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Motivation

I We have a reduction: A ≤P B

I How is it helpful?
I A is undecidable =⇒ B is undecidable.
I B is decidable =⇒ A is decidable.

I A result for one property can be reused for another.



Preliminaries

I Joinability: Given a TRS R and two terms s, t, does
there exist a term z such that s

∗→ z
∗← t?

I Confluence: Given a TRS R. For any two terms s, t
that have a common ancestor (s

∗← a
∗→ t), does there

exist a term z such that s
∗→ z

∗← t?



Preliminaries – cont.

I Linear TRS: A variable may only appear once on each
side of a rule.

I Shallow TRS: Variables can only appear at depth 0 or 1
in a rule.



Reduction

Joinability : R : s ↓ t ?

⇓
Confluence : R′ : confluent ?

Challenge is insuring: s ↓ t under R ⇐⇒ R′ is confluent



Previous Reduction – Verma [2009]

Σ′ = Σ ∪ {h, h′, a}

R1 = {c → h′(h(s, t), c)|c ∈ Σ}
∪ {f (x1 . . . xn)→ h′(h(s, t), f (x1 . . . xn))}

R′ = R∪R1 ∪ {h(x , x)→ a} ∪ {h′(a, x)→ a}

Note: Any term u reaches h(h′(s, t), u).

Note 2: If s ↓ t then h′(s, t)
∗→ a. Any two terms join.



Previous Reduction – Verma [2009] – Problems

Σ′ = Σ ∪ {h, h′, a}

R1 = {c → h′(h(s, t), c)|c ∈ Σ}
∪ {f (x1 . . . xn)→ h′(h(s, t), f (x1 . . . xn))}

R′ = R∪R1 ∪ {h(x , x)→ a} ∪ {h′(a, x)→ a}

Violates right-shallow restriction
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Violates left-linear restriction



Previous Reduction – Verma [2009] – Problems

I In Verma [2012], joinability was shown to be undecidable
for linear and left-shallow TRS.

I Not able to determine confluence for the same class
through the reduction.



Another Reduction.



Intuition

I Suppose that instead of s, t we had 0, 1.

I Suppose we assigned each function symbol a binary string.

a 00
b 01
f 10
g 11

f

ba

10

0100

g

ab

11

0001
if 0

∗→ z
∗← 1...

zz

zzzz
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Flattening

I To use s, t as 0’s and 1’s we must flatten them.

I We introduce rules in a manner similar to tree automata.

I An example can be found in Godoy et al. [2003].

f

ba

s = cs

cs → f (ca, cb)

f

cbca

ca → a

cb → b

f

ba
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Flattening Rules and Common Ancestor

I We also add a common ancestor to cs , ct .

I Thus, we now have the following rules:

Σ1 := Σ ∪ Σflat ∪ {α :0}
R1 := R∪Rflat ∪ {α→ cs , α→ ct}



Code Rules

I We use the first B positions of the hi symbols to hold the
binary string. hi varies from 0 to M (max arity in Σ1).

Σcode := {hi :B + i | 0 ≤ i ≤ M}
Rcode := {f (x1 · · · xn)→ hn(cf1 · · · cfB

, x1 · · · xn)|f ∈ Σ1}
Σ2 := Σ1 ∪ Σcode

R2 := R1 ∪Rcode



Code Rules – In Practice

f

ba

h2

bacsct

h2

h0

ctcs

h0

cscs

csct

g

ab

h2

abctct

h2

h0

cscs

h0

ctcs

csct

If cs ↓ ct then f (a, b) ↓ g(b, a)



Structural Equivalence

h2

h0

ctcs

h0

cscs

csct

h0

cscs

h0

ctcs

f (a, b)
∗→ a

∗→ b
∗→

However, f (a, b) still cannot join a or b

Requires structural equivalence
i.e. the same set of positions
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Extension Rules

I We introduce a dummy symbol that will be used to
generate new positions.

Rex := {hn(x1 · · · xB+n)→ hn+1(x1 · · · xB+n, δ)}
Σ′ := Σ2 ∪ {δ :0}
R′ := R2 ∪Rex



Extension Rules – In Practice

a 000
b 001
f 010
g 011
f’ 100
δ 101

h0

cscscs

a
∗→
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a 000
b 001
f 010
g 011
f’ 100
δ 101

h1

δcscscs

a
∗→



Extension Rules – In Practice

a 000
b 001
f 010
g 011
f’ 100
δ 101

h1

h0

ctcsct

cscscs

h1

h0

ctcscs

cscsct

a
∗→ f ′(b)

∗→



Extension Rules – In Practice

h1

h1

h0

ctcsct
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a
∗→ f ′(f ′(b))

∗→



Extension Rules – In Practice
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h0
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h1

h0
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h0

cscscs

cscsct

a
∗→

g(a, b)
∗→



Proofs.

(Sketch)
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Every Term Joins

Lemma
Every term t ∈ T (Σ′,X ) reaches a code term.

Lemma
Any pair of code terms can be rewritten into structurally
equivalent code terms.

Lemma
If cs ↓ ct then any two terms can be joined.



Minimal Proofs

Definition
A derivation is a sequence of terms obtained through
successive rewrite steps: u1 → u2 → · · · → un−1 → un.

Definition
A minimal proof of joinability between two terms t1, t2 is a
pair of derivations demonstrating t1

∗→ z
∗← t2 for some z such

that there exists no other pair with a fewer number of rewrite
steps.



Minimal Proofs – cont

Lemma
A minimal proof of joinability for cs ↓ ct performs no rewrites
on binary string subterms.

u1 ui

hn

xnx1. . .

z vi

hn

xnx1. . .

v1
∗ ∗∗ ∗



Minimal Proofs – cont

Lemma
A minimal proof of joinability for cs ↓ ct performs no Rex

rewrites.

u1 ui

hn

δx1. . .

z vi

hn

δx1. . .

v1
∗ ∗∗ ∗



Minimal Proofs – cont

Lemma
cs ↓ ct under R1 iff cs ↓ ct under R′.

u1 u2 ui un

u′1 u′2 u′i u′n

∗ ∗ ∗

∗ ∗ ∗
⇓ π

Use mapping π (maps to “pure” terms) to obtain a proof in R1.

Rcode is erased.

π(ui ) = π(ui+1).

R1 steps still valid.

π(ui )→ π(ui+1).
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Conclusion

Theorem
Joinability reduces to confluence while preserving linearity and
shallowness restrictions.

Proof.
( =⇒ ) If s ↓ t under R then any two terms join under R′. In
particular, terms with a common ancestor join. Thus, R′ is
confluent. Since all the new rules are linear and flat, the
resulting TRS preserves linearity and shallowness.
(⇐= ) If R′ is confluent, then cs ↓ ct since they have a
common ancestor. We know s ↓ t under R (same as cs ↓ ct

under R1).
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