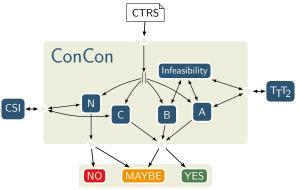
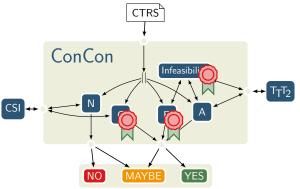
Formalized Confluence of Quasi-Decreasing, Strongly Deterministic Conditional TRSs*

Christian Sternagel Thomas Sternagel

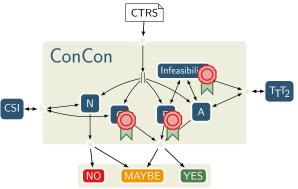

University of Innsbruck, Austria

September 9, 2016

5th IWC


^{*}Supported by the Austrian Science Fund (FWF): P27502

Certification 2/9


- (A) quasi-decreasing SDTRS $\mathcal R$ is confluent \iff all CCPs joinable
- $(\mathsf{B}) \ \ \mathsf{almost} \ \mathsf{orthogonal} \ \mathsf{properly} \ \mathsf{oriented} \ \mathsf{right}\text{-}\mathsf{stable} \ \mathsf{3}\text{-}\mathsf{CTRS} \ \mathsf{is} \ \mathsf{confluent}$
- (C) weakly left-linear DCTRS $\mathcal R$ is confluent if $U(\mathcal R)$ is confluent
- (\mathbb{N}) various heuristics for non-confluence

Certification 2/9

(A) quasi-decreasing SDTRS $\mathcal R$ is confluent \iff all CCPs joinable almost orthogonal properly oriented right-stable 3-CTRS is confluent weakly left-linear DCTRS $\mathcal R$ is confluent if $U(\mathcal R)$ is confluent various heuristics for non-confluence

Certification 2/9

(A) quasi-decreasing SDTRS ${\mathcal R}$ is confluent \iff all CCPs joinable

(almost orthogonal properly oriented right-stable 3-CTRS is confluent

weakly left-linear DCTRS $\mathcal R$ is confluent if $U(\mathcal R)$ is confluent

(N) various heuristics for non-confluence

Literature 3/9

On conditional rewrite systems with extra variables and deterministic logic programs

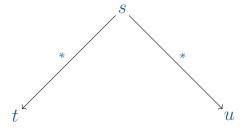
J. Avenhaus, C. Loría-Sáenz doi: 10.1007/3-540-58216-9_40, LPAR, 1994.

Theorem

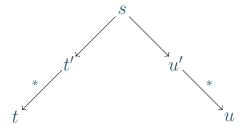
Quasi-reductive SDTRS \mathcal{R} is confluent \iff all CCPs are joinable.

SDTRS 4/9

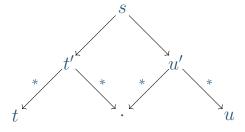
$$\ell \to r \Leftarrow \underbrace{s_1 \approx t_1, \dots, s_k \approx t_k}_{c}$$


- ullet pprox interpreted as $ightarrow_{\mathcal{R}}^*$
- \bullet $\ell \not\in \mathcal{V}$
- $\mathcal{V}(r) \subseteq \mathcal{V}(\ell, c)$
- $\mathcal{V}(s_i) \subseteq \mathcal{V}(\ell, t_1, \dots, t_{i-1})$
- $\forall \sigma$. normalized $\sigma \longrightarrow t_i \sigma \in \mathsf{NF}(\to_{\mathcal{R}})$

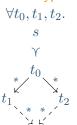
SDTRS \mathcal{R} (\mathcal{F}) is *quasi-decreasing* if there is \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$:

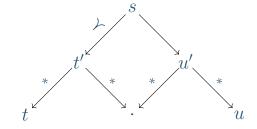

- well-founded ≻
- $\bullet \succ = (\succ \cup \rhd)^+$
- \bullet $\rightarrow_{\mathcal{R}} \subseteq \succ$
- $\forall \ell \to r \Leftarrow s_1 \approx t_1, \dots, s_n \approx t_n \in \mathcal{R}, \ \sigma \colon \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V}),$ $0 \leqslant i < n \colon \forall 1 \leqslant j \leqslant i. \ s_j \sigma \to_{\mathcal{R}}^* t_j \sigma \longrightarrow \ell \sigma \succ s_{i+1} \sigma$

CCP $u \approx v \Leftarrow c$ is joinable if $\forall \sigma. \ (\forall s \approx t \in c. \ s\sigma \rightarrow_{\mathcal{R}}^* t\sigma) \longrightarrow u\sigma \downarrow_{\mathcal{R}} v\sigma$

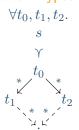

SDTRS: ${\cal R}$ quasi-decreasing ${\cal R}$, all CCPs are joinable \implies confluent ${\cal R}$

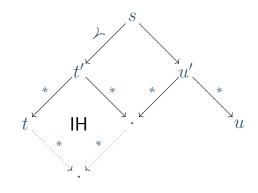
SDTRS: ${\cal R}$ quasi-decreasing ${\cal R}$, all CCPs are joinable \implies confluent ${\cal R}$



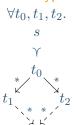

SDTRS: ${\cal R}$ quasi-decreasing ${\cal R}$, all CCPs are joinable \implies confluent ${\cal R}$

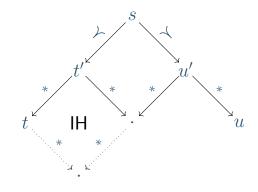
SDTRS: ${\cal R}$ quasi-decreasing ${\cal R}$, all CCPs are joinable \implies confluent ${\cal R}$


Induction Hypothesis



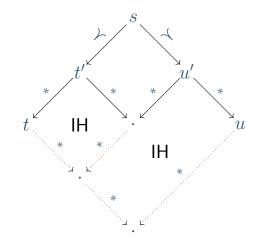
SDTRS: ${\cal R}$ quasi-decreasing ${\cal R}$, all CCPs are joinable \implies confluent ${\cal R}$


Induction Hypothesis



SDTRS: ${\cal R}$ quasi-decreasing ${\cal R}$, all CCPs are joinable \implies confluent ${\cal R}$

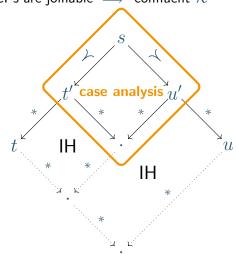
Induction Hypothesis



SDTRS: ${\cal R}$ quasi-decreasing ${\cal R}$, all CCPs are joinable \implies confluent ${\cal R}$

Induction Hypothesis

 $\forall t_0, t_1, t_2.$ s \uparrow t_0 \downarrow t_1 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

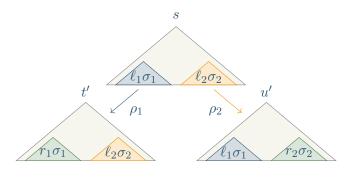


SDTRS: \mathcal{R}

quasi-decreasing $\mathcal{R}\text{, all CCPs}$ are joinable \implies confluent \mathcal{R}

Induction Hypothesis

 $\forall t_0, t_1, t_2.$ s \uparrow t_0 \star t_1 \star \star \star \star \star \star



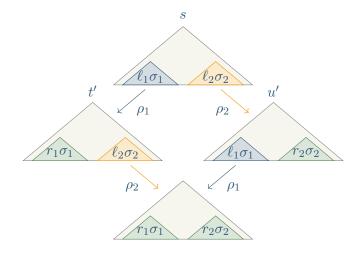
$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

$$\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q,$$

$$\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$$

case 1:

p || q



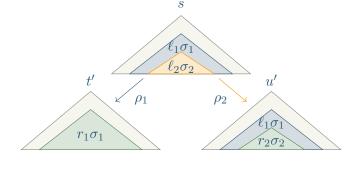
$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

 $\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q,$ $\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$

case 1:

p || q

Proof Idea II

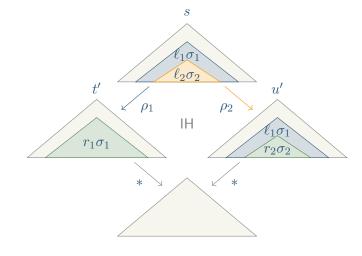

8/9

$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

 $\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q,$ $\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$

case 2:

 $p \neq \epsilon, p \leqslant q$



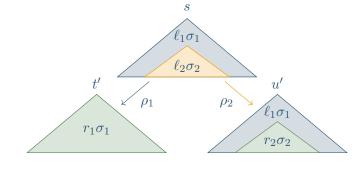
$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

$$\begin{aligned}
\rho_2 \colon \ell_2 \to r_2 &\Leftarrow c_2, \ \sigma_2, \ q, \\
\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{aligned}$$

case 2:

$$p \neq \epsilon, p \leqslant q$$

$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$


$$\begin{cases}
\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q, \\
\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

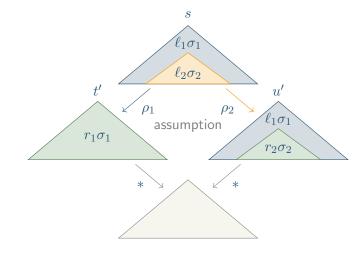
case 3:

$$p = \epsilon, p \leqslant q,$$

$$q \in \mathsf{Pos}_{\mathcal{F}}(\ell_1),$$

$$q \neq \epsilon \lor \rho_1 \neq \rho_2$$

$$\begin{cases} \rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\ \forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1 \end{cases}$$

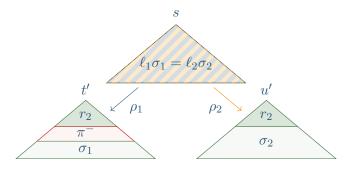

$$\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q,
\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$$

case 3:

$$p = \epsilon, p \leqslant q,$$

$$q \in \mathsf{Pos}_{\mathcal{F}}(\ell_1),$$

$$q \neq \epsilon \lor \rho_1 \neq \rho_2$$



$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

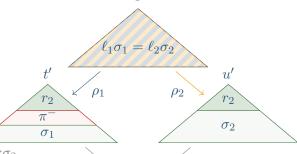
$$\begin{cases}
\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q, \\
\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

case 4:

$$p = q = \epsilon,$$

$$\exists \pi. \ \rho_1 \pi = \rho_2$$

Proof Idea II


8/9

$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

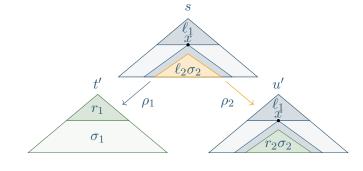
 $\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q,$ $\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$

case 4:

$$p = q = \epsilon,$$

$$\exists \pi. \ \rho_1 \pi = \rho_2$$

- $\forall x \in \mathcal{V}(\rho_2). \ x\pi^-\sigma_1 \downarrow x\sigma_2$
- induction on $|c_2|$
- quasi-decreasingness
- strong determinism
- IH



$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

$$\begin{cases}
\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q, \\
\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

case 5:

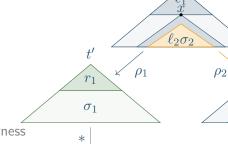
$$p = \epsilon, p \leqslant q,$$
$$q \not\in \mathsf{Pos}_{\mathcal{F}}(\ell_1)$$

Proof Idea II

8/9

 $\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$

 $\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q,$ $\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$


u'

 $r_2\sigma_2$

 ℓ_1

case 5:

 $p = \epsilon, p \leqslant q,$ $q \not\in \mathsf{Pos}_{\mathcal{F}}(\ell_1)$

- quasi-decreasingness
- strong determinism
- IH

Conclusion 9/9

Remarks

- First version using quasi-reductivity
 - Definition is different from Ohlebusch and IsaFoR
- Using quasi-decreasingness:
 - Straight-forward and made proof easier
 - One lemma from paper not needed anymore
 - Original theorem follows as corollary

Conclusion 9/9

Remarks

- First version using quasi-reductivity
 - Definition is different from Ohlebusch and IsaFoR
- Using quasi-decreasingness:
 - Straight-forward and made proof easier
 - One lemma from paper not needed anymore
 - Original theorem follows as corollary

Challenges

- Paper proof assumes rules to be identical
- Permutations for variable disjoint variants

 $t_1\downarrow t_2$. So assume that this critical pair is improper. Then $t\equiv \sigma_1(l_1)\equiv \sigma_2(l_2)$ and we may assume that $C_1\Longrightarrow l_1\to r_1$ and $C_2\Longrightarrow l_2\to r_2$ are identical, i.e. $C_i\Longrightarrow l_i\to r_i\equiv C\Longrightarrow l\to r$ for i=1,2. We have $\sigma_1(x)\equiv \sigma_2(x)$ for all

Definition 3.1 Let \succ be a reduction ordering on $\mathcal{T}(\mathcal{F}, \mathcal{V})$. A DTRS R is quasi-reductive wrt. \succ if for every substitution σ and every rule $u_1 \rightarrow v_1, \ldots, u_n \rightarrow v_n \Longrightarrow l \rightarrow r$ in R

(i)
$$\sigma(u_j) \succeq \sigma(v_j)$$
 for $1 \leq j \leq i$ implies $\sigma(l) \succ_{st} \sigma(u_{i+1})$

(ii)
$$\sigma(u_j) \succeq \sigma(v_j)$$
 for $1 \leq j \leq n$ implies $\sigma(l) \succ \sigma(r)$