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(A) quasi-decreasing SDTRS R is confluent <= all CCPs joinable

(B) almost orthogonal properly oriented right-stable 3-CTRS is confluent
(C) weakly left-linear DCTRS R is confluent if U(R) is confluent
(N)

various heuristics for non-confluence
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Theorem

Quasi-reductive SDTRS R is confluent <= all CCPs are joinable.
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SDTRS R (F) is quasi-decreasing if there is = on T (F,V):
o well-founded >~
o == (=UD>)"
* —-r C -

OV€—>7<:51~151,.. SRty €ER, 0: V= T(F,V),
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CCP u =~ v < ¢ is joinable if
Vo. (Vsrtec so =5 to) — uo g vo
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SDTRS: R
quasi-decreasing R, all CCPs are joinable = confluent R

Induction Hypothesis
Vo, t1, to.
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p1:ly — 1 &= c1, 01, D,
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Remarks

e First version using quasi-reductivity
o Definition is different from Ohlebusch and IsaFoR
e Using quasi-decreasingness:

e Straight-forward and made proof easier
e One lemma from paper not needed anymore
e Original theorem follows as corollary
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Challenges

o Paper proof assumes rules to be identical

e Permutations for variable disjoint variants

t1 | t3. So assume that this critical pair is improper. Then t = 1(l}) = o2(l2)
and we may assume that C; = |} — r; and Cy = l; — ry are identical,
ie. Ci =l —ri=C=1—rfori=12 We have o1(z) = o3(z) for all
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Definition 3.1 Let > be a reduction ordering on T(F,V). A DTRS R is quasi-
reductive wrt. > if for every substitution o and every rule uy — v1,..., Uy —
v, =>l—-rin R

(i) o(u;j) = a(v;) for 1< j<i implies o(l) >s¢ o(uiy1)

(i) o(uj) = o(v;) for 1<j<n implies o(l) > o(r)



