# Formalized Confluence of Quasi-Decreasing, Strongly Deterministic Conditional TRSs\*

Christian Sternagel Thomas Sternagel

University of Innsbruck, Austria

September 9, 2016

5<sup>th</sup> IWC

<sup>\*</sup>Supported by the Austrian Science Fund (FWF): P27502

Certification 2/9



- (A) quasi-decreasing SDTRS  $\mathcal R$  is confluent  $\iff$  all CCPs joinable
- $(\mathsf{B}) \ \ \mathsf{almost} \ \mathsf{orthogonal} \ \mathsf{properly} \ \mathsf{oriented} \ \mathsf{right}\text{-}\mathsf{stable} \ \mathsf{3}\text{-}\mathsf{CTRS} \ \mathsf{is} \ \mathsf{confluent}$
- (C) weakly left-linear DCTRS  $\mathcal R$  is confluent if  $U(\mathcal R)$  is confluent
- $(\mathbb{N})$  various heuristics for non-confluence

Certification 2/9



(A) quasi-decreasing SDTRS  $\mathcal R$  is confluent  $\iff$  all CCPs joinable almost orthogonal properly oriented right-stable 3-CTRS is confluent weakly left-linear DCTRS  $\mathcal R$  is confluent if  $U(\mathcal R)$  is confluent various heuristics for non-confluence

Certification 2/9



(A) quasi-decreasing SDTRS  ${\mathcal R}$  is confluent  $\iff$  all CCPs joinable

(almost orthogonal properly oriented right-stable 3-CTRS is confluent

weakly left-linear DCTRS  $\mathcal R$  is confluent if  $U(\mathcal R)$  is confluent

(N) various heuristics for non-confluence

Literature 3/9



On conditional rewrite systems with extra variables and deterministic logic programs

J. Avenhaus, C. Loría-Sáenz doi: 10.1007/3-540-58216-9\_40, LPAR, 1994.

#### Theorem

Quasi-reductive SDTRS  $\mathcal{R}$  is confluent  $\iff$  all CCPs are joinable.

SDTRS 4/9

$$\ell \to r \Leftarrow \underbrace{s_1 \approx t_1, \dots, s_k \approx t_k}_{c}$$

- ullet pprox interpreted as  $ightarrow_{\mathcal{R}}^*$
- $\bullet$   $\ell \not\in \mathcal{V}$
- $\mathcal{V}(r) \subseteq \mathcal{V}(\ell, c)$
- $\mathcal{V}(s_i) \subseteq \mathcal{V}(\ell, t_1, \dots, t_{i-1})$
- $\forall \sigma$ . normalized  $\sigma \longrightarrow t_i \sigma \in \mathsf{NF}(\to_{\mathcal{R}})$

# SDTRS $\mathcal{R}$ ( $\mathcal{F}$ ) is *quasi-decreasing* if there is $\succ$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ :

- well-founded ≻
- $\bullet \succ = (\succ \cup \rhd)^+$
- $\bullet$   $\rightarrow_{\mathcal{R}} \subseteq \succ$
- $\forall \ell \to r \Leftarrow s_1 \approx t_1, \dots, s_n \approx t_n \in \mathcal{R}, \ \sigma \colon \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V}),$  $0 \leqslant i < n \colon \forall 1 \leqslant j \leqslant i. \ s_j \sigma \to_{\mathcal{R}}^* t_j \sigma \longrightarrow \ell \sigma \succ s_{i+1} \sigma$

CCP  $u \approx v \Leftarrow c$  is joinable if  $\forall \sigma. \ (\forall s \approx t \in c. \ s\sigma \rightarrow_{\mathcal{R}}^* t\sigma) \longrightarrow u\sigma \downarrow_{\mathcal{R}} v\sigma$ 

SDTRS:  ${\cal R}$  quasi-decreasing  ${\cal R}$  , all CCPs are joinable  $\implies$  confluent  ${\cal R}$ 



SDTRS:  ${\cal R}$  quasi-decreasing  ${\cal R}$  , all CCPs are joinable  $\implies$  confluent  ${\cal R}$ 



SDTRS:  ${\cal R}$  quasi-decreasing  ${\cal R}$  , all CCPs are joinable  $\implies$  confluent  ${\cal R}$ 



SDTRS:  ${\cal R}$  quasi-decreasing  ${\cal R}$  , all CCPs are joinable  $\implies$  confluent  ${\cal R}$ 

# Induction Hypothesis





SDTRS:  ${\cal R}$  quasi-decreasing  ${\cal R}$  , all CCPs are joinable  $\implies$  confluent  ${\cal R}$ 

# Induction Hypothesis





SDTRS:  ${\cal R}$  quasi-decreasing  ${\cal R}$  , all CCPs are joinable  $\implies$  confluent  ${\cal R}$ 

# Induction Hypothesis





SDTRS:  ${\cal R}$  quasi-decreasing  ${\cal R}$  , all CCPs are joinable  $\implies$  confluent  ${\cal R}$ 

# Induction Hypothesis

 $\forall t_0, t_1, t_2.$  s  $\uparrow$   $t_0$   $\downarrow$   $t_1$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$ 



SDTRS:  $\mathcal{R}$ 

quasi-decreasing  $\mathcal{R}\text{, all CCPs}$  are joinable  $\implies$  confluent  $\mathcal{R}$ 

# Induction Hypothesis

 $\forall t_0, t_1, t_2.$  s  $\uparrow$   $t_0$   $\star$   $t_1$   $\star$   $\star$   $\star$   $\star$   $\star$   $\star$ 



$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

$$\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q,$$
  
$$\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$$

# case 1:

p || q



$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

 $\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q,$  $\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$ 

# case 1:

p || q



# Proof Idea II

8/9

$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

 $\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q,$  $\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$ 

## case 2:

 $p \neq \epsilon, p \leqslant q$ 



$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

$$\begin{aligned}
\rho_2 \colon \ell_2 \to r_2 &\Leftarrow c_2, \ \sigma_2, \ q, \\
\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{aligned}$$

# case 2:

$$p \neq \epsilon, p \leqslant q$$



$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

$$\begin{cases}
\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q, \\
\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

## case 3:

$$p = \epsilon, p \leqslant q,$$

$$q \in \mathsf{Pos}_{\mathcal{F}}(\ell_1),$$

$$q \neq \epsilon \lor \rho_1 \neq \rho_2$$



$$\begin{cases} \rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\ \forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1 \end{cases}$$

$$\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q, 
\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$$

# case 3:

$$p = \epsilon, p \leqslant q,$$

$$q \in \mathsf{Pos}_{\mathcal{F}}(\ell_1),$$

$$q \neq \epsilon \lor \rho_1 \neq \rho_2$$



$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

$$\begin{cases}
\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q, \\
\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

#### case 4:

$$p = q = \epsilon,$$
  
$$\exists \pi. \ \rho_1 \pi = \rho_2$$



# Proof Idea II

8/9

$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

 $\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q,$   $\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$ 

## case 4:

$$p = q = \epsilon,$$
  
$$\exists \pi. \ \rho_1 \pi = \rho_2$$



- $\forall x \in \mathcal{V}(\rho_2). \ x\pi^-\sigma_1 \downarrow x\sigma_2$
- induction on  $|c_2|$
- quasi-decreasingness
- strong determinism
- IH



$$\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

$$\begin{cases}
\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q, \\
\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$$

# case 5:

$$p = \epsilon, p \leqslant q,$$
$$q \not\in \mathsf{Pos}_{\mathcal{F}}(\ell_1)$$



# Proof Idea II

8/9

 $\begin{cases}
\rho_1 \colon \ell_1 \to r_1 \Leftarrow c_1, \ \sigma_1, \ p, \\
\forall u \approx v \in c_1. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1
\end{cases}$ 

 $\rho_2 \colon \ell_2 \to r_2 \Leftarrow c_2, \ \sigma_2, \ q,$  $\forall u \approx v \in c_2. \ u\sigma_1 \to_{\mathcal{R}}^* v\sigma_1$ 

u'

 $r_2\sigma_2$ 

 $\ell_1$ 

#### case 5:

 $p = \epsilon, p \leqslant q,$  $q \not\in \mathsf{Pos}_{\mathcal{F}}(\ell_1)$ 



- quasi-decreasingness
- strong determinism
- IH



Conclusion 9/9

#### Remarks

- First version using quasi-reductivity
  - Definition is different from Ohlebusch and IsaFoR
- Using quasi-decreasingness:
  - Straight-forward and made proof easier
  - One lemma from paper not needed anymore
  - Original theorem follows as corollary

Conclusion 9/9

#### Remarks

- First version using quasi-reductivity
  - Definition is different from Ohlebusch and IsaFoR
- Using quasi-decreasingness:
  - Straight-forward and made proof easier
  - One lemma from paper not needed anymore
  - Original theorem follows as corollary

# Challenges

- Paper proof assumes rules to be identical
- Permutations for variable disjoint variants

 $t_1\downarrow t_2$ . So assume that this critical pair is improper. Then  $t\equiv \sigma_1(l_1)\equiv \sigma_2(l_2)$  and we may assume that  $C_1\Longrightarrow l_1\to r_1$  and  $C_2\Longrightarrow l_2\to r_2$  are identical, i.e.  $C_i\Longrightarrow l_i\to r_i\equiv C\Longrightarrow l\to r$  for i=1,2. We have  $\sigma_1(x)\equiv \sigma_2(x)$  for all



**Definition 3.1** Let  $\succ$  be a reduction ordering on  $\mathcal{T}(\mathcal{F}, \mathcal{V})$ . A DTRS R is quasi-reductive wrt.  $\succ$  if for every substitution  $\sigma$  and every rule  $u_1 \rightarrow v_1, \ldots, u_n \rightarrow v_n \Longrightarrow l \rightarrow r$  in R

(i) 
$$\sigma(u_j) \succeq \sigma(v_j)$$
 for  $1 \leq j \leq i$  implies  $\sigma(l) \succ_{st} \sigma(u_{i+1})$ 

(ii) 
$$\sigma(u_j) \succeq \sigma(v_j)$$
 for  $1 \leq j \leq n$  implies  $\sigma(l) \succ \sigma(r)$