VL0|, |VC0 − 5|) ∧ |VC − 5| ≤ max(|VL0|, |VC0 − 5|) .

Verifying this fact can be performed by expanding the definitions of max and | · |.
The resulting assertion is cast in the disjunctive normal form and the flow preser-
vation proof rule in Def. 7 can be checked for each disjunct, and the initialization
rule can be checked for the whole disjunction.

3.1 Relational Abstractions over Time Intervals

The timeless relational abstraction R(x,y) (Definition 4) holds between a state
x and all states that are reached at all possible future time instants starting
from x. It is also useful to define a similar concept that restricts the possible
future time instants considered.

Let S : 〈F, X〉 be a continuous system. Let I : [∆1, ∆2] be a non-empty
interval over the real line. We assume that ∆2 > ∆1 ≥ 0.

12

Definition 8 (Limited Time Relational Abstractions). A relation RI ⊆
R

n × R
n is a limited time relational abstraction of S over the interval I if for

all x0 ∈ X, for all time trajectories τ : [0, T) 7→ R
n starting from x0 (i.e.,

τ(0) = x0), and for all time instants t ∈ I, (τ(0), τ(t)) ∈ RI .

We now relate limited time relational abstractions with timeless relational
abstractions. First, we observe that limited time abstractions can be derived,
once again, by searching for positive invariants of an associated system.

Lemma 2. A relation RI is a limited time relational abstraction for a system
S : 〈F, X〉 over the time interval I iff there is a positive invariant set R′ of the
associated system S ′ defined over variables x,y, s with dynamics dx

dt
= 0, dy

dt
=

F(y), ds
dt

= 1 such that ∀x ∈ X,R′(x,x, 0) holds and RI = ∃s ∈ I : R′.

Proof. The proof is simply a corrollary of Lemma 1 due to the following observa-
tion: RI is a time limited abstraction for S iff it is a time unlimited abstraction
for the system S ′ : 〈F′, X ′〉 over variables x ∪ {s}. The new variable s repre-
sents time and has dynamics F′(s) = 1. For variables in the original system S,
we have F(x) = F′(x). Similarly, the invariant region X ′ is simply X with the
added constraint s ∈ I.

An application of Lemma 1 yields the required result.

As a result, techniques for generating invariants of continuous systems can be
used to generate limited time relational invariants. More importantly, however,
is the fact that limited time relational abstractions over time intervals of the
form [0, ∆] can be computed using flowpipe construction techniques that are
commonly used to integrate ODEs over sets [27, 6, 45, 18, 40, 19]. Furthermore,
given a limited time abstraction RI over a time interval [0, ∆], we can derive a
timeless abstraction R by computing the transitive closure of RI .

The composition of R ◦ S of relations R(x,y) and S(x,y) is defined as [R ◦
S](x,y) : (∃ z) R(x, z) ∧ S(z,y).

Lemma 3. Let R1 be a limited time relational abstraction over [0, ∆1] and R2

be a limited time relational abstraction over [0, ∆2] for ∆1, ∆2 > 0. Then, R1◦R2

is a limited time relational abstraction over the time interval [0, ∆1 +∆2].

Proof. Let τ be a time trajectory over some time interval [0, T] wherein T ≤
∆1 + ∆2. We wish to show that for any two points x = τ(t1) and y = τ(t2)
wherein 0 ≤ t1 ≤ t2 ≤ ∆1 +∆2, we have R1 ◦R2(x,y).

If t2− t1 ≤ ∆1, we note that (x,y) ∈ R1. Furthermore, since (y,y) ∈ R2, we
obtain the required result. Similarly, we can handle the case when t2 − t1 ≤ ∆2.

On the other hand, we have t2 − t1 ≤ ∆1 + ∆2. Let us choose t3 ∈ [t1, t2]
such that 0 ≤ t3 − t1 ≤ ∆1 and 0 ≤ t2 − t3 ≤ ∆2. Let z = τ(t3). We note that
R1(x, z) and R2(z,y). Combining, these two observations yields the required
result.

As a result, given a relation RI valid over some time interval [0, ∆] for ∆ > 0,
we obtain a timeless abstraction R∗ as the fixed point of an iterative sequence
of relations.

13

Invariant
Generator

k-induction
BMC (SAL)

Hybrid
System

Discrete
System

Proof or
Counter Ex.

Fig. 2. Framework for implementing a safety verification engine using relationalization.

Lemma 4. If RI is a limited time abstraction over an interval [0, ∆], ∆ > 0,
then any relation R that contains the fixed point of the iterative sequence

R0 := RI , Rn+1 := (Rn ◦Rn)

is a timeless abstraction.

Proof. The proof is a direct consequence of Lemma 3. We can prove by induction
that Rn is a valid time limited abstraction over the interval [0, (2n)∆]. Let R
be an over-approximation of the fixed point. Let us assume that τ is any time
trajectory and consider points x = τ(t1) and y = τ(t2) wherein 0 ≤ t1 ≤ t2. Let

n =
⌈

log2

(

(t2−t1)
∆

)⌉

. We note that Rn(x,y) holds. Since R ⊇ Rn, we conclude

that R(x,y) holds. Therefore R is a time unlimited abstraction.

Thus, we can use flowpipe approximation techniques combined with a fixed
point computation using abstract interpretation to generate timeless relational
abstractions.

4 Implementation

Figure 2 shows the overall verification framework. It consists of two parts: (a)
an invariant generator for generating the relational abstraction of the input hy-
brid system, and (b) a verifier for analyzing the relational abstraction using
techniques such as k-induction and BMC. Note that other verification tech-
niques/tools are equally applicable here. Our framework abstracts each mode
upfront to yield a purely discrete system. It is possible, in practice, to imple-
ment the abstraction on-the-fly, depending on the verification procedure used,
whenever a previously unseen mode is entered.

We now discuss the implementation of relational abstraction, restricting our
attention here to techniques that have been employed in our experiments. We pri-
marily apply template-based methods for generating relational abstractions [11,
21]. Template-based techniques formulate an unknown parameterized form for
the required invariant and cast the problem of generating the invariant as an ∃∀
formula. These ∃∀ formulas can be solved directly using quantifier elimination
techniques over the theory of reals [48, 9], or they can be first converted into
∃ formulas through through dualization. The ∃ formulas, which contains non-
linear constraints over the unknown parameters, can be solved using either fixed
point iteration over cones [42], or using bit-vector solvers [21], or by simulating
the system numerically (along the lines of Gupta et al. [22]). In our experiments,

14

we use a specialized quantifier elimination technique [44] and the tool TimePass,
which implements a fixed point iteration with widening over polyhedral cones
for affine differential equations [42].

For each mode of the hybrid system, we consider three types of abstractions
affine, eigen, and box abstractions.

Affine abstractions Affine abstractions employ the template: a·x+b·x0 ≥ a0.
In practice, the template: a(x − x0) ≥ a0 suffices after taking the initiation
into account. Affine relational abstractions are computationally inexpensive to
generate, but they are also of relatively poor quality.

Eigen abstractions For linear systems, such as dx/dt = Ax, whenever A
has real eigenvalues, useful relational abstractions can be generated using the
eigenvectors of AT corresponding to those real eigenvalues [45]. Here AT denotes
the transpose of matrix A. Specifically, if c is such that ATc = λc, then by simple
algebraic manipulation, we obtain d

dt
(c1x1 + . . .+ cnxn) = λ(c1x1 + . . .+ cnxn)

where c := [c1; . . . ; cn] and x := [x1; . . . ;xn]. Let p denote the linear expression
c1x1 + . . . + cnxn and let p0 denote the linear expression c1x10 + . . . + cnxn0.
Here xi0 denotes the old value of xi. If λ < 0, then we know the value of p
approaches zero monotonically. Consequently, we get the relational abstraction
(p0 < 0 ⇒ p0 ≤ p < 0) ∧ (p0 > 0 ⇒ p0 ≥ p > 0). Similarly, we can write the
relational invariants for the case when λ > 0 and λ = 0.

Box abstractions Box relational abstractions take the following form:

Max (a1|x1|, . . . , an|xn|) ≤ Max (a1|x10|, . . . , an|xn0|)

where ai’s are nonnegative real numbers. Note that box relational invariants
are Boolean combinations of affine relational invariants. We can generate box
relational invariants by finding appropriate ai’s. It turns out that this does not
require expensive quantifier elimination and we can find box (relational) in-
variants in just O(n3) time [1]. Box invariants do not always exist. There are
sufficient (and necessary) conditions for their existence. Example 4 provided a
box invariant for the switch open mode.

5 Experimental Evaluation

We evaluate our approach over the navigation benchmarks [16], to experimen-
tally evaluate the usefulness of relational abstractions for verifying hybrid sys-
tems. The navigation benchmarks model a vehicle moving in a 2-dimensional
rectangular space [0,m− 1]× [0, n− 1]. This space is partitioned in m× n cells.
The vehicle has different dynamics in each of these cells. Let x, y denote the
position of the vehicle and vx, vy denote its velocity. Then the dynamics of the
vehicle in any particular cell is given by the ODEs:

dx
dt

= vx
dvx
dt

= a11(vx − b) + a12(vy − c)
dy
dt

= vy
dvy
dt

= a21(vx − b) + a22(vy − c)

15

Benchmark Affine Invs Affine+Eigen Invs Affine+Eigen+Box Invs

depth status time(s) depth status time(s) depth status time(s)

nav01 4 F 0.63 4 F 0.88 4 F 1.91
nav01 5 P 0.75 5 P 0.91 5 P 1.36

nav02 4 F 0.64 4 F 0.87 4 F 1.8
nav02 5 P 0.68 5 P 1.04 5 P 3.33

nav03 4 F 0.60 4 F 0.91 4 F 1.72
nav03 5 P 0.67 5 P 1.05 5 P 2.7

nav04 3 CE 0.49 8 F 3.21 8 F 34.883
nav04 4 P 0.75+0.99 4 P 0.98+2.21

nav05 2 CE 0.47 8 F 3.85 8 F 37.31
nav05 8 P 2.15+2.50 8 P 5.38+11.05

nav06 4 CE 0.61 8 F 18.01 8 F 494.5
nav06* 4 CE 1.03 8 P 21.80+7.42 8 P 40.22+35.08

nav07 5 CE 0.66 - - - 5 F 69.9
nav07 - - - 6 P 6.25

nav08 4 CE 0.52 - - - 6 CE 0.95

nav09 4 CE 0.57 4 CE 1.45 4 CE 19.87

nav10 3 CE 0.44 3 CE 0.99 3 CE 0.95

Table 1. Comparison of various abstractions over the NAV benchmarks. All experi-
ments performed on a Intel Xeon E5630 2.53GHz single-core processor (x86 64 arch)
with 4GB RAM running Ubuntu Linux 2.6.32-26. Proofs are attempted at a given
depth k using k-induction. Legend — depth: depth for which k-induction was run,
time: time taken by verifier, status: status of the verification run, P: Proved Property,
CE: k-induction base case fails and counter-example is produced, F: Inductive step
fails, no proofs or counter example. Note: Relational eigeninvariants are inapplicable
for nav07, nav08 since A matrix has no negative real eigenvalue (indicated by -). Some
of the k-induction timings are reported as t1 + t2 , indicating that an auxilliary lemma
was used. t1 is the time to prove the property, and t2 is the time to discharge the
auxilliary lemma.

where the matrix A := [a11, a12; a21, a22] and the direction (b, c) are parameters
that can potentially vary (for each of the cells).2

Every benchmark in the suite [16] is specified by fixing the matrix A, the
number of cells m × n, the direction (b, c) in each cell and initial intervals for
each of the four state variables x, y, vx, vy. A distinct cell in each benchmark
(marked B) represents the unsafe region. Our experiments focus on proving the
unreachability of B. Further details are available elsewhere [16].

In our experiments, we verify the safety property for the navigation bench-
marks using k-induction over the relational abstraction. We use the SAL infinite
bounded model checker, with the k-induction flag turned on, (sal-inf-bmc -i),
which uses the SMT solver Yices in the back-end. Table 1 reports the results. For
each benchmark, we report the depth used for performing k-induction (under
“depth”), the output of k-induction (under “status”), and the time it took (un-
der “time”). There are three possible outputs: (a) the base case of k-induction

2 The matrix A is typically Hurwitz, which means that the dynamics are such that
(vx, vy) asymptotically converges to (b, c).

16

fails and a counter-example is found (denoted by “CE”) (b) the base case is
proved, but the induction step fails; i.e, no counter-example is found, but no
proof is found either (denoted by “F”) (c) the base case and the induction step
are successfully proved (denoted by “P”). Since we perform k-induction on an
abstraction, the counter-examples may be spurious, but the proofs are not. As
Table 1 indicates, relational abstractions are sufficient to establish safety of the
benchmarks nav01–nav05, nav06* and nav07. The system nav06* is the same as
nav06 but with a slightly smaller set of initial states. However, the proof fails on
nav06 and nav08–nav10. There are two reasons for failure: (a) Poor quality of
abstraction, which is reflected in entries “CE” in Table 1. (b) Inability to find
suitable k-inductive lemmas. This happens in the case of nav06, where the proof
fails without yielding a counter-example. As discussed in Section 4, we employed
three kinds of relational abstractions for each mode of the hybrid system: affine,
eigen, and box abstractions. Table 1 also shows the performance of each of these
techniques.

Affine abstractions In Table 1, Columns (2)–(4) report results on affine
relational abstractions. We note that affine abstractions are sufficient to prove
safety of benchmarks nav01–nav03, but they fail on all other benchmarks.

Eigen abstractions The dynamics in each mode of the benchmarks nav01–
nav06 and nav10 have negative real eigenvalues. In Table 1, Columns (5)–(7)
present results using a relational abstraction obtained by combining affine and
eigen abstractions. For nav04–nav06, the combination eliminates the spurious
counter-examples. However, no such benefit is seen on nav08–nav10 benchmarks.
The dynamics in benchmarks nav07–nav08 do not have any real eigenvalues.

Box abstractions The dynamics of all modes of all benchmarks in Table 1
satisfy all the conditions for the existence of box invariants, which enables us
to generate box relational invariants for each of them. Columns (8)–(10) report
results using a relational abstraction obtained by combining affine, eigen and
box relational invariants. In the case of nav07, where there are no eigen invari-
ants, addition of box invariants eliminated the counter examples from the model
and even enabled verification of safety using k-induction with depth 6. However,
no such benefit is seen for benchmarks nav08–nav10. Also, when eigen invari-
ants exist, then adding box invariants does not seem to improve the quality of
abstraction. Note that the use of box invariants increases the time taken to per-
form k-induction: this is expected since box invariants have a complex Boolean
structure, which increases the search space of the SMT solver.

Comparison with Other Tools: Comparing our timings with those reported
in the literature for the same nav benchmarks, especially previous work by one of
the authors [40], we note that our techniques are at least an order of magnitude
faster on the larger benchmarks (10s of seconds vs. 100s−1000s of seconds using
template-based flowpipes [40]). A detailed comparison will be made available in
our extended version.

Disjunctive and conjunctive relational invariants One plausible reason
for the failure to prove nav08–nav10 benchmarks is that we do not consider
invariants of richer Boolean structure, such as 2-disjunctive invariants of the

17

Type of Relational Invariant Time (without state invariant) Time (with state invariant)

Affine Inequality 60ms 6740ms

Affine Equality + Eigen 70ms 340ms

Table 2. Time (in milliseconds) to generate all affine equality, inequality and eigen
relational invariants for all modes of all the benchmarks.

form p(x0) ≥ 0 ⇒ p(x,x0) ≥ 0. Even though eigen invariants have this form, but
there may be other invariants of this form that are not related to the eigenvectors
of the A-matrix. We also do not consider conjunctive invariants of the form
p1 ≥ 0 ∧ p2 ≥ 0. Note that p1 ≥ 0 and p2 ≥ 0 need not separately be inductive,
but their conjunction could be inductive. For this reason, we often fail to find
them by just considering templates for p1 ≥ 0 and p2 ≥ 0 separately.

Overcoming limitations of k-induction Even if the relational abstractions
are strong enough to rule out all unsafe behaviors, we may still fail to prove
the system safe using k-induction. This will happen if the safety property is
not k-inductive for any k. This is possibly the case for benchmarks nav04-nav06.
However, we are able to successfully prove safety of nav04 and nav05 by using an
auxiliary lemma. The auxiliary lemma was itself verified by k-induction again.
For nav06, we are unable to find any suitable auxiliary lemma at this time.

Another plausible cause for the failure of k-induction is the introduction
of spurious loops in the relational abstraction, where no such loops exist in the
concrete system. Analysis of the counter-examples to the induction step in nav06
(generated by sal-inf-bmc -i -ice) strongly indicates this possibility.

One way to eliminate spurious loops in the abstract is based on assuming that
the concrete system stays in a mode for some small, but fixed, amount of time.
Under the assumption that the concrete system stayed in a mode for at least
1/10 seconds, we strengthened the affine invariants of nav06, allowing us to prove
safety of nav06 (for a slightly smaller set of initial states than what is specified
in the nav06 benchmarks). These results are reported in row nav06* in Table 1.
We conjecture that this trick will eliminate all the spurious counter-examples in
the other navigation benchmarks.

Quantifier Elimination for generating relational invariants The new
redlog/qepcad combination [44] is quite effective in generating all the affine and
eigen invariants used in our experiments. Table 2 provides the time taken by all
runs of the quantifier elimination process to generate these invariants. We report
times for two cases depending on whether we used a template of the form ψ[x0] ⇒
R(x0,x), with a state invariant antecedent guarding the relation. The times are
negligible since the benchmarks are 4-dimensional systems (they all involve only
4 real-valued variables) with relatively simple (linear) dynamics in each mode. As
a final remark, note that quantifier elimination does not return specific values for
the parameters, but constraints on the unknown parameters.We choose values by
solving a satisfiability problem. In our examples, the constraints after elimination
were simple enough to perform this step manually. The redlog files that were used

18

to generate the relational invariants and SAL models of the relational abstraction
are publicly available3.

6 Conclusions

We have presented an approach for verifying hybrid systems based on construct-
ing a relational abstraction of the hybrid system, and then using fast SMT
based verification techniques, such as k-induction, for verifying the abstraction.
Relational abstractions can be constructed compositionally by abstracting each
mode separately. Our initial results are quite encouraging. The technique suc-
cessfully solves some of the standard benchmark examples an order of magnitude
faster than symbolic model checkers. Yet, the abstractions can be coarse and k-
induction itself can be challenging to apply on hybrid systems in practice. Our
future work will focus on improving the quality of relational abstractions while at
the same time making the technique suitable for deriving fast proofs for complex
systems. We also wish to apply our our techniques to non-linear hybrid systems
in order to derive linear arithmetic abstractions.

References

1. A. Abate, A. Tiwari, and S. Sastry. Box invariance in biologically-inspired dynam-
ical systems. Automatica, 45(7):1601–1610, July 2009.

2. R. Alur, T. Dang, and F. Ivančić. Counter-example guided predicate abstraction
of hybrid systems. In TACAS, volume 2619 of LNCS, pages 208–223. Springer,
2003.

3. R. Alur, T. A. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of
hybrid systems. Proc. of IEEE, 88(7):971–984, 2000.

4. E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of
nonlinear systems. Acta Informatica, 43:451—476, 2007.

5. J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. W. O’Hearn. Variance
analyses from invariance analyses. In POPL, pages 211–224. ACM, 2007.

6. M. Berz and K. Makino. Performance of Taylor model methods for validated
integration of ODEs. LNCS, 3732:65–74, 2005.

7. F. Blanchini and S. Miani. Set-Theoretic Methods in Control. Springer-Verlag,
2008.

8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

9. G. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In H.Brakhage, editor, Automata Theory and Formal Languages,
volume 33 of LNCS, pages 134–183. Springer, 1975.

10. G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quan-
tifier elimination. Journal of Symbolic Computation, 12(3):299–328, sep 1991.

11. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using
non-linear constraint solving. In CAV, volume 2725 of LNCS, pages 420–433.
Springer, July 2003.

3 http://www.csl.sri.com/~tiwari/relational-abstraction/

19

12. M. Colon and H. Sipma. Synthesis of linear ranking functions. In T. Margaria and
W. Yi, editors, Tools and Algorithms for Construction and Analysis of Systems,
volume 2031 of LNCS, pages 67–81. Springer, April 2001.

13. P. Cousot and R. Cousot. Abstract Interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In ACM
Principles of Programming Languages, pages 238–252, 1977.

14. T. Dang, O. Maler, and R. Testylier. Accurate hybridization of nonlinear systems.
In HSCC ’10, pages 11–20. ACM, 2010.

15. T. Dang and D. Salinas. Image computation for polynomial dynamical systems
using the bernstein expansion. In CAV, volume 5643 of LNCS, pages 219–232.
Springer, 2009.

16. A. Fehnker and F. Ivanĉić. Benchmarks for hybrid systems verification. In HSCC,
volume 2993 of LNCS, pages 326–341. Springer, 2004.

17. G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech.
STTT, 10(3), June 2008.

18. A. Girard. Reachability of uncertain linear systems using zonotopes. In HSCC,
volume 3414 of LNCS, pages 291–305. Springer, 2005.

19. C. L. Guernic and A. Girard. Reachability analysis of linear systems using support
functions. Nonlinear Analysis: Hybrid Systems, 4(2):250 – 262, 2010.

20. S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and progress invari-
ants for bound analysis. In PLDI, 2009.

21. S. Gulwani and A. Tiwari. Constraint-based approach for hybrid systems. In CAV,
volume 5123 of LNCS, pages 190–203, 2008.

22. A. Gupta, R. Majumdar, and A. Rybalchenko. From tests to proofs. In TACAS,
volume 5505 of Lecture Notes in Computer Science, pages 262–276. Springer, 2009.

23. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157–185,
1997.

24. T. A. Henzinger. The theory of hybrid automata. In LICS’96, pages 278–292.
IEEE, 1996.

25. T. A. Henzinger and P. Ho. HyTech: The Cornell hybrid technology tool. In
Hybrid Systems II, volume 999 of LNCS, pages 265–293. Springer, 1995.

26. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on Automatic Control, 43:540–554, 1998.

27. A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis.
In HSCC, volume 1790 of LNCS, pages 202–214. Springer, 2000.

28. J. D. Meiss. Differential Dynamical Systems. SIAM publishers, 2007.
29. V. Mysore, C. Piazza, and B. Mishra. Algorithmic algebraic model checking II: De-

cidability of semi-algebraic model checking and its applications to systems biology.
In ATVA, volume 3707 of LNCS, pages 217–233. Springer, 2005.

30. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

31. M. Oishi, I. Mitchell, A. M. Bayen, and C. J. Tomlin. Invariance-preserving ab-
stractions of hybrid systems: Application to user interface design. IEEE Trans. on
Control Systems Technology, 16(2), Mar 2008.

32. A. Platzer and E. Clarke. Computing differential invariants of hybrid systems as
fixedpoints. Formal Methods in Systems Design, 35(1):98–120, 2009.

33. A. Podelski and A. Rybalchenko. Transition invariants. In LICS, pages 32–41.
IEEE Computer Society, 2004.

34. A. Podelski and S. Wagner. Model checking of hybrid systems: From reachability
towards stability. In HSCC, volume 3927 of LNCS, pages 507–521. Springer, 2006.

20

35. S. Prajna and A. Jadbabaie. Safety verification using barrier certificates. In HSCC,
volume 2993 of LNCS, pages 477–492. Springer, 2004.

36. S. Ratschan and Z. She. Safety verification of hybrid systems by constraint prop-
agation based abstraction refinement. In HSCC, volume 3414 of LNCS, pages
573–589. Springer, 2005.

37. J. Rushby, P. Lincoln, S. Owre, N. Shankar, and A. Tiwari. Symbolic analysis
laboratory (sal). Cf. http://www.csl.sri.com/projects/sal/.

38. S. Sankaranarayanan. Automatic invariant generation for hybrid systems using
ideal fixed points. In Hybrid Systems: Computation and Control, pages 221–230.
ACM Press, 2010.

39. S. Sankaranarayanan, T. Dang, and F. Ivančić. A policy iteration technique for
time elapse over template polyhedra. In HSCC, volume 4981 of LNCS, pages
654–657. Springer, 2008.

40. S. Sankaranarayanan, T. Dang, and F. Ivančić. Symbolic model checking of hybrid
systems using template polyhedra. In TACAS, volume 4963 of LNCS, pages 188–
202. Springer, 2008.

41. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Constraint-based linear-
relations analysis. In Static Analysis Symposium (SAS 2004), volume 3148 of
LNCS, pages 53–69. Springer, August 2004.

42. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Fixed point iteration for com-
puting the time-elapse operator. In HSCC, LNCS. Springer, 2006.

43. M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induction
and a sat-solver. In FMCAD, volume 1954 of LNCS, pages 108–125. Springer, 2000.

44. T. Sturm and A. Tiwari. Verification and synthesis using real quantifer elimination,
2011. Submitted.

45. A. Tiwari. Approximate reachability for linear systems. In HSCC, volume 2623 of
LNCS, pages 514–525. Springer, 2003.

46. A. Tiwari. Abstractions for hybrid systems. Formal Methods in Systems Design,
32:57–83, 2008.

47. A. Tiwari and S. International. HybridSAL: A tool for abstracting Hybrid-
SAL specifications to SAL specifications, 2007. Cf. http://sal.csl.sri.com/

hybridsal/.
48. V. Weispfenning. Quantifier elimination for real algebra—the quadratic case and

beyond. In Applied Algebra and Error-Correcting Codes (AAECC) 8, pages 85–101,
1997.

21

