
Reducing Joinability to Confluence:

How to Preserve Shallowness and

Linearity1

Luis Moraes and Rakesh Verma

University of Houston

September 8th, 2016

1
Research supported in part by NSF Grants DUE 1241772 and CNS 1319212

Motivation

I We have a reduction: A ≤P B

I How is it helpful?
I A is undecidable =⇒ B is undecidable.
I B is decidable =⇒ A is decidable.

I A result for one property can be reused for another.

Preliminaries

I Joinability: Given a TRS R and two terms s, t, does
there exist a term z such that s

∗→ z
∗← t?

I Confluence: Given a TRS R. For any two terms s, t
that have a common ancestor (s

∗← a
∗→ t), does there

exist a term z such that s
∗→ z

∗← t?

Preliminaries – cont.

I Linear TRS: A variable may only appear once on each
side of a rule.

I Shallow TRS: Variables can only appear at depth 0 or 1
in a rule.

Reduction

Joinability : R : s ↓ t ?

⇓
Confluence : R′ : confluent ?

Challenge is insuring: s ↓ t under R ⇐⇒ R′ is confluent

Previous Reduction – Verma [2009]

Σ′ = Σ ∪ {h, h′, a}

R1 = {c → h′(h(s, t), c)|c ∈ Σ}
∪ {f (x1 . . . xn)→ h′(h(s, t), f (x1 . . . xn))}

R′ = R∪R1 ∪ {h(x , x)→ a} ∪ {h′(a, x)→ a}

Note: Any term u reaches h(h′(s, t), u).

Note 2: If s ↓ t then h′(s, t)
∗→ a. Any two terms join.

Previous Reduction – Verma [2009] – Problems

Σ′ = Σ ∪ {h, h′, a}

R1 = {c → h′(h(s, t), c)|c ∈ Σ}
∪ {f (x1 . . . xn)→ h′(h(s, t), f (x1 . . . xn))}

R′ = R∪R1 ∪ {h(x , x)→ a} ∪ {h′(a, x)→ a}

Violates right-shallow restriction

Previous Reduction – Verma [2009] – Problems

Σ′ = Σ ∪ {h, h′, a}

R1 = {c → h′(h(s, t), c)|c ∈ Σ}
∪ {f (x1 . . . xn)→ h′(h(s, t), f (x1 . . . xn))}

R′ = R∪R1 ∪ {h(x , x)→ a} ∪ {h′(a, x)→ a}

Violates right-shallow restriction

Violates left-linear restriction

Previous Reduction – Verma [2009] – Problems

I In Verma [2012], joinability was shown to be undecidable
for linear and left-shallow TRS.

I Not able to determine confluence for the same class
through the reduction.

Another Reduction.

Intuition

I Suppose that instead of s, t we had 0, 1.

I Suppose we assigned each function symbol a binary string.

a 00
b 01
f 10
g 11

f

ba

10

0100

g

ab

11

0001
if 0

∗→ z
∗← 1...

zz

zzzz

Intuition

I Suppose that instead of s, t we had 0, 1.

I Suppose we assigned each function symbol a binary string.

a 00
b 01
f 10
g 11

f

ba

10

0100

g

ab

11

0001

if 0
∗→ z

∗← 1...

zz

zzzz

Intuition

I Suppose that instead of s, t we had 0, 1.

I Suppose we assigned each function symbol a binary string.

a 00
b 01
f 10
g 11

f

ba

10

0100

g

ab

11

0001
if 0

∗→ z
∗← 1...

zz

zzzz

Intuition

I Suppose that instead of s, t we had 0, 1.

I Suppose we assigned each function symbol a binary string.

a 00
b 01
f 10
g 11

f

ba

10

0100

g

ab

11

0001
if 0

∗→ z
∗← 1...

zz

zzzz

Flattening

I To use s, t as 0’s and 1’s we must flatten them.

I We introduce rules in a manner similar to tree automata.

I An example can be found in Godoy et al. [2003].

f

ba

s = cs

cs → f (ca, cb)

f

cbca

ca → a

cb → b

f

ba

Flattening

I To use s, t as 0’s and 1’s we must flatten them.

I We introduce rules in a manner similar to tree automata.

I An example can be found in Godoy et al. [2003].

f

ba

s = cs

cs → f (ca, cb)

f

cbca

ca → a

cb → b

f

ba

Flattening

I To use s, t as 0’s and 1’s we must flatten them.

I We introduce rules in a manner similar to tree automata.

I An example can be found in Godoy et al. [2003].

f

ba

s = cs

cs → f (ca, cb)

f

cbca

ca → a

cb → b

f

ba

Flattening Rules and Common Ancestor

I We also add a common ancestor to cs , ct .

I Thus, we now have the following rules:

Σ1 := Σ ∪ Σflat ∪ {α :0}
R1 := R∪Rflat ∪ {α→ cs , α→ ct}

Code Rules

I We use the first B positions of the hi symbols to hold the
binary string. hi varies from 0 to M (max arity in Σ1).

Σcode := {hi :B + i | 0 ≤ i ≤ M}
Rcode := {f (x1 · · · xn)→ hn(cf1 · · · cfB

, x1 · · · xn)|f ∈ Σ1}
Σ2 := Σ1 ∪ Σcode

R2 := R1 ∪Rcode

Code Rules – In Practice

f

ba

h2

bacsct

h2

h0

ctcs

h0

cscs

csct

g

ab

h2

abctct

h2

h0

cscs

h0

ctcs

csct

If cs ↓ ct then f (a, b) ↓ g(b, a)

Structural Equivalence

h2

h0

ctcs

h0

cscs

csct

h0

cscs

h0

ctcs

f (a, b)
∗→ a

∗→ b
∗→

However, f (a, b) still cannot join a or b

Requires structural equivalence
i.e. the same set of positions

Structural Equivalence

h2

h0

ctcs

h0

cscs

csct

h0

cscs

h0

ctcs

f (a, b)
∗→ a

∗→ b
∗→

However, f (a, b) still cannot join a or b
Requires structural equivalence
i.e. the same set of positions

Extension Rules

I We introduce a dummy symbol that will be used to
generate new positions.

Rex := {hn(x1 · · · xB+n)→ hn+1(x1 · · · xB+n, δ)}
Σ′ := Σ2 ∪ {δ :0}
R′ := R2 ∪Rex

Extension Rules – In Practice

a 000
b 001
f 010
g 011
f’ 100
δ 101

h0

cscscs

a
∗→

Extension Rules – In Practice

a 000
b 001
f 010
g 011
f’ 100
δ 101

h1

δcscscs

a
∗→

Extension Rules – In Practice

a 000
b 001
f 010
g 011
f’ 100
δ 101

h1

h0

ctcsct

cscscs

h1

h0

ctcscs

cscsct

a
∗→ f ′(b)

∗→

Extension Rules – In Practice

h1

h1

h0

ctcsct

ctcsct

cscscs

h1

h1

h0

ctcscs

cscsct

cscsct

a
∗→ f ′(f ′(b))

∗→

Extension Rules – In Practice

h1

h0

ctcsct

h0

ctcsct

cscscs

h1

h0

ctcscs

h0

cscscs

cscsct

a
∗→

g(a, b)
∗→

Proofs.

(Sketch)

Proofs.

(Sketch)

Every Term Joins

Lemma
Every term t ∈ T (Σ′,X) reaches a code term.

Lemma
Any pair of code terms can be rewritten into structurally
equivalent code terms.

Lemma
If cs ↓ ct then any two terms can be joined.

Minimal Proofs

Definition
A derivation is a sequence of terms obtained through
successive rewrite steps: u1 → u2 → · · · → un−1 → un.

Definition
A minimal proof of joinability between two terms t1, t2 is a
pair of derivations demonstrating t1

∗→ z
∗← t2 for some z such

that there exists no other pair with a fewer number of rewrite
steps.

Minimal Proofs – cont

Lemma
A minimal proof of joinability for cs ↓ ct performs no rewrites
on binary string subterms.

u1 ui

hn

xnx1. . .

z vi

hn

xnx1. . .

v1
∗ ∗∗ ∗

Minimal Proofs – cont

Lemma
A minimal proof of joinability for cs ↓ ct performs no Rex

rewrites.

u1 ui

hn

δx1. . .

z vi

hn

δx1. . .

v1
∗ ∗∗ ∗

Minimal Proofs – cont

Lemma
cs ↓ ct under R1 iff cs ↓ ct under R′.

u1 u2 ui un

u′1 u′2 u′i u′n

∗ ∗ ∗

∗ ∗ ∗
⇓ π

Use mapping π (maps to “pure” terms) to obtain a proof in R1.

Rcode is erased.

π(ui) = π(ui+1).

R1 steps still valid.

π(ui)→ π(ui+1).

Minimal Proofs – cont

Lemma
cs ↓ ct under R1 iff cs ↓ ct under R′.

u1 u2 ui un

u′1 u′2 u′i u′n

∗ ∗ ∗

∗ ∗ ∗
⇓ π

Use mapping π (maps to “pure” terms) to obtain a proof in R1.

Rcode is erased.

π(ui) = π(ui+1).

R1 steps still valid.

π(ui)→ π(ui+1).

Conclusion

Theorem
Joinability reduces to confluence while preserving linearity and
shallowness restrictions.

Proof.
(=⇒) If s ↓ t under R then any two terms join under R′. In
particular, terms with a common ancestor join. Thus, R′ is
confluent. Since all the new rules are linear and flat, the
resulting TRS preserves linearity and shallowness.
(⇐=) If R′ is confluent, then cs ↓ ct since they have a
common ancestor. We know s ↓ t under R (same as cs ↓ ct

under R1).

References

Guillem Godoy, Ashish Tiwari, and Rakesh Verma. On the
confluence of linear shallow term rewrite systems. In STACS
2003, Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science, 2003.

Rakesh Verma. Complexity of normal form properties and
reductions for term rewriting problems. Fundamenta
Informaticae, 2009.

Rakesh Verma. New undecidability results for properties of
term rewrite systems. Electronic Notes in Theoretical
Computer Science, 2012.

