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Abstract. This paper presents a constraint-based technique for discov-
ering a rich class of inductive invariants (disjunctions of polynomial in-
equalities of bounded degree) for verification of hybrid systems. The key
idea is to introduce a template for the unknown invariants and then trans-
late the verification condition of the hybrid system into an ∃∀ constraint
over the template unknowns (which are variables over reals) by making
use of the fact that vector fields must point inwards at the boundary.
These constraints are then solved using Farkas lemma. We also present
preliminary experimental results that demonstrate the feasibility of our
approach of solving the ∃∀ constraints generated from models of real-
world hybrid systems.

1 Introduction

The model checking problem seeks to determine if a given system satisfies a
given property. For several interesting classes of systems (and properties), the
model checking problem is theoretically intractable. As a result, techniques have
been developed that are relatively complete for either verification or falsification.
Predicate abstraction and abstract interpretation are examples of the former,
while bounded model checking is an example of the latter. An attractive feature
of bounded model checking (BMC) is that it reduces the search for (bounded)
falsification to a single constraint that can be solved using powerful satisfia-
bility modulo theories (SMT) solvers. One analog of BMC for verification is
k-induction. The other analog, which we pursue in this paper in the context of
hybrid systems, is an approach based on using templates to search for inductive
invariants.

The general approach for verification of any kind of system is based on com-
puting inductive invariants. In the case of hybrid systems, initial work on discov-
ering inductive invariants was based on using iterative fixed-point computation
based approaches like abstract interpretation or model checking [6, 10, 2]. Re-
cently, constraint-based approaches have been proposed that search for invariants
of some given form by reducing the problem to finding a satisfying solution to
some constraints over the unknowns in the templates [21, 16]. Constraint-based
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techniques offer two main advantages over fixed-point computation based tech-
niques. First, they are goal-directed and hence have the potential to be more
efficient. Second, they do not require the use of widening heuristics that lead to
an uncontrollable loss of precision in fixed-point based techniques. Furthermore,
constraint-based techniques can search for “deep” invariants of a known form,
whereas the other techniques are more suited for “simple” invariants of an un-
known form. Since hybrid systems typically have “deep” invariants of (a small
number of) known simple forms, constraint-based technique are quite appealing.
Even though they have demonstrated some success in the form of discovering
equational invariants [21] and conservatively discovering conjunctions of polyno-
mial inequalities [16], constraint-based techniques have not yet achieved their
full potential in verification of hybrid systems.

In this paper, we develop the constraint-based approach further and show
that it can be applied to discovering a rich class of inductive invariants for ver-
ification of hybrid systems. In particular, our constraint-based technique can
be used for discovering invariants that involve disjunctions of polynomial in-
equalities. One part of the challenge here is in formulating the inductiveness
requirement—if I holds in the current state x and there is a transition from x
to x′, then I holds in the state x′—for the continuous dynamics. The key insight
here is that this requirement can be captured precisely as a universally quantified
formula, just as it can be done for discrete transitions. In the continuous case,
inductiveness is equivalent to requiring that the vector field points “inwards” on
the “boundary” of the invariant set I.

The key steps of our constraint-based approach for verification are
(1) introduce a template for the unknown inductive invariant and express the
verification conditions as satisfiability of a ∃∀ formula over the reals, where
the existential quantification is over the template variables and the universal
quantification is over the state variables (Section 3);
(2) use a generalization of Farkas’ Lemma to eliminate the ∀ quantifiers and
convert the ∃∀ formula to an ∃ formula (over the reals) (Section 4.1); and
(3) use the bit-vector theory in SMT solvers to search for solutions of the ∃
formula in a bounded range (Section 4.2).

We start by defining continuous dynamical systems and hybrid systems in
Section 2. We then show that the problem of discovering invariants and verifying
safety can be reduced to solving ∃∀ constraints over the reals (Section 3). We
present our approach for solving these constraints in Section 4. We present sev-
eral nontrivial examples of continuous dynamical systems and hybrid systems
that were successfully analyzed using our approach (Section 5). We compare
with related work in Section 6 before concluding.

2 Continuous Dynamical and Hybrid Systems

A continuous dynamical system is a tuple 〈X, Init, Inv, f〉 where X is a finite set
of variables interpreted over the reals R, X = RX is the set of all valuations of the
variables X, Init ⊆ X is the set of initial states, Inv ⊆ X is the state invariant,



and f : X 7→ X is a vector field that specifies the continuous dynamics (as ẋ =
f(x)). We assume that f satisfies the standard assumptions for existence and
uniqueness of solutions to ordinary differential equations. The set Inv specifies
the domain where the system is defined. The semantics of a continuous dynamical
system are standard.

Example 1. Consider the following adaptive cruise controller where a car is fol-
lowing a leading car maintaining a safe distance [9, 18]. Let gap, vf , v, and a
respectively represent the gap between the two cars, the velocity of the leading
car, and the velocity and acceleration of the rear car. The system dynamics are
given by the following differential equations [18]:

v̇ = a, ȧ = −3a− 3(v − vf ) + (gap − (v + 10)), ˙gap = vf − v, v̇f = af

where af is the acceleration of the leading car and an input in this model. For-
mally, we have a linear continuous dynamical system 〈X, Init, Inv, f〉 where
X = {v, vf , a, gap, af}, f is defined by the right-hand sides of the above dif-
ferential equations, Inv = {v ≥ 0, vf ≥ 0, −2 ≤ a ≤ 5, −2 ≤ af ≤ 5},
Init = {gap = 5, v = vf , a = 0}. The invariant Inv captures the physical con-
straints that the cars do not move backwards and that the acceleration of the
two cars is bounded from above and below. The initial states indicate when the
above control law may be invoked. The problem is to verify that the rear car
would never collide with the car in front, i.e., always gap > 0. We note that
reachability is decidable for certain classes of linear dynamical systems [12], but
this example does not fall in these decidable classes. �

A hybrid system HS = (Q, X, Init, Inv, t, f) consists of a finite set of modes
Q, a finite set X of variables — that together define the state space Q ×X :=
Q×RX of the system — a mapping Init : Q 7→ 2X that defines the initial states
(in each mode), a mapping Inv : Q 7→ 2X that defines the state invariant of each
mode, a mapping f : Q 7→ (X 7→ X) that specifies the continuous dynamics in
each mode, and a mapping t : Q×Q 7→ 2X that specifies the discrete transitions.
Specifically, for any two modes q, q′ ∈ Q, the system can jump from a state (q,x)
to any state (q′,x) if x ∈ t(q,q′). Note that, for simplicity of presentation, we
are forcing the discrete transitions to have identity reset maps (that is, x is not
updated), but our method works in the other case as well. Hence, t(q,q′) is just
the guard, or switching condition, for going from mode q to mode q′. We assume
that the semantics of hybrid systems and the set of reachable states are defined
in the standard way, see [1].

Example 2. We consider a model of adaptive cruise control coupled with trans-
mission from [24]. The hybrid system here is described by 〈Q, X, Init, Inv, t, f〉
where Q := {normal ,maxbrake,maxacc} × {1st , 2nd , 3rd , 4th} × {acc, cc} and
X := {gap, v, vf , af}. Thus, the hybrid system has 24 modes depending on the
gear of the rear car (1st, 2nd, 3rd, 4th), its cruise control mode (regular cruise
control, cc, or adaptive cruise control, acc), and its mode of operation (normal,
max-braking, or max-acceleration). The dynamics in the 24 modes of the adap-
tive cruise control model is defined as follows:



˙gap = vf − v, in all modes
v̇ = −3.5, in all maxbraking modes
v̇ = 6− i, in all max-acceleration and i-th gear modes
v̇ = 0.9(vdes − v), in all normal, regular cruise control (cc) modes, and
v̇ = −0.66v + 0.08gap − 0.4 + 0.26vf , in all normal, adaptive (acc) modes

where vdes is a parameter set to the desired velocity in the cruise control mode.
The set Inv(q) is the conjunction of all the following applicable facts:

−3.5 > −0.66v + 0.08gap − 0.4 + 0.26vf maxbrake, acc, all gears
−3.5 ≤ −0.66v + 0.08gap − 0.4 + 0.26vf ≤ 6− i normal, acc, i-th gear
−0.66v + 0.08gap − 0.4 + 0.26vf > 6− i maxacc, acc, i-th gear
−3.5 > 0.9(vdes − v) maxbrake, cc, all gears
−3.5 ≤ 0.9(vdes − v) ≤ 6− i normal, cc, i-th gear
0.9(vdes − v) > 6− i maxacc, cc, i-th gear
0 ≤ vf ≤ 60,−3.5 ≤ af ≤ 5, gap ≤ 40 acc
gap ≥ 38 cc
0 ≤ v ≤ 6.7 1st gear
6.7 ≤ v ≤ 14.2 2nd gear
14.2 ≤ v ≤ 29.8 3rd gear
29.8 ≤ v ≤ 60 4th gear

All discrete transitions have identity reset maps (that is, the continuous variables
do not change values on discrete transitions), and the guards of discrete transi-
tions can be obtained as negations of the state invariants. For example, there is
a transition from normal, acc, 1st-gear to normal, acc, 2nd-gear if v > 6.7. For
more details on the complete model, see [24]. �

We use the notation K[X] to denote the set of polynomials with coefficients
in K and variables in X. We use Q to denote the set of rationals and Z (Z+) to
denote the set of (positive) integers.

3 Verification of Hybrid Systems

Given a hybrid system HS = (Q, X, Init, Inv, t, f), and a safety property S :
Q → 2X, the problem of hybrid system verification is to determine if the set of
reachable states of the hybrid system in each mode q ∈ Q is a subset of S(q).

The classical approach for solving the verification problem involves finding
an inductive invariant map I : Q → 2X such that the following constraints,
referred to as the verification condition, hold for each mode q ∈ Q.

A1. (Initial Constraint) Init(q) ⊆ I(q).
A2. (Transition Constraint) For all modes q′ ∈ Q, I(q) ∩ t(q, q′) ⊆ I(q′).
A3. (Safety Constraint) I(q) ⊆ S(q).
A4. (Inductive Constraint) If the system is in a state from the set I(q)∩ Inv(q),

then it stays in the set I(q) at any time in the future as per the dynamics
f(q) (such a set I(q) is called positively invariant in control systems [5]).



In this section, we present a constraint based technique for discovering an
inductive invariant map that maps different modes to closed semi-algebraic in-
variants of the form

∧
i

∨
j pij ≥ 0, where pij ∈ Q[X] are polynomials of bounded

degrees over X. We further assume that the initial conditions Init(q), the safety
conditions S(q), and the transition conditions t(q, q′) are semi-algebraic, and that
the flow f is given by polynomials. This class of polynomial hybrid systems is
very general and covers a wide variety of examples.

The key idea of our technique is to translate the verification condition into
a ∃∀ constraint over real variables. (Section 4 then describes how to solve such
formulas using Farkas lemma.) This is achieved by choosing a template, I :
Q 7→ 2U,X, for the inductive invariant I, where U is a finite set of new template
parameters and I(q) :=

∧
i

∨
j p′ij ≥ 0 with p′ij ∈ Q[U,X]. The first three con-

straints in the verification condition can be easily translated into a ∃∀ constraint
over real variables by simply substituting the invariant template I(q) in place
of I(q) and replacing ⊆ relation by ⇒ relation. (This is because the existence of
I gets translated to existence of the unknown parameters U .) The challenge is
to do this for the invariant constraint (A4). For that, we make use of continuity
and obtain the following critical (necessary and sufficient) verification condition
for continuous dynamical systems. We simplify presentation by just considering
that each conjunct in the invariant contains two disjuncts, p1 ≥ 0 ∨ p2 ≥ 0.

Proposition 1. Let 〈X, Init, Inv, f〉 be a continuous dynamical system and
p1, p2 be two polynomials in Q[X]. The set I :=

∧
i pi

1 ≥ 0 ∨ pi
2 ≥ 0 is positively

invariant for the continuous dynamical system iff for all i:

I(x) ∧ pi
1(x) = 0 ∧ pi

2(x) < 0 ∧ Inv(x) ⇒ dpi
1(x)/dt ≥ 0, and

I(x) ∧ pi
1(x) < 0 ∧ pi

2(x) = 0 ∧ Inv(x) ⇒ dpi
2(x)/dt ≥ 0, and

I(x) ∧ pi
1(x) = 0 ∧ pi

2(x) = 0 ∧ Inv(x) ⇒ dpi
1(x)/dt ≥ 0 ∨ dpi

2(x)/dt ≥ 0
(A4’)

Here dp
dt denotes the time derivative of p, also called the Lie derivative of p, in

the vector field defined by f ; that is, dp
dt :=

∑
x∈X

∂p
∂x

dx
dt :=

∑
x∈X

∂p
∂xfx.

Proposition 1 essentially says that the vector field should point “inwards”
on the boundary of the invariant set I(q). The boundary of p1 ≥ 0 ∨ p2 ≥ 0 is
contained in the union of the three sets defined by p1 = 0∧p2 < 0, p1 < 0∧p2 = 0,
and p1 = 0 ∧ p2 = 0. For each set, we have a formula in Constraint A4’ stating
that the vector field is pointing inwards. For instance, when p1 = 0∧p2 < 0, then
the vector field points inwards iff the Lie derivative, dp1

dt , of p1 is non-negative.
The Lie derivatives, dp

dt , in Equation A4’ get reduced to polynomials as dp
dt :=∑

x∈X
∂p
∂x

dx
dt , and this summation simplifies into a polynomial if p is a polynomial

and dx
dt := f(x) contains only polynomials. Figure 1 shows the construction of

the ∃∀ formula over real variables using the Constraints A1,A2, and A3, and
(a stronger variant of) Constraint A4’. Since the full first-order theory of reals
is decidable [25], it follows that the problem of discovering inductive invariants
for hybrid systems over the class of positive boolean combination of (non-strict)
polynomial inequalities of bounded degree is decidable. However, in the next



HS2ExistsForall(HS,S,I) =

// Inputs: HS := (Q, X, Init, Inv, t, f), Safety property S : Q → 2X,

Template I : Q → 2U,X, where I(q) :=
Vn

i=1

Wm
j=1 pij ≥ 0, pij ∈ Q[U, X]

ans := true
for all q ∈ Q do

l1 : ans := ans ∧ (Init(q) ⇒ I(q)) ∧ (I(q) ∧ Inv(q) ⇒ S(q))
l2 : for all q′ ∈ Q do ans := ans ∧ (I(q) ∧ t(q, q′) ⇒ I(q′))

l3: Lp :=
P

x∈X

∂pij

∂x
fx(q)

l4 : ans := ans ∧
Vi=n,j=m

i=1,j=1 (I(q) ∧ Inv(q) ∧ pij = 0 ∧
Vk=m

k=1,k 6=j pik ≤ 0 ⇒ Lp ≥ 0)

return(∃U∀Xans)

Fig. 1. Translating safety verification to satisfiability of an ∃∀ formula.

section, we present a more practical technique for solving the ∃∀ constraints
generated above.

Example 3 (Verification to ∃∀ Constraint). Consider the dynamical system from
Example 1 and the verification problem stated therein. Let us assume a template
that searches for linear invariants:

I := αvf + βv + γa + δgap >= ε

where U := {α, β, γ, δ, ε}. The safety of the adaptive cruise control law reduces
to the satisfiability of the following ∃∀ constraint which essentially says that
I ∧ gap ≥ 0 is an inductive invariant.

∃U∀X : ((gap = 5 ∧ v = vf ∧ a = 0 ⇒ I ∧ gap ≥ 0) (A1)
∧(αvf + βv + γa + δgap = ε ∧ gap ≥ 0 ∧ Inv⇒ p ≥ 0) (A4′)
∧(αvf + βv + γa + δgap ≥ ε ∧ gap = 0 ∧ Inv⇒ vf − v ≥ 0)) (A4′)

where p is the Lie derivative of the template and is equal to αv̇f +βv̇+γȧ+δ ˙gap =
αaf + βa− 3γa− 3γv + 3γvf + γgap − γv − 10γ + δvf − δv. Similarly, vf − v is
the Lie derivative of gap. Note that X, Inv are defined in Example 1. �

4 Solving ∃∀ formulas

We check for satisfiability of the ∃∀ formula in two steps. First we eliminate
the inner universal quantifier and next we check for satisfiability of the resulting
existential formula over a finite domain using a satisfiability modulo theories
(SMT) solver.

4.1 Step 1: Eliminating Universal Quantification

The inner universal quantifier from the ∃∀ formula is eliminated using the fol-
lowing variant of Farkas Lemma.



ExistsForall2Exists(φ) =

// Input: φ := ∃U∀X
Vn

i=1(
Wm

j=1 pij ≤ 0 ∨
Wl

k=1 p′ik < 0), where pij , p
′
ik ∈ Q[U, X]

V := ∅, ans := true
for i = 1 to n do

V := V ∪ {µi} ∪ {µij : j = 1, . . . , m} ∪ {νik : k = 1, . . . , l}
ans := ans∧ ElimX(µi +

Pm
j=1 µijpij +

Pl
k=1 µikp′ik = 0) ∧ (µi > 0 ∨

Wm
j=1 µij > 0)

return(∃U∃V ans)

ElimX(p = 0) = // Input p ∈ Q[U, X]
Let p :=

P
α pαXα, where pα ∈ Q[U ] are the coefficients of p in (Q[U ])[X]

return(
V

α pα = 0)

Fig. 2. Translating ∃∀ formula to an ∃ formula.

Lemma 1. For polynomials pj , rk ∈ Q[X], the formula
∧

j∈J pj > 0 ∧
∧

k∈K rk ≥
0 is unsatisfiable (over the reals) if there exist non-negative constants µ, µj

(j ∈ J), and νk, (k ∈ K) such that µ+
∑

j∈J µjpj +
∑

k∈K νkrk = 0 and at least
one of µj , µ is strictly positive.

If polynomials pj , rk are linear (more generally, linear only in the universal vari-
ables; for example, see the constraint in Example 3), then the condition above
is both necessary and sufficient. However, the condition is not necessary for un-
satisfiability when pj , rk are arbitrary nonlinear polynomials.3 After applying
Lemma 1, the universal variables can be eliminated by just equating the coeffi-
cients of each of the power products in the following expression to zero.

µ +
∑
j∈J

µjpj +
∑
k∈K

νkrk

Note that we can convert any universally quantified arithmetic formula ∀X : φ
into an existentially quantified formula using the above lemma.4

Figure 2 shows the pseudo-code for transforming an ∃∀ constraint to a ∃
formula and Example 4 provides an illustration. Note that the template variables
U and the multipliers µ and ν introduced by Farkas Lemma are existentially
quantified.

Theorem 1. Let HS be a hybrid system and S a safety property. For any tem-
plate I, if the constraint ExistsForall2Exists(HS2ExistsForall(HS, S, I)) is
satisfiable, then for every reachable state (q, x) of HS, it is the case that x ∈ S(q).

3 There is a generalization of Farkas Lemma for arbitrary polynomials, called Posi-
tivstellensatz [14], obtained by replacing the multipliers µj , νk by sum of squares of
polynomials, but we did not use it in our experiments.

4 This is achieved by converting φ into conjunctive normal form
V

i(
W

j pij ≥ 0 ∨W
k rik > 0) and noting that ∀X : φ ≡

V
i ∀X(

W
j pij ≥ 0 ∨

W
k rik > 0) ≡V

i(¬(
W

j pij ≥ 0 ∨
W

k rik > 0) is unsatisfiable) ≡
V

i((
V

j −pij > 0 ∧
V

k −rik ≥
0) is unsatisfiable). We can now use Lemma 1 on each conjunct.



Example 4. Consider the ∃∀ formula in Example 3. To avoid clutter, we illustrate
the ∀ elimination on a simpler subformula from that formula:

∃U∀X : (αvf + βv + γa + δgap ≥ ε ∧ gap = 0 ∧ 2a ≥ −7 ⇒ vf − v ≥ 0)

Using Lemma 1, the validity of the above formula is equivalent to the existence
of constants V := {ν1, λ, ν2, µ1, µ2} such that

ν1(αvf + βv + γa + δgap − ε) + λgap + ν2(2a + 7) + µ1(v − vf ) + µ2 = 0,

and ν1, µ1, µ2 ≥ 0 and at least one of the µ’s is strictly positive. By equating the
coefficients to 0, we get the following existentially quantified formula,

∃U∃V : ν1α− µ1 = 0 ∧ ν1β + µ1 = 0 ∧ ν1γ + 2ν2 = 0 ∧ ν1δ + λ = 0 ∧
µ2 − ν1ε + 7ν2 = 0 ∧

∧
i µi ≥ 0 ∧

∧
i νi ≥ 0 ∧ (µ1 > 0 ∨ µ2 > 0)

A possible solution is

ν1 = 2, λ = −2, ν2 = 1, µ1 = 2, µ2 = 1, α = 1, β = −1, γ = −1, δ = 1, ε = 4.

Note that µ1 is strictly positive. This corresponds to the inductive invariant
vf − v − a + gap ≥ 4. We remark here that the full example contains additional
constraints, but the above solution for U continues to be a solution and it is the
solution computed by our tool. �

4.2 Step 2: Solving the ∃ Constraint using an SMT Solver

We have reduced the verification problem to the satisfiability of some (existen-
tially quantified) nonlinear constraints. The important point to note here is that
we are interested in finding solutions, rather than showing unsatisfiability, of the
generated existential formula.

We search for solutions of the nonlinear constraints using the bit-vector deci-
sion procedure of an SMT solver. The translation of ∃Y : φ to bit-vectors is ob-
tained in several steps. First polynomials in Q[Y ] that occur in φ are converted
to polynomials in Z[Y ] by multiplying suitably by positive integer constants.
Next we pick an integer lower bound l and an integer upper-bound u for the
variables Y . Finally, we search for integer solutions for Y in the chosen finite
range by searching for the bit-level representation. We choose a size for the bit-
vectors by conservatively estimating the number of bits that would be required
to evaluate the polynomials in φ over the range l ≤ Y ≤ u. The pseudo-code
for the translator is given in Figure 3. The bounds li, ui for the variable yi ∈ Y
are picked based on whether yi is a template variable or a variable introduced
by Farkas Lemma.

4.3 Discussion

Comparing the overall approach to bounded model checking, we note that both
approaches translate the analysis problem into a constraint satisfiability prob-
lem. In the case of BMC, the generated constraint encodes existence of a counter-
example, whereas here the generated constraint encodes existence of a proof.



Exists2BitVector(∃Y : φ, l, u) =

// Inputs:Y := {y1, . . . , yn}, φ :=
V

i

W
j pij ∼ij 0, where pij ∈ Z[Y ], ∼ij∈ {≥, =, >}

l, u ∈ Zn given lower- and upper-bounds for Y
forall i, j: mij := estimate max #bits reqd to evaluate pij when l ≤ Y ≤ u
Let m be the maximum of mij’s

ans := declare each yi to be a bit-vector of size m
return(ans,

V
i

W
j E2BVA(pij ,∼ij) ∧ E2BVA(Y − l,≥) ∧ E2BVA(u− Y,≥))

E2BVA(p, ∼) = // p := p1 − p2, where p1, p2 ∈ Z+[Y ]
let E2BVB(p) = p′ where p′ is obtained by replacing ∗, +,≥, >, =

by corresponding bit-vector operations in p
return(E2BVB(p1) E2BVB(∼) E2BVB(p2))

Fig. 3. Converting satisfiability checking to bit-vector satisfiability problem. The bit-
vector instance searches for all bounded integer solutions for Y in the range l ≤ Y ≤ u
that satisfy φ.

When verifying a hybrid system with a large number of discrete modes,
we start by applying our technique to one mode using linear and quadratic
templates. If we find an invariant for a particular mode, we use it as a starting
point to construct refined templates for the full system (Example 6).

Our constraint-based technique for verification can be used for solving in-
stances of the synthesis problem as well. The technique uniformly treats the en-
tities of the verification condition, which includes both the inductive invariants
and the description of the system. It does not matter whether the invariants are
unknown or parts of the system are unknown or both of them are unknown. As
long as there is sufficient information in the system description, the constraint-
based approach can potentially find a solution for the unknown quantities.

Example 5. Consider the classical thermostat example, which is a hybrid system
with two modes: in the “on” mode, temperature x increases as dx/dt = 100−x,
and in the “off” mode, it decreases as dx/dt = −x. We wish to synthesize the
control logic that determines when to switch modes. Assume initially mode is
“off” and x = 78. The goal is to ensure 75 ≤ x ≤ 80 always. For simplicity,
assume that the specified safety property, 75 ≤ x ≤ 80, is also an inductive
invariant (and we do not guess a template for the invariant). Assume that we
guess that the guard for the transition from heater-on to heater-off mode is of
the form x ≥ α and that the guard for the reverse transition is x ≤ β. We can
now write the verification conditions (A1,A4’) as follows:

∃α, β : ∀x : (x = 75 ∧ x > β ⇒ −x ≥ 0) ∧ (x = 80 ∧ x > β ⇒ −x ≤ 0)∧
(x = 75 ∧ x < α ⇒ 100− x ≥ 0) ∧ (x = 80 ∧ x < α ⇒ 100− x ≤ 0)∧
(x = 78 ⇒ x > β)

One solution returned by our constraint solver was α = β = 76. However, this
solution leads to zeno behavior. We can add additional constraints (not described



in this paper) that capture the requirement that the switching logic be most
liberal, in which case we get β = 75 and α = 79. �

5 Experimental Results

The approach described in this paper has been partially implemented in the
form of two separate components. The first component takes an ∃∀ formula
(over arbitrary nonlinear polynomials) and returns an ∃ formula. The second
component takes the ∃ formula and creates a Yices [8] formula over bit-vectors.
The implementation is in Lisp. The bit-vector decision procedure of Yices is used
to finally search for solutions. The front-end step of generating the ∃∀ formula
from a hybrid system description has not been automated yet.

All examples presented in this paper were analyzed automatically using the
above tools. Some results are reported in Table 1.

Example 6 (Adaptive Cruise Control with Transmission). Consider the cruise
control model from Example 2. The safety property to establish is that inter-
vehicle separation remains positive; specifically, gap ≥ 5. We assume that ini-
tially the rear car enters the mode normal, acc, 4-th gear from the mode normal,
cc, 4-th gear and v = vf . We wish to prove the safety property assuming that
the velocity vf of the leading car remains bounded between 30 ≤ vf ≤ 60.

Our tools prove the safety by generating the following invariant for each of
the acc modes:

Invariant Modes
2gap − 2v + vf − 2 ≥ 0, gap ≥ 5 normal, acc, all gears
−350 ≤ −66v + 8gap − 40 + 26vf normal, acc, all gears
false max-braking, acc, all gears
2gap − 2v + vf − 2 ≥ 0, gap ≥ 5 max-acceleration, acc, all gears
Note that the max-braking mode is not reachable from the chosen initial

states. We did not generate the invariants for all modes in one step. We first
generated invariants for single modes and that gave us an idea of the form of
invariants and helped refine our template. Using a refined template, we generated
invariants for all the acc-modes simultaneously. �

Example 7 (Human Blood Glucose Metabolism). We consider the model of in-
sulin metabolism in the body of a Type-I diabetic patient [23, 13]. For purposes
of modeling insulin concentration in the human body, the body is divided into
six compartments – brain (B), heart (H), gut (G), lungs (L), kidney (K), and pe-
riphery (P) – and each state variable represents the insulin concentration in one
such compartment (there are two variables for the “periphery” compartment).
The dynamics of the system are given as follows, see also [23]:

dIB/dt = −45/26IB + 45/26IH

dIH/dt = 45/99IB − 312/99IH + 90/99IL + 72/99IK + 105/99IPV + u

dIG/dt = 72/94IH − 72/94IG



Example Dim Vars Bits Assertions Time

disjunction Ex. 9 2 14 6 50 7ms

delta-notch 4 34 8 120 30ms

plankton Ex. 8 3 31 8 110 56ms

thermostat 1 29 20 126 .45s

thermostat synthesis Ex. 5 1 21 20 75 1.2s

ACC Ex. 1 5 28 12 95 1.3s

acc-transmission Ex. 2 4 35 24 122 4.7s

insulin Ex. 7 7 66 18 180 18s

Table 1. Experimental Results. We report the size of the Yices formulas generated in
the various examples (number of variables, Vars; size of bit-vectors, Bits; and number
of assertions, Assertions) and the time (Time) taken by Yices to find a model on a 64-
bit Pentium 3.4GHz cpu with 2MB cache. Dim is the number of continuous variables
in the example.

dIL/dt = 18/114IH − 720/10000IH + 72/118IG − 2880/10000IG − 90/118IL

dIK/dt = 72/51IH − 72/51IK − 2160/10000IK

dIPV /dt = 105/74IH − 105/74IPV − 674/1480IPV + 674/1480IPI

dIPI/dt = 1/20IPV − 1/20IPI − 21231/51580IPI

The control input u in this case is the insulin injected into the body by an
external insulin pump. Since we assume a Type-I diabetic, there is no pancre-
atic insulin release and hence no feedback from the glucose metabolism model.
Assuming that the input u is bounded between 20 and 25, we can compute
bounds or ranges for insulin concentrations in different body compartments. As
remarked earlier, we can easily invert the analysis and ask for acceptable bounds
on insulin injection rate that will ensure bounded insulin concentration levels in
the body. �

Example 8. Consider the following Phytoplankton Growth Model (see [3] and
references therein): ẋ1 = 1− x1 − x1x2

4 , ẋ2 = (2x3 − 1)x2, ẋ3 = x1
4 − 2x2

3, where
x1 denotes the substrate, x2 the phytoplankton biomass, and x3 the intracellular
nutrient per biomass. For this nonlinear dynamical system, we can immediately
generate the following invariant: 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1/2. �

Example 9 (Disjunctive Invariants). Our technique can be used to generate dis-
junctive invariants. Consider the system dx/dt = −y, dy/dt = −x with initial
states given by x ≥ 3. Using the template x ≥ α ∨ y ≥ β, we can generate the
invariant x ≥ 0 ∨ y ≥ 0. �

6 Related Work

The approach of using templates and generating invariants of a specific form for
hybrid systems was introduced simultaneously by Sankaranarayanan et. al. [21]



and Prajna et. al. [15, 16, 17]. In all such approaches, an ∃∀ formula is generated,
although this may not be explicitly stated. The various approaches differ in the
form of the invariants considered, the technique used to generate the ∃∀ formula,
and the approach for solving it. Templates are restricted to polynomial equations
in [21] and Proposition 1 is not required there. The approach for solving the ∃∀
constraints is based on Gröbner basis computation. Polynomial inequality tem-
plates are used in [16] and a variant of Proposition 1 is used there. However, to
solve the generated constraints, the authors replaced the constraints by some-
thing stronger (essentially voiding the benefit of Proposition 1) and attempted
to recover the lost generality using iterative methods. The constraint solving
method is based on convex optimization and sum-of-squares computation. In
essence, a slightly more general form of Lemma 1 inspired by Positivstellensatz
is used in [16]. We build upon these works and explore a new translation into
∃∀ constraints and the use of SMT solvers as the backend engines.

Tiwari [26] generated linear inductive invariants for linear systems. Rodriguez-
Carbonell and Tiwari [19] showed that the best (strongest) possible polynomial
equational invariant was computable for hybrid systems with linear dynamics
in each mode. Pappas et al. have also considered the problem of computing
invariants, but only for linear systems, using interesting techniques [27, 28].

In software program analysis, constraint based techniques have been success-
fully applied for discovering conjunctive linear arithmetic invariants [7, 20, 22],
non-linear polynomial invariants [11] and invariants in the combined theory of
linear arithmetic and uninterpreted functions [4].

7 Conclusion

We show that the verification technique based on guessing the form of inductive
invariant and searching for invariants of that form using SMT solvers is a po-
tent approach for verifying hybrid systems. Its extension to solving the synthesis
problem is left for future work. Using efficient nonlinear constraint solvers di-
rectly could also significantly improve the efficiency of our approach and remains
to be explored.
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