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ABSTRACT
We present an approach for detecting sensor spoofing at-
tacks on a cyber-physical system. Our approach consists of
two steps. In the first step, we construct a safety envelope of
the system. Under nominal conditions (that is, when there
are no attacks), the system always stays inside its safety en-
velope. In the second step, we build an attack detector mon-
itor that executes synchronously with the system and raises
an alarm whenever the system state falls outside the safety
envelope. We synthesize safety envelopes using a modifed
machine learning procedure applied on data collected from
the system when it is not under attack. We present experi-
mental results that show effectiveness of our approach, and
also validate the several novel features that we introduced
in our learning procedure.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Correlation and regres-
sion analysis; I.2.6 [Artificial Intelligence]: Learning; D.2.5
[Software Engineering]: Testing and Debugging—monitors
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1. INTRODUCTION
On 4 December 2011, an American Lockheed Martin RQ-

170 Sentinel unmanned aerial vehicle (UAV) was captured
by Iranian forces. It was speculated that a GPS spoofing
attack was partly responsible for that incident, wherein the
UAV was fed false GPS data to make it land in Iran at what
the drone thought was its home base in Afghanistan [1].
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Separately, modern automobiles were shown to have sev-
eral attack surfaces that an attacker can use to compromise
computers/networks within a car and inject sensor spoofing
attacks [4,9]. These incidents underline the need to enhance
security of complex networked cyber-physical systems.

One way to improve security of any system would be to
eliminate the attack vectors. However, the attack surface is
growing swiftly as we increase complexity of these systems
and introduce new features and capabilities into these com-
plex systems. Inevitably, there will always be some channels
available for an attacker to exploit.

An alternate approach for improving security would be to
build systems that are resilient to attacks. A system that
is resilient to attacks can be built by having a module that
detects attacks. If all attacks can be successfully detected,
the system can respond appropriately whenever attacked.
For example, a controller can simply ignore inputs from a
sensor that are marked as spoofed by an attack detector.

The goal of this paper is to build an attack detector. An
attack detector is a “runtime monitor”: it runs continuously,
monitors the state of the system, and raises an alarm when-
ever it believes there is an attack; moreover, it also predicts
which component of the system is misbehaving. Our fo-
cus here is on detecting sensor spoofing attacks: an attack
where the adversary behaves as a sensor of the system, and
sends/publishes spurious values for that sensor.

A good attack detector should have very low false positives
(where the detector says there is an attack when there is
none) and very low false negatives (where the detector says
there is no attack when there is one). False negatives are
clearly bad. False positives are bad too: they unnecessarily
deteriorate the performance of the system.

What are the challenges in building a good attack detec-
tor? First, we may not have a model of a complex cyber-
physical system that is simultaneously good and amenable
to analysis. So, we have no information on the normal be-
havior of the system a priori. We do have access to the
system, and hence, we have the ability to operate the sys-
tem under normal conditions. Second, we have no knowledge
of the noise characteristics of the sensors. We assume that
we know informally the meaning of the value produced by a
sensor, but we do not have any formal models of the sensor.
Since sensors are noisy, a key challenge in building a detec-
tor is separating an attack from normal sensor noise: when
a sensor output is unusually high/low, is that just the re-
sult of the system behavior and sensor noise behavior under
normal conditions, or is that due to a spoofing attack?



Note that an attack detector is just a classifier: it distin-
guishes system states reached when the system is operating
under normal conditions from the states reached when the
system is under attack. So, we use an invariant – an over-
approximation of the reachable states – of the system un-
der normal conditions as the classifier. We call this set the
safety envelope. The safety envelope is represented as con-
straints. When the system is attacked, its state will most
likely fall outside the safety envelope, and hence, we will de-
tect it. The intuition is as follows: a system typically has
several sensors, and under normal conditions, there are re-
lationships that exist between different sensor values. For
example, if a system has two velocity sensors, then under
normal conditions, these two sensor values must be “equal”.
So, if one of the sensor is spoofed, the invariant that“the two
sensor values must be equal” is violated and this violation
indicates an attack. This is the basic idea, but in reality, it
gets complicated because of sensor noise and different char-
acteristics/behaviors of different sensors.

We present a new algorithm for synthesizing a safety en-
velope of a system using data gathered from normal op-
eration of the system. Our algorithm is inspired by ideas
from the field of machine learning. It is important to note
that machine learning is broadly interested in learning pat-
terns/generalizations from concrete data: a key aspect being
that the procedure should not learn the noise, but only the
underlying pattern after somehow ignoring noise. In our
case, the situation is different. We are here interested in
learning the noise characteristics of the sensors so that we
can use the learnt normal noise characteristics to differenti-
ate normal behavior from a sensor spoofing attack.

Our main contributions are: (a) a new algorithm for syn-
thesizing safety envelopes from data, (b) several extensions
and variants of the algorithm that incorporate key insights
about invariant generation into the algorithm, and (c) ex-
perimental validation of the algorithm on a real robot.

Our approach has one drawback: if learning is performed
in one environment (e.g., on road), but the system is then
deployed in a completely different one (e.g., on sand, or with
a heavy payload), then the attack detector, despite the gen-
eralization during learning, will likely give many false posi-
tives. This drawback can be potentially overcome by noting
that the learning procedure is fast and automatic and we can
learn (new mode) invariants on-the-fly (assuming we can be
sure that the system is not under attack when learning).

2. PROBLEM FORMULATION
In this section, we formulate the sensor spoofing detection

problem.
We have a networked cyber-physical system that interacts

with its environment through a set of sensors and actuators.
The sensor data can potentially be spoofed by an adversary.
The goal is to detect such sensor attacks.

Formally, let X denote the state variables of the system
whose dynamics are given by

Ẋ = f(X, c(Y ), D)

Y = g(X)

where c(Y ) are values computed by the controllers, D are
the external disturbances and Y are the variables denoting
the measurements produced by the sensors on the system.
For simplicity, assume that Y also includes outputs of virtual

sensors; that is, values that can be computed, or inferred,
from the real sensor readings.

We assume that we do not have access to the dynami-
cal model f of the system and the sensor-values generating
function g.

The data Y generated by the sensors can be spoofed by an
adversary. For example, the adversary can add a constant
offset to a variable yi ∈ Y . Since the system dynamics are
influence by Y , the adversary can potentially change the set
of reachable states of the system.

The sensor spoofing detection problem seeks to identify
such attacks, and if there is an attack (at any given time or
time interval), then detect which sensor variable yi ∈ Y was
attacked.

3. SAFETY ENVELOPES
In this section, we describe our high-level approach for

solving the sensor spoofing detection problem.
Safety envelopes form the central concept in our approach.

A safety envelope is simply any over-approximation of the
states of the system that are reachable under nominal condi-
tions. The safety envelope contains all system states that the
system can reach when there are no sensor attacks. Thus, a
safety envelope is just an invariant set for the system under
normal operating conditions.

We use safety envelopes to detect sensor attacks at run-
time. We continuously monitor the system, and if the sys-
tem state falls outside the safety envelope, then we raise a
“sensor attack detected” alarm.

In Section 4, we present a technique for computing a safety
envelope for a cyber-physical system, which can be used to
not only detect attacks, but also find the sensors that are
being spoofed.

3.1 Why Safety Envelopes?
We learn safety envelopes from data collected during nor-

mal runs of the system. Since it uses an over-approximation,
the safety envelope approach may appear inferior to an ap-
proach that computes the best possible predictive model from
the data (using, say, Kalman filters). But, there is good rea-
son why they are, in fact, better suited for attack detection:
the actual system is often complex and linear templates are
insufficient for describing the actual model. So, if we use
fixed linear templates to learn the model, we will likely learn
relations that are not physically meaningful, but are suffi-
cient to “describe the data”. Overfitting will occur. There
will be lack of generalization. Consequently, either we will
need a large amount of data to learn, or, if we use limited
data to learn, we will get plenty of “false positives” since
any behavior that is slightly different from the training set
will be classified as an “attack”. As a simple example, if
we have distance and speed data for a robot moving at al-
most constant speed v, the best learnt model might predict
that the speed of the robot remains set at v, whereas an
“over-approximating” safety envelope might just learn the
relationship between distance covered and speed, and gen-
eralize away from the actual speed. Furthermore, we do not
really need a model, but just a good over-approximation to
achieve our goal of detecting sensor attacks.

Safety envelopes are also models, but they are highly non-
deterministic and abstract models of the system. When
learning safety envelopes, we do not want to over-approximate



(abstract) too much: the more we abstract, the more false
negatives are generated.

4. LEARNING SAFETY ENVELOPES
In this section, we describe a technique based on machine

learning for synthesizing safety envelopes.
Recall that we are assuming that we do not have access

to the model of the dynamics (f) of the system. However,
we have access to sensor data generated during some normal
runs of the system. We will use the data as a surrogate for
the dynamical model.

Let t denote a sampling period and let

Y (0), Y (t), Y (2t), Y (3t), . . . , Y ((m− 1)t)

denote the sequence of m samples of sensor data generated
under nominal conditions. Let Y (it) be a column vector
with n entries. Consider the (m× n)-matrix

Y =


Y (0)T

Y (t)T

...
Y ((m− 1)t)T


Here Y (it)T denotes the transpose of Y (it), and hence each
Y (it)T is a row vector. Our algorithm for learning invari-
ants is inspired by principal component analysis (PCA), but
differs in one key aspect: we retain components correspond-
ing to the small eigenvalues, and throw away components
corresponding to large eigenvalues.

More formally, we present the pseudocode for our pro-
cedure learnInvariant that learns invariants from data in
Figure 1. The input to the procedure is the Y data matrix
defined above and the row vector Y of the n variable names.
The procedure outputs a constraint (formula) that denotes
the invariant set. The procedure computes the eigenvalues
and eigenvectors of the (n × n)-matrix YTY. The matrix
YTY is positive semi-definite, so all eigenvalues are non-
negative reals. Each eigenvector ~v corresponding to a small
eigenvalue defines a linear invariant l ≤ ~vTY ≤ u, where
(l, u) are the minimum and maximum of the values in the
vector Y~v. The eigenvectors corresponding to large eigen-
values are discarded. The procedure returns the conjunction
of linear invariant corresponding to all the small eigenvalues.

The correctness of the procedure is obvious: the choice
(l, u) of the lower- and upper-bounds guarantees that all the
data points used to learn the invariant set clearly belong to
the invariant set.

Why use small eigenvalues to define the invariant? This
is because, in an ideal system (devoid of any sensor noise
or errors), linear equational invariants will be defined by
eigenvectors corresponding to 0 eigenvalues. For example, if
we have two sensors – one giving the velocity v of a vehicle
and the other giving the acceleration a of that vehicle, then
we expect a linear relationship

v((i+ 1)t) = v(it) +
(a(it) + a((i+ 1)t))

2
t (1)

to exist between the velocity and acceleration readings of
two successive time steps. Consider the (m × 2)-matrix Y
constructed using data for the two virtual sensor variables
v((i+1)t)−v(it) and (a((i+1)t)+a(it))t/2. If the vehicle was
indeed moving with constant da

dt
, and if the sensors for mea-

suring v and a were accurate, then the (2× 2)-matrix YTY

1: procedure learnInvariant(Y, Y )
2: Input: (m× n)-matrix Y of sampled sensor data
3: Input: (n× 1)-column vector Y of variable names
4: Output: Formula φ denoting the invariant
5: compute the (n× n)-matrix YTY
6: compute the eigenvalues λ and corresponding eigen-

vectors ~v of this matrix
7: initialize invariant φ to True
8: initialize templates to the emptyset ∅
9: initialize λth to a small positive constant, say 0.2

10: for each eigenvalue, eigenvector pair λ, v do:
11: if λ > λth then continue
12: else
13: add ~v to (the set of) templates
14: end if
15: end for
16: for (each template ~v in templates) do:
17: set φ to (φ and min(Y~v) ≤ ~vTY ≤ max(Y~v))
18: end for
19: return invariant φ
20: end procedure

Figure 1: Modified PCA for synthesizing invariants
from data

would have an eigenvector (namely, [1;−1]) corresponding
to eigenvalue 0 in the data matrix because:

By assumption Equation 1 Y[1;−1] = ~0

therefore, YTY[1;−1] = ~0
therefore, (YTY)[1;−1] = 0[1;−1]

However, in reality, since the vehicle may not be moving
with constant da

dt
, and since the sensors for measuring v and

a will necessarily be noisy, Y[1;−1] will not be identically

equal to ~0 (but it will be close to 0), and hence, the matrix
YTY is unlikely to have 0 as an eigenvalue (but it will have
an eigenvalue close to 0). So, how to find the invariant in

reality? Rather than finding ~v such that Y~v is identically ~0,
we can find a ~v that minimizes the 2-norm of Y~v − ~0. Let
us compute the 2-norm of Y~v −~0.

||Y~v −~0||2 = ||Y~v||2 = (Y~v)T (Y~v)
= (~vTYT )(Y~v)
= ~vT (YTY)~v

If ~v is an unit eigenvector of YTY with eigenvalue λ, then
the above expression evaluates to λ. Thus, among all eigen-
vectors, the eigenvector ~v∗ corresponding to the smallest
eigenvalue λ∗ is the best candidate for defining equational
invariant; see also illustration in Figure 2. We should re-
mark here that the eigenvector ~v∗ may not globally mini-
mize ~vTYTY~v, but it can be shown that the vector which
achieves global minimum approaches ~v∗ as the ratio of any
other eigenvalue to λ∗ approaches ∞. This is the justifi-
cation for using small eigenvalues to construct the safety
envelope in Procedure learnInvariant in Figure 1.

The next natural question to ask is why throw away large
eigenvalues? The reason is generalization. From a few runs
of the system, we wish to generate a safety envelope that is
valid for all runs. Hence, we need to avoid finding invari-
ants that “overfit” to the particular data being used to learn
the invariants. Throwing away the eigenvectors correspond-
ing to large eigenvalues is an effective way for generalizing.



Yv = 0

Yv = max

Yv = min

Yv_2 = 0

Yv_2 = min_2

Yv_2 = max_2

Figure 2: Illustrating modified PCA: The dark lines
define the invariant min ≤ Y ~v ≤ max generated using
the eigenvector ~v corresponding to a small eigen-
value; the dotted lines show the possible invariant
min2 ≤ Y ~v2 ≤ max2 that would be generated using the
larger eigenvalue. We throw away the dotted invari-
ant.

We illustrate the intuition with the same example as above.
Recall that in the above example, the (2× 2)-matrix YTY
will have an eigenvector [1;−1] corresponding to a small
eigenvalue. Now, since YTY is symmetric, it has to be ap-
proximately equal to [a, a; a, a]. The other eigenvalue for
this matrix will be approximately equal to 2a with [1; 1] as
the corresponding eigenvector. This eigenvector gives us the
following expression over Y :

(v((i+ 1)t)− v(it)) +
(a(it) + a((i+ 1)t))

2
t

Any (lower or upper) bound for this expression is essentially
equivalent to a bound for the acceleration. Thus, if we in-
clude a bound for this expression in the invariant, then our
invariant will have a bound for the acceleration of the vehi-
cle based on the values of acceleration that were seen in the
runs of the systems used to generate the data. There may be
other runs of the system where these bounds are violated.
These runs will violate our invariant, and get wrongly clas-
sified as attacks. This is the reason for not using the large
eigenvalues to define the safety envelope; see also illustration
in Figure 2.

Our intuitive reasoning given above was confirmed in our
experiments. Using the large eigenvalues in the invariant
resulted in an increase in the number of false positives –
that is, the system detected an “attack” when there was no
real attack.

Procedure learnInvariant in Figure 1 is our high-level
procedure for synthesizing a safety envelope for a system
starting from data collected from runs of the system under
nominal conditions. We enhance the basic procedure using
some key new ideas that improve the quality of the computed
safety envelopes. These improvements can be summarized
as follows:

• Learning for Hybrid Systems. Rather than learn-
ing one invariant set, one can get better quality invari-
ants if we learn the invariant set as a disjunction of
smaller invariant sets. This is especially useful if the
underlying system is multi-modal or hybrid – in which
case, intuitively, we would like to have one invariant set
for each mode of the hybrid system. Section 4.1 de-

scribes how to extend the basic learnInvariant pro-
cedure to identify modes and then learn the safety en-
velope as a disjunction of invariant sets for each mode.

• Learning Relational Invariants at Multiple Time
Scales. Traditional invariants are subsets of the state
space of the system, but often we are interested in
relational invariants; that is, invariants between two
successive states of the system. Relational invariants
are a subset of the square of the state space of the sys-
tem. An important parameter for defining relational
invariants is the time duration between the successive
states and increasing the time duration has implica-
tions on the quality of the invariants. Section 4.2.1
describes this aspect in detail.

• Learning Using Virtual Sensors and Multiple
Feature Vectors. Using the raw data generated by
the sensors for learning may not be beneficial, and
one can improve quality of safety envelope using syn-
thetic sensors – values that can be computed using the
raw sensor values, usually using nonlinear transform-
ers. Section 4.2.2 describes the benefits of using such
virtual sensors and many different feature vectors for
learning invariants.

We describe these three enhancements in the subsequent
sections.

4.1 Learning Modes and Mode Invariants
In this section, we extend our basic learning procedure to

also identify modes and invariants for these modes.
The learning procedure learnInvariant only learns poly-

topes as invariants; that is, conjunctions of linear inequality
constraints. It identifies just one mode and one polytope
invariant for that mode.

If a system operates in multiple modes (such as a hybrid
system), then finding one polytope that includes reachable
states of all modes can lead to severe over-approximation.
Figure 3 provides an illustration of this phenomena. The fig-
ure depicts the reachable states for a 3-mode hybrid system.
The reachable states in each of the three modes are shown by
solid blob. An over-approximating polytope of the union of
the three blobs is depicted using a dotted line, whereas poly-
tope over-approximations of each of the three blobs is shown
using dashed lines. The union of the dashed polytopes is a
better over-approximation of the union of the blobs, com-
pared to the dotted polytope. Procedure learnInvariant

would find one dotted polytope. We wish to modify/extend
it to find the three dashed polytopes.

The basic idea for inferring modes and mode invariants is
as follows: instead of processing all data points (all rows in
Y) in one step (as is done in Procedure learnInvariant),
we process rows of Y one at a time. If we ever find a row that
does not belong to any of the mode invariants learnt so far,
we use Procedure learnInvariant on the next k rows of Y
to learn a new mode invariant. We then continue processing
the rows in matrix Y. Note here that we are implicitly
assuming that the rows of Y are ordered by time and that
the system possibly remains in the same mode during the
time duration spanning the next k data points.

More formally, we present the pseudocode for the recur-
sive procedure learnModeInvariants in Figure 4. The pro-
cedure has the same inputs as Procedure learnInvariants,
and also one additional argument Φ, which is a set of mode



Mode 1

Mode 2

Mode 3

Figure 3: Learning safety envelope as a disjunction
of smaller safety envelopes for each mode (dashed
lines), versus as a single safety envelope for all modes
(dotted line). The sum of the areas inside dashed
lines is smaller than the area inside the dotted line,
indicating the former is a better invariant.

1: procedure learnModeInvariants(Y, Y , Φ)
2: Input: (m× n)-matrix Y of sensor data
3: Input: (n× 1)-column vector Y of sensor variables
4: Input: Set Φ of mode invariants learnt so far
5: Output: Set Φ of (final) mode invariants
6: Fix parameter k to a positive number
7: if Y has zero rows then
8: return Φ
9: end if

10: Let Y[0] denote the first row vector of Y
11: if Y[0] belongs to some formula φ ∈ Φ then
12: update φ in Φ by including Y[0]
13: update Y by removing first row
14: return learnModeInvariants(Y, Y,Φ)
15: else

16: slice Y as

[
Y1
Y2

]
s.t. Y1 contains the first k

rows of Y
17: φ = learnInvariant(Y1, Y )
18: Φ = Φ ∪ {φ}
19: return learnModeInvariants(Y2, Y,Φ)
20: end if
21: end procedure

Figure 4: Identifying Modes and Learning Mode In-
variants

invariants (found so far). In the first call, this argument
is the empty set ∅. Procedure learnModeInvariants is a
wrapper over Procedure learnInvariant. It picks the next
unprocessed data point, namely the first row Y[0] of the ma-
trix Y (line 10), and then checks if the data point belongs
to one of the existing mode invariants in Φ (line 11). If it
does, then the first row of Y is removed (line 13) and Φ is
updated (line 12, discussed more below), and the procedure
recursively calls itself (line 14). If not, then the next k rows
of Y are used to learn a new mode invariant using Procedure
learnInvariant (line 16,17), and the procedure recursively
calls itself on the updated Φ and unprocessed data Y2 (line
19).

There are a few important undefined parameters and un-
defined functions in Procedure learnModeInvariants. The
parameter k used in line 16 determines how many rows to
use to construct a new mode invariant. We usually pick k
to be at least twice the length of vector Y (length of the
feature vector). Procedure learnModeInvariants also uses

Enlarge InvariantIntroduce new mode

Figure 5: Introducing new mode versus enlarging
an existing mode invariant depending on distance of
new data point from the existing invariant.

a notion of when a row Y[0] of data belongs to a multi-mode
invariant (line 11). We use a notion of distance of a point
from a set for this purpose. Ideally, if this distance is zero,
then the point belongs to the invariant set. But this in-
terpretation is too strict and does not allow generalization
of the learnt mode invariants – we need to generalize since
we are now using partial data set to learn the initial mode
invariants. Hence, even when the distance of a data point
from an mode invariant set φ is nonzero, the data point may
be considered as belonging to the mode invariant set φ if the
distance is less than some fixed small constant. In such a
case, we update φ by enlarging it to include the data point
(line 12); see Figure 5 for graphical illustration of this pro-
cess.

4.2 Picking the Feature Vector
One key aspect in designing a good learning procedure is

identifying the feature vector. In our case, this is the vector
Y that defines the columns of the data matrix Y. In this sec-
tion and the next, we present two ideas for defining columns
of the data matrix Y that will yield useful invariants.

An “invariant” usually is a subset of the state space of the
system. The state space of a system is defined as the set of
all possible valuations for all state variables. For learning
an invariant, the ideal choice for defining the feature vector
(the vector Y ) would be the state variables of the system.
In our context, this would be the variables representing the
outputs of all sensors in the system. However, this is a not a
good choice for our learning-based invariant generation pro-
cedures. This is because the learning procedures find only
linear expressions over the feature vector Y as invariants.
And there may not exist linear relationships between the
outputs of the sensors.

The first idea here is to use the learning procedure to
find “relational invariants” rather than “invariants”. This
is helpful to find relationships between the derivative of a
sensor output and other sensor outputs (Section 4.2.1). The
second idea is to use “virtual sensors” in place of the raw
sensors to define the feature set Y (Section 4.2.2).

4.2.1 Learning Relational Invariants at Multiple Time
Scales

Let us assume we have n sensors, say s1, . . . , sn. Let sj(it)
denotes the output of the sensor sj at time it for some nat-
ural number i and sampling period t. The natural choice of
feature vector Y for learning invariants would be s1, . . . , sn.
For learning “relational invariants”, we use a feature vector



of twice the length; namely

Y = [s1; . . . ; sn; s′1; . . . ; s′n]

where the prime variables denote the sensor value in the next
sample. Thus, the matrix Y is given as follows:

Y =


s1(0), . . . , sn(0), s1(t), . . . , sn(t)
s1(t), . . . , sn(t), s1(2t), . . . , sn(2t)
s1(2t), . . . , sn(2t), s1(3t), . . . , sn(3t)

...
...


We note that using the feature vector Y defined above,

we can learn (relational) invariants that relate the change in
a sensor output (derivative of the signal) with other sensor
outputs. For example, relational invariants can capture re-
lationship between velocity and acceleration, and similarly
between angular velocity and orientation. These relation-
ships will be missed if we only use current velocity and cur-
rent acceleration in the feature vector, since there will likely
be no relationship between them.

In our experimental setup, different sensors published (time
stamped) data at different rates – in a completely asyn-
chronous manner. In this case, the value s1(it) is computed
by averaging all the values published by sensor s1 in the time
interval [it − t/2, it + t/2). The sampling period t becomes
an important parameter that could determine what attacks
are detected.

Noisy Sensor. If a sensor is really noisy, then the rela-
tional invariants computed using small values of t will
be of poor quality, but those computed using large val-
ues of t will be more useful. Specifically, assume s1 is
noisy. If t is small and about the same as the pub-
lishing rate of s1, then s1 is likely to publish just one
value in the interval [it − t/2, it + t/2). So, averaging
has minimal/no effect. As a result, due to the high
noise, the range [min(Y~v),max (Y~v)] (line 17 of Fig-
ure 1) for any expression containing s1 will be large.
If s1 is spoofed, it will be impossible to say if it is just
noise or an attack. However, if we use a larger sam-
pling period t, say 10 times larger, then s1 is likely to
publish about 10 values in the interval [it−t/2, it+t/2).
So, averaging will partially eliminate the effect of noise
and the range [min(Y~v),max (Y~v)] will be small – in-
dicating a better quality invariant that will be better
in discriminating attacks (unless the attack looks just
like noise).

Fast Dynamics Sensor. If a sensor is measuring a fast-
changing attribute of the system, then the relational
invariants computed using small values of t will be of
high quality, but those computed using large values of t
will likely be of poor quality. This is because averaging
over the larger time period would give a value that is
less likely to be the true value.

Slowly Drifting Attacks. Consider the scenario where an
adversary spoofs a sensor in a way that the spoofed
value remains inside the “noise envelope” at every time
instance, but with a bias so that over a longer time
horizon, the spoofed value has a considerable devia-
tion from the real value. Relational invariants com-
puted over longer time horizons can help detect such
attacks, whereas relational invariants over small sam-
pling period t will fail to detect such attacks.

4.2.2 Using Virtual Sensors and Multiple Feature Vec-
tors for Learning

It is often the case that we have some knowledge of the
physical interpretation of the value returned by all the sen-
sors in a system. Moreover, we also know the relationships
that should exist between all the physical quantities being
measured by the various sensors. It is wasteful to not use
that information for learning invariants.

We use ‘virtual sensors’ in the feature vector. These vir-
tual sensors perform some computation on the raw data pro-
duced by the sensors and publish the result. The intuition
is that there is more likely to be linear invariants that hold
between the virtual sensors. Moreover, if we expect no lin-
ear invariants to hold for some raw sensor data, we drop it
from the feature vector.

We provide a concrete example scenario now. Consider a
system that has a GPS providing location information and
an inertial measurement unit (IMU) providing the velocity
data. We expect that the location and velocity should be re-
lated in some way. But this relationship is not linear. In this
case, clearly the raw data provided by the GPS is not very
useful as a feature in our feature vector. The distance trav-
elled in the last t time units is more useful as a feature – since
we expect it to be linearly related to the velocity. Therefore,
we add to our feature vector a ’virtual sensor’ that publishes
the distance traveled in the last t time units. It computes
this distance using the data published by the GPS in the
last t time units. The function that computes this distance
from the GPS coordinates is nonlinear and complex. But
once we have the distance, we expect to find a linear rela-
tionship between distance and velocity. Furthermore, since
the raw GPS longitude and GPS lattitude data is not useful,
we remove both from the feature vector.

The final idea we use to define the feature vector is creating
multiple small feature vectors rather than one large feature
vector. This allows us to learn targetted invariants. Con-
sider the system described above that has a virtual sensor
providing“distance traveled”(distance) information and an
inertial measurement unit (IMU) providing linear velocity
(vel), angular velocity (ω), and orientation (θ) data. We
expect a linear relationship to exist between the distance
traveled and linear velocity, and a separate linear relation-
ship to exist between the angular velocity and (change θ′−θ
in) orientation. To find these invariants, our feature vector
Y would be

Y = [distance, vel, ω, θ, θ′]

However, since we expect invariants involving only a few of
the variables (and not all), we can instead use two different
feature vectors Y1 and Y2.

Y1 = [distance, vel], Y2 = [ω, θ, θ′]

We then find invariant φ1 using Y1 and invariant φ2 using
Y2. Finally, we return the conjunction φ1 and φ2 of the two
learnt invariants.

4.3 Attack Detector
Once we have learnt the safety envelope (for all identified

modes), we use it to detect attacks in the natural way. In
fact, the pseudocode for monitoring the system is similar to
that of Procedure learnModeInvariants: we construct the
row vector defined by the virtual sensors, and check if the
row vector belongs to some formula φ ∈ Φ, where Φ is the



learnt (multi-mode) safety envelope. If it does not, then the
monitor raises an alarm.

How to detect which sensor is spoofed? Due to the use of
virtual sensors and multiple feature vectors, as suggested in
Section 4.2.2, we know exactly which invariants are violated
by the new data. For each invariant, we know exactly which
sensors were used to compute the virtual sensors used in
that invariant. Thus, each violated invariant gives a set of
candidate spoofed sensors. By just intersecting all such sets,
we get a list of one or more sensors that are being most likely
spoofed.

We can not only generate the candidate list of spoofed sen-
sors, but also a confidence number on our prediction. Specif-
ically, depending on the distance of the new data point from
the invariant set, we can compute a confidence measure: if
the new data point is really far away from the learnt invari-
ant set, then we are sure that the system is under attack with
high confidence, and if the new data point is outside, but rel-
atively close to the learnt invariant set, then we predict that
the system is under attack with lower confidence.

5. EXPERIMENTS
Our motivating case study was a customized LandShark.

The LandShark is a fully electric unmanned ground vehicle
(UGV) developed by Black I Robotics [2]. We focused on the
following sensors and commands in our customized Land-
Shark for purposes of learning a safety envelope and detect-
ing spoofing attacks: (a) global positioning system (GPS),
(b) wheel odometers, (c) inertial measurement unit (IMU),
and (d) user input consisting of commanded speed and ro-
tation. The software stack on the customized LandShark
is based on robot operating system (ROS) (www.ros.org),
which is a publish-subscribe middleware. All sensors pub-
lish time-stamped data at some specific frequency. Different
sensors publish data at different rates.

The GPS sensor publishes the longitude, latitude and al-
titude. The wheel odometers publish the linear velocity,
angular velocity, position, and orientation data: all in ei-
ther 3-d cartesian coordinates, or as quaternions. The IMU
publishes data for linear acceleration, angular velocity, and
orientation. We use these sensor values to define a few vir-
tual sensors; for example, a sensor that publishes values for
the distance covered in the last sampling period; and also
sensors that publish speed (not velocity) computed using
different sources.

We use six feature vectors for learning invariants:
(1) Y1 = { linear speed gv calculated using GPS, linear speed
ov calculated using odometry },
(2) Y2 = { linear acceleration oa calculated using odometry,
linear acceleration ia calculated using IMU },
(3) Y3 = { angular speed about z-axis owz calculated using
odometry, commanded angular speed cw}
(4) Y4 = { ov, commanded linear speed cv }
(5) Y5 = { owz, change in orientation oo about z-axis, cal-
culated using odometry }
(6) Y6 = { angular speed about z-axis iwz calculated using
IMU, owz }
Note that several features are “virtual sensors” whose values
are calculated from the“actual sensors”. Invariant generated
using feature vector Yi will be called Type-i invariant below.

We should remark here that we do not need to be com-
pletely confident that the values computed for the virtual
sensors actually correspond to the names used for them

above. For example, we observed that variables that ap-
pear to be measuring the same entity (such as, imu-angular-
speed-about-z-axis and odometer-angular-speed-about-z-axis)
turned out to be almost never equal in the data!

The landshark was run and data collected (in five different
rosbags). We used three rosbags (about 800 seconds of real
time) to learn the safety envelope. We then injected multiple
attacks into each of the other two rosbags (about 200 seconds
of real time each). We then tried to see if our attack detector
based on the safety envelope (learnt from three bags) could
detect attacks correctly in the other two bags.

5.1 Understanding the Results
We now present experimental evaluation of our learing-

based attack detection procedure. Our algorithm has several
parameters. In our default setting:
(a) we use a sampling period of 100ms,
(b) we use 20 samples to learn invariants of a new mode,
(c) we introduce a new mode whenever the distance of the
next 3 data points from an existing invariant is more than
10% the length of the interval defining that invariant, and
(d) we ignore eigenvalues greater-than 0.2 when generating
invariants.
In our experiments, we found that the performance of the
attack detector was, surprisingly, mostly robust to minor
changes in the values of these parameters. Hence, we will
describe results using the default setting here.

In the default setting, our learning algorithm finds 5 modes.
The first mode corresponds to the scenario where the land-
shark is stationary. The Type-1 invariant in this mode is

Mode-1,Type-1 : 1.00 ∗ ov ∈ [0.00, 0.00] eigenvalue 0.0

Providing physical intuition for the other modes is not as
easy. The Type-1 (T-1) and Type-2 (T-2) invariants for the
second mode (M-2) are:

M-2, T-1 : 1.00 ∗ ov ∈ [0.00, 0.02] 0.0

M-2, T-2 : −0.76 ∗ oa+ 0.65 ∗ ia ∈ [−0.11, 0.06] 0.04

The rightmost constant is the corresponding eigenvalue. Note
that the eigenvalues are close to 0. The second mode corre-
sponds, roughly, to scenario where the landshark is moving
very slowly (the Type-1 invariant), the sensors (such as, the
odometer acceleration and the IMU acceleration) are in close
agreement (the Type-2 invariant), and there is little or no
rotation (the Type-5 invariant, not shown above). Mode-2
was learnt by our procedure from data generated by an accel-
erating landshark (when the run of the landshark started).
The last mode (Mode-5) is similar to Mode-2, but it was
learnt from data generated by a slowing down landshark.

The two other modes identified by our learning algorithm
cover the case when the landshark is in motion. A sample
of their invariants is provided below:

M-3, T-1: −0.56 ∗ gv + 0.83 ∗ ov ∈ [−1.47, 0.11] 0.10

M-3, T-2: −0.87 ∗ oa+ 0.49 ∗ ia ∈ [−0.19, 0.39] 0.06

M-4, T-1: −0.53 ∗ gv + 0.85 ∗ ov ∈ [−0.05, 0.04] 0.01

M-4, T-2: −0.98 ∗ oa+ 0.20 ∗ ia ∈ [−0.10, 0.09] 0.03

In Mode-3, linear acceleration ia calculated using IMU is
less-than twice the linear acceleration oa calculated using
wheel odometry, whereas in Mode-4, ia is almost five times
oa.



Note that one would expect that oa and ia are equal, and
that gv and ov are also equal – because they represent the
same physical quantity. But they are not equal in the data
and the invariant captures the ‘actual relationship’ between
them. The actual relationship is different from the expected
relationship because
(a) sensors are noisy, and the noise need not be pure white
noise, but it can have a certain characteristic (e.g. bias),
(b) sensors, in particular the IMU, is mounted on the land-
shark in a certain way, and this influences its reading,
(c) the values for the virtual sensors are computed making
certain assumptions about the system (for e.g., the land-
shark is on a flat surface, or the landshark is moving with
constant (linear or angular) acceleration), which can be wrong,
(d) the terrain and landshark’s maneuvers influence the sen-
sor behavior: for example, when the landshark is moving
in straight-line without making any turns, the odometer is
very accurate, but when the landshark rotates, the odome-
ter data is less reliable. Similarly, the noise characteristics
of the IMU data vary with the operating condition of the
landshark.
It is difficult to model the parts (a)–(d) described above. But
we need to have some model of them to be able to distinguish
normal behavior from attacks. The learning algorithm can
be seen as a way to learn the effect of these difficult-to-model
aspects of a complex cyber-physical system.

5.2 Evaluating the Attack Detector
How good are the learnt invariants? We now evaluate the

attack detector built using the above 5-mode invariant set
that describes all the good states that the system can reach
(when not under attack).

We take a new set of data (collected using another real
run of the landshark), which was not used for learning the
invariant set, and inject GPS, Odometer, and IMU spoofing
attacks into the data. We insert attacks by just modifying
the data published by the respective sensors. If a sensor
publishes value v(t) at time t, then we modify it to publish
the value v(t) + offset for a fixed offset, for all t in some
predefined time interval [t0, t1] (translation attack)1.

We used the 5-mode invariant to detect GPS, odometer,
and IMU spoofing attacks. The results are summarized in
Table 1. The first column lists the attack: an attack name
consists of the sensor being spoofed (e.g., gps, and the offset
by which its value was translated). The table indicates if
the attack was detected (Column 2); and if so, which invari-
ants were violated (Column 3). Based on which invariants
are violated, it is easy to predict the faulty/spoofed sensor
(Column 4), and provide a confidence measure (Column 5)
on the prediction.

As Table 1 shows, we easily detect GPS spoofing attacks
where either the longitude or the latitude was translated by
0.001 (roughly 80m). Similarly, translations to odometry ve-
locity (by 2 m/s) and odometry angular velocity (by 3 rad/s)
were also detected. Attacks on IMU linear acceleration were
harder to detect – when the acceleration was translated by
10 m/s2, we detected the attack but with low confidence.
We were unable to detect spoofing on IMU angular velocity.

1We also tried some drifting attack, where the sensor pub-
lishes v(t0) + (offset/(t1 − t0) ∗ (t− t0)) for all t ∈ [t0, t1],
but the results were the same as for translation with offset
– most likely because we were not clever in designing the
drifting attacks.

attack detected? invariants predicted confi-
+offset violated sensor dence

gps +0.001 yes 1 GPS 1.0
Odo.v +2 yes 1,2 Odo 0.99
Odo.ω +5 yes 3,5 Odo 0.83
IMU.a +10 yes 2 IMU 0.58
IMU.ω +5 no

Table 1: Detecting sensor spoofing using the learnt
safety envelope: Col. 1 is the attack, Col. 2 says if
it was detected, Col. 3 lists the invariants that are
violated by the attack data, Col. 4 is the sensor pre-
dicted as under attack and Col. 5 lists the confidence
number output by our tool.

Sensor Offset Detected? Confidence

GPS 0.0001 yes 0.97
GPS 0.00001 no

Odo.v 1 yes 0.87
Odo.v 0.1 no
Odo.ω 3 yes 0.67
Odo.ω 1 no
IMU.ω 100 no
IMU.a 10 yes 0.58
IMU.a 5 no

Table 2: Limits for detecting translation attacks:
For each attack, we list the offset that was detected
and the offset that was not detected.

5.3 Exploring the Limits
The results in Table 1 will change as we change the offset.

So, we experimented and tried to find limits of what attacks
can be detected.

The results are summarized in Table 2. For GPS, trans-
lations of either the longitude or the latitude by 0.00001
degrees (roughly 0.8m) were not detected. Similarly, chang-
ing the odometry velocity by 0.1 m/s was not detected, and
changing odometry angular velocity by 1 rad/s was also not
detected. The limits for IMU acceleration were poor: we
could not detect translations by 5 m/s2. The attack detec-
tor performed worst for IMU angular velocity attacks. Even
when it was translated by 100 rad/s, the attack detector
failed to detect. Why? The reason is that the IMU on the
landshark is a very very noisy sensor. The data generated
by the IMU has plenty of high-frequency large spikes, which
causes the invariants to become too liberal. In fact, in many
cases, the eigenvalues of the YTY matrix when considering
IMU angular velocity (i.e., when using feature vector Y6)
were larger than our threshold! So, our learning algorithm
ignored the invariants involving IMU angular velocity (that
is, there were no Type-6 invariants in many modes). As a
result, attacks on IMU.ω were not detected.

What if we change the threshold that is used to decide if
an eigenvalue is small enough? The result is that we start
getting plenty of false positives. Several normal IMU spikes
get classified as attacks.

Apart from the missing Type-6 invariants, Type-4 invari-
ants are also missing in the list of violated invariants in Ta-
ble 1. The reason is not entirely clear, but it appears that
the commanded velocity is not directly related to the land-
sharks current velocity in a significant way, and hence the



discrimating power of the generated invariants is weak. In
fact, just like Type-6 invariants, Type-4 invariants are miss-
ing from certain modes because the corresponding eigenval-
ues were all bigger than the threshold.

5.4 Single-mode versus multi-mode detectors
How does the procedure perform if we do not introduce

modes and instead have just one large safety envelope? The
procedure performs poorly compared to our baseline proce-
dure in two ways:
(a) It produces more false negatives. The “one-mode” at-
tack detector is unable to detect any GPS spoofing attacks.
This is because the “one-mode” learning procedure looks at
all the data to learn global invariants. It observes too much
variance in the data involving the GPS, and it fails to find
a small eigenvalue in the matrix involving the GPS.
(b) New false positives are observed: Our baseline procedure
did not produce any false positives, but the “one-mode” pro-
cedure reports attacks when there were no attacks. This was
a little surprising. On further investigation, we found that
the false positives were caused by invariants whose eigenval-
ues happened to be just below the threshold of 0.2.
Nevertheless, we should mention that the one-mode attack
detector performed as well as the baseline detector on odom-
etry and IMU spoofing data. There are a few reasons for
this: (1) Our test data, although separate from the training
data, is similar to it because the landshark was performing
similar maneuvers in both cases. The one-mode attack de-
tector will likely give much more false negatives if it was
evaluated on the actual landshark performing different ma-
neuvers. (2) The landshark does not really have different
operating modes. Modes are being used here just to im-
prove precision. If the system really had modes (for e.g., if
the training and test data had landshark moving on hard
surface and on sand), then the difference in performance
of one-mode and multi-mode detectors would be more pro-
nounced.

5.5 Single versus Multiple Feature Vectors
How does the procedure perform if we do not introduce

multiple feature vectors and instead have just one feature
vector comprising of all real and virtual sensors?

When using just one feature vector, the learning algo-
rithm produced a safety envelope consisting of 10 modes,
with around 7 invariants in each mode. It is difficult to
interpret the modes or the invariants in any way: all the
invariants had nonzero coefficients for most of the Y vari-
ables. The performance of the attack detector based on the
learnt safety envelope is shown in (left half of) Table 3. On
GPS attacks, the performance matches the performance of
the baseline attack detector: attacks that offset GPS longi-
tude or latitude by 0.0001 (degrees) are detected, whereas
attacks that offset GPS values by 0.00001 (degrees) are un-
detected. The performance of the new detector matches the
performance of the baseline detector also on odometry linear
velocity attacks: offset 1 is detected, but offset 0.1 is not.
However, performance of the new detector is much worse on
the odometry angular velocity attacks (offset 3 not detected)
and on the IMU linear acceleration attacks (offset 10 not de-
tected). The new detector performs better than the baseline
detector on IMU angular velocity attacks: it detects offset 10
attacks, and fails to detect offset 5 attacks. Recall that the
baseline detected had failed to detect all IMU angular veloc-

One Feature Vector T = 500ms
Sensor Offset Offset

Detected Undetected Detected Undetected

GPS 0.0001 0.00001 0.0001 0.00001
Odo.v 1 0.1 1 0.1
Odo.ω - 3 3 1
IMU.ω 10 5 5 -

IMU.a - 10 10 5−

false observed not observed
positives

Table 3: Performance of attack detector when (a)
using one feature vector consisting of all (virtual)
sensor values (Columns One Feature Vector) and (b)
using invariants that relate states 500ms apart. A
- indicates we did not find a suitable value (due to
limited experimentation).

ity attacks, since the invariant involving IMU.ω was deemed
to be of poor quality (and hence discarded) in the baseline
detector. We believe this is reflected in the false positives:
the new detector reported (about 3) false positives on (data
from) a 200 second landshark run. Recall that the baseline
detector had reported zero false positives on the same run.

5.6 Changing time scale for relational invari-
ants

How does performance change if we use larger time scales
for generating and monitoring invariants? We show the re-
sults in (right half of) Table 3. Recall from Section 5.1 that
the baseline procedure used intervals that related states that
were 100ms apart. We now use 500ms as the time interval,
and 10 samples to learn invariants of a new mode. The
other parameters were the same as for the baseline exper-
iment. We also removed feature vector Y4 from the list of
feature vectors used to construct the invariants, since it was
consistently observed to yield poor quality invariants (that
were not discriminating and caused false positives in many
different experiments – an indication that Y4 is not a good
feature vector.)

We had hypothesized that invariants over large time in-
tervals will be effective in detecting clever drifting attacks,
where the sensor value remains inside the “noise” term in
every time step, but it has a “constant bias” so that over
a longer time horizon, the spoofed value is significantly dif-
ferent from the true value. Since we did not generate such
attacks, we are unable to experimentally confirm the above
hypothesis. We had also hypothesized that invariants over
large time intervals will be more effective in generating use-
ful invariants for very noisy sensors. The baseline detector
was unable to detect IMU angular velocity attacks for this
reason. Using the larger time scale, the learning procedure
found useful Type-6 invariants (involving IMU.ω). For ex-
ample, in one of the modes (out of 5 that were learnt), the
following Type-6 invariant was generated:

M-5,T-6 : −0.83 ∗ iwz − 0.56 ∗ owz ∈ [−0.05, 0.01] 0.00

The resulting attack detector performed better than the
baseline overall as Table 3 shows: it was able to detect trans-
lation attacks (by 5) on IMU.ω, and translation attacks (by
10 and by 5 too, but the latter with very low confidence) on
IMU.a.



Finally, we note that, in all experiments, we used the same
training data (generated from about 800 seconds of land-
shark run) and the same testing data (about 200 seconds of
landshark run, which was disjoint from the training data).

6. RELATED WORK
In this paper, we detect sensor spoofing by constructing a

safety envelope using learning techniques and then monitor-
ing the system to detect if it stays inside the safety envelope.
Broadly, our work is an instance of anomaly detection [3].
Our problem formulation and high-level approach are close
to the work in [7], but our work falls in between those that
assume availability of detailed models and those that use no
information about the system.

The construction of safety envelopes is related to the field
of system identification. In the area of hybrid systems iden-
tification, Paoeltti et al. [11] study multiple approaches for
identifying switched affine and piecewise affine (PWA) mod-
els based on input, output observations. The system is typ-
ically represented in the form of the well-known Switched
AutoRegressive eXogenous (SARX) model [8, 13], wherein
the current output is represented as a linear combination of
an extended regression vector and an error term, where the
regression vector includes the observed inputs and outputs.
The identification problem is solved by finding the param-
eters of the extended regression vector for each mode [11].
Our work also starts with the observed data. However, our
goal is not to find models, but relations or constraints that
are mode invariants. Note that our invariants can also de-
pend on the current output observations. Unlike many sys-
tem identification approaches, we do not disregard the noise
term; on the contrary, we are interested in finding invariants
that capture the usual noise characteristics. Our algorithm
is not restricted to learning linear invariants: we can gener-
ate linear and non-linear invariants by appropriately choos-
ing the feature vectors. Unlike work in identification, our
work uses a novel method for learning mode invariants of a
hybrid system that does not assume any a priori bound on
the number of modes [11].

Liu et al. [10] study the problem of robust hybrid systems
identification with unknown continuous fault inputs. They
model every faulty mode as a discrete state in the estima-
tion model. Although they consider faults (attacks) in their
input data, and take the approach of decoupling the faults
from the error dynamics, they make the strong assumption
that dynamical models of the system (system matrices) are
provided. Our work does not make any assumptions on the
model that generates the input and output traces.

Fawzi et al. [6] study the problem of secure estimation and
control for cyber-physical systems under attacks. The au-
thors provide theoretical guarantees on the maximum num-
ber of errors that can be detected by a decoder function.
In their approach, they assume the knowledge of system
matrices, and the guarantees are based on the existence of
extended observability matrix. In addition, the noise and
attack models are not decoupled. In our work, we separate
the learning phase from the detection phase; therefore, our
invariants represent a realistic bound on the noise level, and
we differentiate between noise and attack.

Our algorithm is inspired by the famous PCA method;
however, we are interested in finding invariants instead of
the “principal components”. It is the dual of PCA in some
sense. An attractive way to describe about our procedure

– especially the invariant generalization aspect of Figure 5
– is to see it as performing abstract interpretation [5] on
data, rather than on programs. We also note that the multi-
mode invariant (that we are learning) is just a disjunctive
invariant [12].

7. CONCLUSION
We presented a learning-based procedure for detecting

sensor attacks in a cyber-physical system. We plan to im-
prove the attack detector by using information learnt about
transitions through modes and by experimenting with better
attacks and other data sets.
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