
Cyber-Component Verification Using
HybridSAL

Ashish Tiwari

SRI International, Menlo Park, CA. ashish.tiwari@sri.com

Abstract. This tutorial describes the process of designing cyber-components
of a complex system guided by formal verification.

1 The Tools

The tools used in the verification of cyber-controllers are the following:

Matlab Simulink Stateflow: We assume that the cyber-components are de-
signed using Matlab’s Simulink Stateflow language. Any changes to the con-
troller models are performed using Matlab.
Preferred version: R13b

Matlab extension for specifying LTL properties: VU has developed scripts
that extend the graphical user interface of Matlab Simulink/Stateflow with
dialog boxes for specifying temporal logic properties using a pattern system.
Desired properties of the controllers are attached to the Simulink subsystem
or Stateflow chart using this extension.

MDL2MGACyber.exe: VU has developed a tool that translates a Matlab
model (exported as a .mdl file) into an XML representation (cyber-composition
language). Both the system and the LTL property are included in the XML
file.
This tool is part of META release.

cybercomposition2hsal: SRI has developed a tool that translates models in
the cyber composition language (.xml files) into the HybridSal formal veri-
fication language.
This tool is currently available as a separate script. It will soon be integrated
into the META release.

hsalRA.exe: The HybridSal relational abstracter, combined with the infinite
bounded model checkers.
The SAL tool is required to be installed separately. SAL executables are
available from the SAL website. On Windows, SAL runs only under cygwin.
The hybridsal tool is part of META release.

2 A Simple Exercise

We describe a simple design exercise using HybridSal. It consists of the following
steps.



– Building/editing the cyber model and annotating it with LTL properties

– Converting the Matlab model into the cyber composition language

– Creating a HybridSal representation of the model and the properties

– Verifying the HybridSal model

2.1 Building/editing the cyber model

We start with controllers designed by VU. The Matlab files for these controllers
are:

– Torque Converter control.mdl

– TorqueReductionSignal.mdl

– SimplifiedShiftController.mdl

These files can be opened in Simulink and edited. If the LTL-extension is
installed, then LTL properties can be attached to these models directly by right
clicking on the model.

Models (and the properties) are saved as .mdl files using Matlab.

2.2 Converting Matlab to Cyber Composition language

Using the MDL2MGACyber.exe tool, an XML representation of the models is gen-
erated. Corresponding to the above mdl files, we get the file

SimplifiedControllerCyberWithProp.xml

This file has all the three cyber-components and the attached properties.

2.3 Converting CyberComposition XML to HybridSal

The python script, cybercomposition2hsal.py, converts the XML into Hybrid-
Sal. It is run as follows:

python cybercomposition2hsal.py SimplifiedControllersCyberWithProp.xml

Running the above script will generate a file called

SimplifiedControllersCyberWithProp.hsal.

Users can open this file and see the formal representation of the three cyber-
components and the LTL properties.

2



2.4 Verifying the HybridSal model

The HybridSal file can now be model checked using the following command:

hsalRA.exe SimplifiedControllersCyberWithProp p1

where p1 is the name of the LTL property being verified.
Running this command performs the following actions:

– A relational abstraction of the HybridSal model is first constructed. The
result is stored in a file with the same filename, but with extension “.sal”.
In the above example, the tool will create a new file called

SimplifiedControllersCyberWithProp.sal

– The SAL model is model-checked using an infinite-state model checker.
The output is either a counter-example for the property, or a statement that
no counter-example was found.

These two steps can be independently performed on the command-line as
follows:

python HSalRelAbsCons.py SimplifiedControllersCyberWithProp.hsal

sal-inf-bmc -d 10 -v 3 SimplifiedControllersCyberWithProp p1

Design/property changes can be made using Matlab on the Simulink/Stateflow
models. The verification process can then be repeated. Alternatively, it is also
possible to edit the intermediate HybridSal or Sal files directly – this can save
time – but the edits the not carried back to the Matlab models.

3 Remarks

In the above tutorial, only the cyber components were being analyzed. The plant
model is completely abstracted. Hence, the analysis can be coarse. But, the anal-
ysis can still be useful, especially if care is taken in specifying the LTL properties.
In particular, LTL properties should constrain the inputs of the controllers, and
then check that the response of the controller is appropriate for that scenario.
The predefined LTL templates may not be sufficient for this purpose.

The properties p1 and p2 in the HybridSal files were included to illustrate
the utility. Property p1 says that if the input shift requested is consistently
set to 1, then after a few steps, the output gear selected of the controller is
1. This property was found to be invalid. Property p2 says that if the input
shift requested is consistently set to 1, then after a few steps, the output
gear selected of the controller is at most 2. No counter-examples were found for
this property. However, it is possible to fix the controller logic to make property
p1 true. Failure of p1 was possibly a bug in the designed controller.

3


