
Confluence Properties on Open Terms
in the First-Order Theory of Rewriting

Franziska Rapp

joint work with

Aart Middeldorp

University of Innsbruck

IWC 2016, Obergurgl, September 8

http://cl-informatik.uibk.ac.at

property TRS

decision mode

yes | no | ?

FORT

∀ s ∃ t (s →∗ t ∧ ¬∃ u (t → u)

=⇒ ∃ v (s −→‖ v ∨ v
ε−→ t))

FORT is based on tree automata techniques (Dauchet and Tison, LICS 1990)

FR (ICS @ UIBK) FORT 0.2 2/19

property TRS

synthesis mode

yes |

no | ?

FORT

∀ s ∃ t (s →∗ t ∧ ¬∃ u (t → u)

=⇒ ∃ v (s −→‖ v ∨ v
ε−→ t))

FORT is based on tree automata techniques (Dauchet and Tison, LICS 1990)

FR (ICS @ UIBK) FORT 0.2 2/19

property TRS

decision mode

yes | no | ?

FORT

∀ s ∃ t (s →∗ t ∧ ¬∃ u (t → u)

=⇒ ∃ v (s −→‖ v ∨ v
ε−→ t))

FORT is based on tree automata techniques (Dauchet and Tison, LICS 1990)

FR (ICS @ UIBK) FORT 0.2 2/19

property TRS

decision mode

yes | no | ?

FORT

∀ s ∃ t (s →∗ t ∧ ¬∃ u (t → u)

=⇒ ∃ v (s −→‖ v ∨ v
ε−→ t))

FORT is based on tree automata techniques (Dauchet and Tison, LICS 1990)

FR (ICS @ UIBK) FORT 0.2 2/19

Outline

First-Order Theory of Rewriting

Automation

Properties on Open Terms

Experiments

Future Work

FR (ICS @ UIBK) FORT 0.2 3/19

First-Order Theory of Rewriting

First-Order Theory of Rewriting

• first-order logic over a language L without function symbols

• L contains the following binary predicate symbols:

→ →+ →∗ →! −→‖ ε−→ >ε−−→ ↔ ↔∗ ↓ =

• models of L are finite left-linear right-ground TRSs

• set of ground terms serves as domain for variables in formulas over L

FR (ICS @ UIBK) FORT 0.2 4/19

First-Order Theory of Rewriting

First-Order Theory of Rewriting

• first-order logic over a language L without function symbols

• L contains the following binary predicate symbols:

→ →+ →∗ →! −→‖ ε−→ >ε−−→ ↔ ↔∗ ↓ =

• models of L are finite left-linear right-ground TRSs

• set of ground terms serves as domain for variables in formulas over L

FR (ICS @ UIBK) FORT 0.2 4/19

First-Order Theory of Rewriting

First-Order Theory of Rewriting

• first-order logic over a language L without function symbols

• L contains the following binary predicate symbols:

→ →+ →∗ →! −→‖ ε−→ >ε−−→ ↔ ↔∗ ↓ =

• models of L are finite left-linear right-ground TRSs

• set of ground terms serves as domain for variables in formulas over L

FR (ICS @ UIBK) FORT 0.2 4/19

First-Order Theory of Rewriting

First-Order Theory of Rewriting

• first-order logic over a language L without function symbols

• L contains the following binary predicate symbols:

→ →+ →∗ →! −→‖ ε−→ >ε−−→ ↔ ↔∗ ↓ =

• models of L are finite left-linear right-ground TRSs

• set of ground terms serves as domain for variables in formulas over L

FR (ICS @ UIBK) FORT 0.2 4/19

First-Order Theory of Rewriting

First-Order Theory of Rewriting

• first-order logic over a language L without function symbols

• L contains the following binary predicate symbols:

→ →+ →∗ →! −→‖ ε−→ >ε−−→ ↔ ↔∗ ↓ =

• models of L are finite left-linear right-ground TRSs

• set of ground terms serves as domain for variables in formulas over L

FR (ICS @ UIBK) FORT 0.2 4/19

First-Order Theory of Rewriting

Derived Predicates

s →∗ t ⇐⇒ s →+ t ∨ s = t s ↔ t ⇐⇒ s → t ∨ t → s

s →! t ⇐⇒ s →∗ t ∧ ¬∃ u (t → u) s ↓ t ⇐⇒ ∃ u (s →∗ u ∧ t →∗ u)

CR(t) ⇐⇒ ∀ u ∀ v (t →∗ u ∧ t → v =⇒ u ↓ v) CR ⇐⇒ ∀ t CR(t)

WCR(t) ⇐⇒ ∀ u ∀ v (t → u ∧ t → v =⇒ u ↓ v) WCR ⇐⇒ ∀ t WCR(t)

WN(t) ⇐⇒ ∃ u (t →! u) WN ⇐⇒ ∀ t WN(t)

UN(t) ⇐⇒ ∀ u ∀ v (t →! u ∧ t →! v =⇒ u = v) UN ⇐⇒ ∀ t UN(t)

NFP(t) ⇐⇒ ∀ u ∀ v (t → u ∧ t →! v =⇒ u →! v) NFP ⇐⇒ ∀ t NFP(t)

NF(t) ⇐⇒ ¬∃ u (t → u)

UNC ⇐⇒ ∀ t ∀ u (t ↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

FR (ICS @ UIBK) FORT 0.2 5/19

First-Order Theory of Rewriting

Derived Predicates

s →∗ t ⇐⇒ s →+ t ∨ s = t s ↔ t ⇐⇒ s → t ∨ t → s

s →! t ⇐⇒ s →∗ t ∧ ¬∃ u (t → u) s ↓ t ⇐⇒ ∃ u (s →∗ u ∧ t →∗ u)

CR(t) ⇐⇒ ∀ u ∀ v (t →∗ u ∧ t → v =⇒ u ↓ v)

CR ⇐⇒ ∀ t CR(t)

WCR(t) ⇐⇒ ∀ u ∀ v (t → u ∧ t → v =⇒ u ↓ v) WCR ⇐⇒ ∀ t WCR(t)

WN(t) ⇐⇒ ∃ u (t →! u) WN ⇐⇒ ∀ t WN(t)

UN(t) ⇐⇒ ∀ u ∀ v (t →! u ∧ t →! v =⇒ u = v) UN ⇐⇒ ∀ t UN(t)

NFP(t) ⇐⇒ ∀ u ∀ v (t → u ∧ t →! v =⇒ u →! v) NFP ⇐⇒ ∀ t NFP(t)

NF(t) ⇐⇒ ¬∃ u (t → u)

UNC ⇐⇒ ∀ t ∀ u (t ↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

FR (ICS @ UIBK) FORT 0.2 5/19

First-Order Theory of Rewriting

Derived Predicates

s →∗ t ⇐⇒ s →+ t ∨ s = t s ↔ t ⇐⇒ s → t ∨ t → s

s →! t ⇐⇒ s →∗ t ∧ ¬∃ u (t → u) s ↓ t ⇐⇒ ∃ u (s →∗ u ∧ t →∗ u)

CR(t) ⇐⇒ ∀ u ∀ v (t →∗ u ∧ t → v =⇒ u ↓ v) CR ⇐⇒ ∀ t CR(t)

WCR(t) ⇐⇒ ∀ u ∀ v (t → u ∧ t → v =⇒ u ↓ v) WCR ⇐⇒ ∀ t WCR(t)

WN(t) ⇐⇒ ∃ u (t →! u) WN ⇐⇒ ∀ t WN(t)

UN(t) ⇐⇒ ∀ u ∀ v (t →! u ∧ t →! v =⇒ u = v) UN ⇐⇒ ∀ t UN(t)

NFP(t) ⇐⇒ ∀ u ∀ v (t → u ∧ t →! v =⇒ u →! v) NFP ⇐⇒ ∀ t NFP(t)

NF(t) ⇐⇒ ¬∃ u (t → u)

UNC ⇐⇒ ∀ t ∀ u (t ↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

FR (ICS @ UIBK) FORT 0.2 5/19

First-Order Theory of Rewriting

Derived Predicates

s →∗ t ⇐⇒ s →+ t ∨ s = t s ↔ t ⇐⇒ s → t ∨ t → s

s →! t ⇐⇒ s →∗ t ∧ ¬∃ u (t → u) s ↓ t ⇐⇒ ∃ u (s →∗ u ∧ t →∗ u)

CR(t) ⇐⇒ ∀ u ∀ v (t →∗ u ∧ t → v =⇒ u ↓ v) CR ⇐⇒ ∀ t CR(t)

WCR(t) ⇐⇒ ∀ u ∀ v (t → u ∧ t → v =⇒ u ↓ v) WCR ⇐⇒ ∀ t WCR(t)

WN(t) ⇐⇒ ∃ u (t →! u) WN ⇐⇒ ∀ t WN(t)

UN(t) ⇐⇒ ∀ u ∀ v (t →! u ∧ t →! v =⇒ u = v) UN ⇐⇒ ∀ t UN(t)

NFP(t) ⇐⇒ ∀ u ∀ v (t → u ∧ t →! v =⇒ u →! v) NFP ⇐⇒ ∀ t NFP(t)

NF(t) ⇐⇒ ¬∃ u (t → u)

UNC ⇐⇒ ∀ t ∀ u (t ↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

FR (ICS @ UIBK) FORT 0.2 5/19

Automation

Outline

First-Order Theory of Rewriting

Automation

Properties on Open Terms

Experiments

Future Work

FR (ICS @ UIBK) FORT 0.2 6/19

Automation

Translation

• binary predicates are RR2 relations and implemented via tree automata

• ground tree transducers (GTTs) for −→‖
• RRn automata for all relations

• implications and universal quantifiers are eliminated

ϕ⇒ ψ ≡ ¬ϕ ∨ ψ ∀ x ϕ ≡ ¬∃ x ¬ϕ

• negations are pushed inside and double negations are eliminated

• remaining propositional connectives are implemented by corresponding
closure operations on RRn automata

• existential quantifiers are implemented using projection

Remark

formulas are not transformed into prenex normal form, since this increases the
dimension of involved relations

FR (ICS @ UIBK) FORT 0.2 7/19

Automation

Translation

• binary predicates are RR2 relations and implemented via tree automata

• ground tree transducers (GTTs) for −→‖
• RRn automata for all relations

• implications and universal quantifiers are eliminated

ϕ⇒ ψ ≡ ¬ϕ ∨ ψ ∀ x ϕ ≡ ¬∃ x ¬ϕ

• negations are pushed inside and double negations are eliminated

• remaining propositional connectives are implemented by corresponding
closure operations on RRn automata

• existential quantifiers are implemented using projection

Remark

formulas are not transformed into prenex normal form, since this increases the
dimension of involved relations

FR (ICS @ UIBK) FORT 0.2 7/19

Automation

Translation

• binary predicates are RR2 relations and implemented via tree automata

• ground tree transducers (GTTs) for −→‖
• RRn automata for all relations

• implications and universal quantifiers are eliminated

ϕ⇒ ψ ≡ ¬ϕ ∨ ψ ∀ x ϕ ≡ ¬∃ x ¬ϕ

• negations are pushed inside and double negations are eliminated

• remaining propositional connectives are implemented by corresponding
closure operations on RRn automata

• existential quantifiers are implemented using projection

Remark

formulas are not transformed into prenex normal form, since this increases the
dimension of involved relations

FR (ICS @ UIBK) FORT 0.2 7/19

Automation

Translation

• binary predicates are RR2 relations and implemented via tree automata

• ground tree transducers (GTTs) for −→‖
• RRn automata for all relations

• implications and universal quantifiers are eliminated

ϕ⇒ ψ ≡ ¬ϕ ∨ ψ ∀ x ϕ ≡ ¬∃ x ¬ϕ

• negations are pushed inside and double negations are eliminated

• remaining propositional connectives are implemented by corresponding
closure operations on RRn automata

• existential quantifiers are implemented using projection

Remark

formulas are not transformed into prenex normal form, since this increases the
dimension of involved relations

FR (ICS @ UIBK) FORT 0.2 7/19

Automation

Translation

• binary predicates are RR2 relations and implemented via tree automata

• ground tree transducers (GTTs) for −→‖
• RRn automata for all relations

• implications and universal quantifiers are eliminated

ϕ⇒ ψ ≡ ¬ϕ ∨ ψ ∀ x ϕ ≡ ¬∃ x ¬ϕ

• negations are pushed inside and double negations are eliminated

• remaining propositional connectives are implemented by corresponding
closure operations on RRn automata

• existential quantifiers are implemented using projection

Remark

formulas are not transformed into prenex normal form, since this increases the
dimension of involved relations

FR (ICS @ UIBK) FORT 0.2 7/19

Automation

Translation

• binary predicates are RR2 relations and implemented via tree automata

• ground tree transducers (GTTs) for −→‖
• RRn automata for all relations

• implications and universal quantifiers are eliminated

ϕ⇒ ψ ≡ ¬ϕ ∨ ψ ∀ x ϕ ≡ ¬∃ x ¬ϕ

• negations are pushed inside and double negations are eliminated

• remaining propositional connectives are implemented by corresponding
closure operations on RRn automata

• existential quantifiers are implemented using projection

Remark

formulas are not transformed into prenex normal form, since this increases the
dimension of involved relations

FR (ICS @ UIBK) FORT 0.2 7/19

Properties on Open Terms

Outline

First-Order Theory of Rewriting

Automation

Properties on Open Terms

Experiments

Future Work

FR (ICS @ UIBK) FORT 0.2 8/19

Properties on Open Terms

Definition

TRS is confluent if ∀ s ∀ t ∀ u
(
s →∗ t ∧ s →∗ u =⇒ ∃ v (t →∗ v ∧ u →∗ v)

)

Remarks

• variables s, t, u, v range over all terms

• FORT is based on tree automata techniques and (hence) variables range over
ground terms

• confluence 6= ground-confluence

FSCD 2016 submission

It should be stressed that the above properties are restricted to ground
terms. So CR stands for ground-confluence, which is different from
confluence, even in the presence of ground terms; consider e.g. the rules
f (x)→ x and f (x)→ c.

For (left-linear) right-ground TRSs there is no
difference.

FR (ICS @ UIBK) FORT 0.2 9/19

Properties on Open Terms

Definition

TRS is confluent if ∀ s ∀ t ∀ u
(
s →∗ t ∧ s →∗ u =⇒ ∃ v (t →∗ v ∧ u →∗ v)

)
Remarks

• variables s, t, u, v range over all terms

• FORT is based on tree automata techniques and (hence) variables range over
ground terms

• confluence 6= ground-confluence

FSCD 2016 submission

It should be stressed that the above properties are restricted to ground
terms. So CR stands for ground-confluence, which is different from
confluence, even in the presence of ground terms; consider e.g. the rules
f (x)→ x and f (x)→ c.

For (left-linear) right-ground TRSs there is no
difference.

FR (ICS @ UIBK) FORT 0.2 9/19

Properties on Open Terms

Definition

TRS is confluent if ∀ s ∀ t ∀ u
(
s →∗ t ∧ s →∗ u =⇒ ∃ v (t →∗ v ∧ u →∗ v)

)
Remarks

• variables s, t, u, v range over all terms

• FORT is based on tree automata techniques and (hence) variables range over
ground terms

• confluence 6= ground-confluence

FSCD 2016 submission

It should be stressed that the above properties are restricted to ground
terms. So CR stands for ground-confluence, which is different from
confluence, even in the presence of ground terms; consider e.g. the rules
f (x)→ x and f (x)→ c.

For (left-linear) right-ground TRSs there is no
difference.

FR (ICS @ UIBK) FORT 0.2 9/19

Properties on Open Terms

Definition

TRS is confluent if ∀ s ∀ t ∀ u
(
s →∗ t ∧ s →∗ u =⇒ ∃ v (t →∗ v ∧ u →∗ v)

)
Remarks

• variables s, t, u, v range over all terms

• FORT is based on tree automata techniques and (hence) variables range over
ground terms

• confluence 6= ground-confluence

FSCD 2016 submission

It should be stressed that the above properties are restricted to ground
terms. So CR stands for ground-confluence, which is different from
confluence, even in the presence of ground terms; consider e.g. the rules
f (x)→ x and f (x)→ c.

For (left-linear) right-ground TRSs there is no
difference.

FR (ICS @ UIBK) FORT 0.2 9/19

Properties on Open Terms

Definition

TRS is confluent if ∀ s ∀ t ∀ u
(
s →∗ t ∧ s →∗ u =⇒ ∃ v (t →∗ v ∧ u →∗ v)

)
Remarks

• variables s, t, u, v range over all terms

• FORT is based on tree automata techniques and (hence) variables range over
ground terms

• confluence 6= ground-confluence

FSCD 2016 submission

It should be stressed that the above properties are restricted to ground
terms. So CR stands for ground-confluence, which is different from
confluence, even in the presence of ground terms; consider e.g. the rules
f (x)→ x and f (x)→ c.

For (left-linear) right-ground TRSs there is no
difference.

FR (ICS @ UIBK) FORT 0.2 9/19

Properties on Open Terms

Definition

TRS is confluent if ∀ s ∀ t ∀ u
(
s →∗ t ∧ s →∗ u =⇒ ∃ v (t →∗ v ∧ u →∗ v)

)
Remarks

• variables s, t, u, v range over all terms

• FORT is based on tree automata techniques and (hence) variables range over
ground terms

• confluence 6= ground-confluence

FSCD 2016 submission

It should be stressed that the above properties are restricted to ground
terms. So CR stands for ground-confluence, which is different from
confluence, even in the presence of ground terms; consider e.g. the rules
f (x)→ x and f (x)→ c. For (left-linear) right-ground TRSs there is no
difference.

FR (ICS @ UIBK) FORT 0.2 9/19

Properties on Open Terms

Example

TRS

a→ b f(a, x)→ b f(b, b)→ b

is ground-confluent but not confluent

Confluence Related Properties

CR: ∀ s ∀ t ∀ u (s →∗ t ∧ s → u =⇒ t ↓ u)

WCR: ∀ s ∀ t ∀ u (s → t ∧ s → u =⇒ t ↓ u)

UN: ∀ s ∀ t ∀ u (s →! t ∧ s →! u =⇒ t = u)

UNC: ∀ t ∀ u (t ↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

NFP: ∀ s ∀ t ∀ u (s → t ∧ s →! u =⇒ t →! u)

SCR: ∀ s ∀ t ∀ u (s → t ∧ s → u =⇒ ∃ v (t →= v ∧ u →∗ v))

P = {CR, WCR, UN, UNC, NFP, SCR }

FR (ICS @ UIBK) FORT 0.2 10/19

Properties on Open Terms

Example

TRS

a→ b f(a, x)→ b f(b, b)→ b

is ground-confluent but not confluent

Confluence Related Properties

CR: ∀ s ∀ t ∀ u (s →∗ t ∧ s → u =⇒ t ↓ u)

WCR: ∀ s ∀ t ∀ u (s → t ∧ s → u =⇒ t ↓ u)

UN: ∀ s ∀ t ∀ u (s →! t ∧ s →! u =⇒ t = u)

UNC: ∀ t ∀ u (t ↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

NFP: ∀ s ∀ t ∀ u (s → t ∧ s →! u =⇒ t →! u)

SCR: ∀ s ∀ t ∀ u (s → t ∧ s → u =⇒ ∃ v (t →= v ∧ u →∗ v))

P = {CR, WCR, UN, UNC, NFP, SCR }

FR (ICS @ UIBK) FORT 0.2 10/19

Properties on Open Terms

Example

TRS

a→ b f(a, x)→ b f(b, b)→ b

is ground-confluent but not confluent

Confluence Related Properties

CR: ∀ s ∀ t ∀ u (s →∗ t ∧ s → u =⇒ t ↓ u)

WCR: ∀ s ∀ t ∀ u (s → t ∧ s → u =⇒ t ↓ u)

UN: ∀ s ∀ t ∀ u (s →! t ∧ s →! u =⇒ t = u)

UNC: ∀ t ∀ u (t ↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

NFP: ∀ s ∀ t ∀ u (s → t ∧ s →! u =⇒ t →! u)

SCR: ∀ s ∀ t ∀ u (s → t ∧ s → u =⇒ ∃ v (t →= v ∧ u →∗ v))

P = {CR, WCR, UN, UNC, NFP, SCR }

FR (ICS @ UIBK) FORT 0.2 10/19

Properties on Open Terms

Example

TRS

a→ b f(a, x)→ b f(b, b)→ b

is ground-confluent but not confluent

Confluence Related Properties

CR: ∀ s ∀ t ∀ u (s →∗ t ∧ s → u =⇒ t ↓ u)

WCR: ∀ s ∀ t ∀ u (s → t ∧ s → u =⇒ t ↓ u)

UN: ∀ s ∀ t ∀ u (s →! t ∧ s →! u =⇒ t = u)

UNC: ∀ t ∀ u (t ↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

NFP: ∀ s ∀ t ∀ u (s → t ∧ s →! u =⇒ t →! u)

SCR: ∀ s ∀ t ∀ u (s → t ∧ s → u =⇒ ∃ v (t →= v ∧ u →∗ v))

P = {CR, WCR, UN, UNC, NFP, SCR }

FR (ICS @ UIBK) FORT 0.2 10/19

Properties on Open Terms

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Notation

GP denotes property P restricted to ground terms

Remark

∀P ∈ P GP 6=⇒ P

FR (ICS @ UIBK) FORT 0.2 11/19

Properties on Open Terms

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Notation

GP denotes property P restricted to ground terms

Remark

∀P ∈ P GP 6=⇒ P

FR (ICS @ UIBK) FORT 0.2 11/19

Properties on Open Terms

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Notation

GP denotes property P restricted to ground terms

Remark

∀P ∈ P GP 6=⇒ P

FR (ICS @ UIBK) FORT 0.2 11/19

Properties on Open Terms

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Notation

GP denotes property P restricted to ground terms

Remark

∀P ∈ P GP 6=⇒ P

FR (ICS @ UIBK) FORT 0.2 11/19

Properties on Open Terms

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Notation

GP denotes property P restricted to ground terms

Remark

∀P ∈ P GP 6=⇒ P

FR (ICS @ UIBK) FORT 0.2 11/19

Properties on Open Terms

Lemma

∀ left-linear right-ground TRS (F ,R)

1 (F ,R) � P ⇐⇒ (F ∪ { c },R) � GP ∀P ∈ P \ {UNC }

2 (F ,R) � UNC ⇐⇒ (F ∪ { c , c ′ },R) � GUNC

with fresh constant

s

c

and c ′

Example

left-linear right-ground TRS

a→ b f(x , a)→ f(b, b) f(b, x)→ f(b, b) f(f(x , y), z)→ f(b, b)

• does not satisfy UNC: f(x , b)← f(x , a)→ f(b, b)← f(y , a)→ f(y , b)

• adding single fresh constant c is not enough to violate GUNC

• GUNC is violated by adding another fresh constant c′:

f(c, b)← f(c, a)→ f(b, b)← f(c′, a)→ f(c′, b)

FR (ICS @ UIBK) FORT 0.2 12/19

Properties on Open Terms

Lemma

∀ left-linear right-ground TRS (F ,R)

1 (F ,R) � P ⇐⇒ (F ∪ { c },R) � GP ∀P ∈ P \ {UNC }

2 (F ,R) � UNC ⇐⇒ (F ∪ { c , c ′ },R) � GUNC

with fresh constants c and c ′

Example

left-linear right-ground TRS

a→ b f(x , a)→ f(b, b) f(b, x)→ f(b, b) f(f(x , y), z)→ f(b, b)

• does not satisfy UNC: f(x , b)← f(x , a)→ f(b, b)← f(y , a)→ f(y , b)

• adding single fresh constant c is not enough to violate GUNC

• GUNC is violated by adding another fresh constant c′:

f(c, b)← f(c, a)→ f(b, b)← f(c′, a)→ f(c′, b)

FR (ICS @ UIBK) FORT 0.2 12/19

Properties on Open Terms

Lemma

∀ left-linear right-ground TRS (F ,R)

1 (F ,R) � P ⇐⇒ (F ∪ { c },R) � GP ∀P ∈ P \ {UNC }

2 (F ,R) � UNC ⇐⇒ (F ∪ { c , c ′ },R) � GUNC

with fresh constants c and c ′

Example

left-linear right-ground TRS

a→ b f(x , a)→ f(b, b) f(b, x)→ f(b, b) f(f(x , y), z)→ f(b, b)

• does not satisfy UNC: f(x , b)← f(x , a)→ f(b, b)← f(y , a)→ f(y , b)

• adding single fresh constant c is not enough to violate GUNC

• GUNC is violated by adding another fresh constant c′:

f(c, b)← f(c, a)→ f(b, b)← f(c′, a)→ f(c′, b)

FR (ICS @ UIBK) FORT 0.2 12/19

Properties on Open Terms

Lemma

∀ left-linear right-ground TRS (F ,R)

1 (F ,R) � P ⇐⇒ (F ∪ { c },R) � GP ∀P ∈ P \ {UNC }

2 (F ,R) � UNC ⇐⇒ (F ∪ { c , c ′ },R) � GUNC

with fresh constants c and c ′

Example

left-linear right-ground TRS

a→ b f(x , a)→ f(b, b) f(b, x)→ f(b, b) f(f(x , y), z)→ f(b, b)

• does not satisfy UNC: f(x , b)← f(x , a)→ f(b, b)← f(y , a)→ f(y , b)

• adding single fresh constant c is not enough to violate GUNC

• GUNC is violated by adding another fresh constant c′:

f(c, b)← f(c, a)→ f(b, b)← f(c′, a)→ f(c′, b)

FR (ICS @ UIBK) FORT 0.2 12/19

Properties on Open Terms

Lemma

∀ left-linear right-ground TRS (F ,R)

1 (F ,R) � P ⇐⇒ (F ∪ { c },R) � GP ∀P ∈ P \ {UNC }

2 (F ,R) � UNC ⇐⇒ (F ∪ { c , c ′ },R) � GUNC

with fresh constants c and c ′

Example

left-linear right-ground TRS

a→ b f(x , a)→ f(b, b) f(b, x)→ f(b, b) f(f(x , y), z)→ f(b, b)

• does not satisfy UNC: f(x , b)← f(x , a)→ f(b, b)← f(y , a)→ f(y , b)

• adding single fresh constant c is not enough to violate GUNC

• GUNC is violated by adding another fresh constant c′:

f(c, b)← f(c, a)→ f(b, b)← f(c′, a)→ f(c′, b)

FR (ICS @ UIBK) FORT 0.2 12/19

Properties on Open Terms

Remarks

• for termination (SN) and normalization (WN) no fresh constants are needed

• for other properties expressible in first-order theory of rewriting
adding one or two constants may be insufficient

:

TRS consisting of rule f(x)→ a satisfies

P : ¬∃ s ∃ t ∃ u ∀ v (v ↔∗ s ∨ v ↔∗ t ∨ v ↔∗ u)

but GP does not hold after adding additional constants c and c′

• adding fresh unary function symbol g and fresh constant c in order to create
infinitely many ground normal forms is unsound in general:

consider a→ b and ∀ s ∀ t (s → t =⇒ s
ε−→ t)

FR (ICS @ UIBK) FORT 0.2 13/19

Properties on Open Terms

Remarks

• for termination (SN) and normalization (WN) no fresh constants are needed

• for other properties expressible in first-order theory of rewriting
adding one or two constants may be insufficient

:

TRS consisting of rule f(x)→ a satisfies

P : ¬∃ s ∃ t ∃ u ∀ v (v ↔∗ s ∨ v ↔∗ t ∨ v ↔∗ u)

but GP does not hold after adding additional constants c and c′

• adding fresh unary function symbol g and fresh constant c in order to create
infinitely many ground normal forms is unsound in general:

consider a→ b and ∀ s ∀ t (s → t =⇒ s
ε−→ t)

FR (ICS @ UIBK) FORT 0.2 13/19

Properties on Open Terms

Remarks

• for termination (SN) and normalization (WN) no fresh constants are needed

• for other properties expressible in first-order theory of rewriting
adding one or two constants may be insufficient:

TRS consisting of rule f(x)→ a satisfies

P : ¬∃ s ∃ t ∃ u ∀ v (v ↔∗ s ∨ v ↔∗ t ∨ v ↔∗ u)

but GP does not hold after adding additional constants c and c′

• adding fresh unary function symbol g and fresh constant c in order to create
infinitely many ground normal forms

is unsound in general:

consider a→ b and ∀ s ∀ t (s → t =⇒ s
ε−→ t)

FR (ICS @ UIBK) FORT 0.2 13/19

Properties on Open Terms

Remarks

• for termination (SN) and normalization (WN) no fresh constants are needed

• for other properties expressible in first-order theory of rewriting
adding one or two constants may be insufficient:

TRS consisting of rule f(x)→ a satisfies

P : ¬∃ s ∃ t ∃ u ∀ v (v ↔∗ s ∨ v ↔∗ t ∨ v ↔∗ u)

but GP does not hold after adding additional constants c and c′

• adding fresh unary function symbol g and fresh constant c in order to create
infinitely many ground normal forms

is unsound in general:

consider a→ b and ∀ s ∀ t (s → t =⇒ s
ε−→ t)

FR (ICS @ UIBK) FORT 0.2 13/19

Properties on Open Terms

Remarks

• for termination (SN) and normalization (WN) no fresh constants are needed

• for other properties expressible in first-order theory of rewriting
adding one or two constants may be insufficient:

TRS consisting of rule f(x)→ a satisfies

P : ¬∃ s ∃ t ∃ u ∀ v (v ↔∗ s ∨ v ↔∗ t ∨ v ↔∗ u)

but GP does not hold after adding additional constants c and c′

• adding fresh unary function symbol g and fresh constant c in order to create
infinitely many ground normal forms

is unsound in general:

consider a→ b and ∀ s ∀ t (s → t =⇒ s
ε−→ t)

FR (ICS @ UIBK) FORT 0.2 13/19

Properties on Open Terms

Remarks

• for termination (SN) and normalization (WN) no fresh constants are needed

• for other properties expressible in first-order theory of rewriting
adding one or two constants may be insufficient:

TRS consisting of rule f(x)→ a satisfies

P : ¬∃ s ∃ t ∃ u ∀ v (v ↔∗ s ∨ v ↔∗ t ∨ v ↔∗ u)

but GP does not hold after adding additional constants c and c′

• adding fresh unary function symbol g and fresh constant c in order to create
infinitely many ground normal forms is unsound in general:

consider a→ b and ∀ s ∀ t (s → t =⇒ s
ε−→ t)

FR (ICS @ UIBK) FORT 0.2 13/19

Properties on Open Terms

Definition

signature F is monadic if F contains no function symbols of arity > 1

Lemma

∀ left-linear right-ground TRS (F ,R) such that R is ground or F is monadic

(F ,R) � P ⇐⇒ (F ,R) � GP ∀P ∈ P

Example

checking GCR of TRS

f(f(f(x)))→ a f(f(a))→ a f(a)→ a

f(f(g(g(x))))→ f(a) g(f(a))→ a g(a)→ a

takes 0.85 seconds but 1.73 seconds if fresh constant is added

FR (ICS @ UIBK) FORT 0.2 14/19

Properties on Open Terms

Definition

signature F is monadic if F contains no function symbols of arity > 1

Lemma

∀ left-linear right-ground TRS (F ,R) such that R is ground or F is monadic

(F ,R) � P ⇐⇒ (F ,R) � GP ∀P ∈ P

Example

checking GCR of TRS

f(f(f(x)))→ a f(f(a))→ a f(a)→ a

f(f(g(g(x))))→ f(a) g(f(a))→ a g(a)→ a

takes 0.85 seconds but 1.73 seconds if fresh constant is added

FR (ICS @ UIBK) FORT 0.2 14/19

Properties on Open Terms

Definition

signature F is monadic if F contains no function symbols of arity > 1

Lemma

∀ left-linear right-ground TRS (F ,R) such that R is ground or F is monadic

(F ,R) � P ⇐⇒ (F ,R) � GP ∀P ∈ P

Example

checking GCR of TRS

f(f(f(x)))→ a f(f(a))→ a f(a)→ a

f(f(g(g(x))))→ f(a) g(f(a))→ a g(a)→ a

takes 0.85 seconds but 1.73 seconds if fresh constant is added

FR (ICS @ UIBK) FORT 0.2 14/19

Experiments

Outline

First-Order Theory of Rewriting

Automation

Properties on Open Terms

Experiments

Future Work

FR (ICS @ UIBK) FORT 0.2 15/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"GUNC & ~UNC & ~GNFP" a→ a f(x , a)→ a f(b, x)→ b 95 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"GUNC & ~UNC & ~GNFP" a→ a f(x , a)→ a f(b, x)→ b 95 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR"

a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"GUNC & ~UNC & ~GNFP" a→ a f(x , a)→ a f(b, x)→ b 95 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"GUNC & ~UNC & ~GNFP" a→ a f(x , a)→ a f(b, x)→ b 95 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR"

a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"GUNC & ~UNC & ~GNFP" a→ a f(x , a)→ a f(b, x)→ b 95 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"GUNC & ~UNC & ~GNFP" a→ a f(x , a)→ a f(b, x)→ b 95 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR"

a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"GUNC & ~UNC & ~GNFP" a→ a f(x , a)→ a f(b, x)→ b 95 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"GUNC & ~UNC & ~GNFP" a→ a f(x , a)→ a f(b, x)→ b 95 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"GUNC & ~UNC & ~GNFP"

a→ a f(x , a)→ a f(b, x)→ b 95 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"GUNC & ~UNC & ~GNFP" a→ a f(x , a)→ a f(b, x)→ b 95 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"GUNC & ~UNC & ~GNFP" a→ a f(x , a)→ a f(b, x)→ b 95 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 0.2

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 80 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 109 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 16 s

"~GNFP & GUNC & ~UNC" a→ a f(x , a)→ a f(b, x)→ b 21 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Relationships

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

Synthesis Experiments with FORT 1.0

-S -f "a:0 b:0 f:2"

"GWCR & ~WCR & ~GCR" a→ b f(x , a)→ a a→ f(a, a) 8 - 20 s

"GCR & ~CR & ~GSCR" a→ b f(x , a)→ b b→ f(a, a) 8 - 10 s

"GNFP & ~NFP & ~GCR" a→ b f(x , a)→ f(a, a) f(b, b)→ f(a, a) 9 - 11 s

"~GNFP & GUNC & ~UNC" a→ a f(x , a)→ a f(b, x)→ b 2 - 4 s

FR (ICS @ UIBK) FORT 0.2 16/19

Experiments

Example

"GUN & ~UN & ~GUNC"

b→ a d→ c f(x , e)→ A

b→ c d→ e f(x ,A)→ A

c→ c f(x , a)→ A f(c, x)→ A

Comparison (GCR)

AGCP is recent tool for ground-confluence of many-sorted TRSs based on
rewriting induction (Aoto and Toyama, FSCD 2016)

65 TRSs AGCP (∅ time) FORT 0.2 (∅ time)

FORT 1.0 (∅ time)

yes 8 (0.02 s) 42 (0.42 s)

43 (0.26 s)

no – 14 (3.88 s)

18 (0.96 s)

maybe 56 (0.19 s) –

–

timeout 1 9

4

total time 71 s 612 s

268 s

Let’s see what happens at

FR (ICS @ UIBK) FORT 0.2 17/19

Experiments

Example

"GUN & ~UN & ~GUNC"

b→ a d→ c f(x , e)→ A

b→ c d→ e f(x ,A)→ A

c→ c f(x , a)→ A f(c, x)→ A

Comparison (GCR)

AGCP is recent tool for ground-confluence of many-sorted TRSs based on
rewriting induction (Aoto and Toyama, FSCD 2016)

65 TRSs AGCP (∅ time) FORT 0.2 (∅ time)

FORT 1.0 (∅ time)

yes 8 (0.02 s) 42 (0.42 s)

43 (0.26 s)

no – 14 (3.88 s)

18 (0.96 s)

maybe 56 (0.19 s) –

–

timeout 1 9

4

total time 71 s 612 s

268 s

Let’s see what happens at

FR (ICS @ UIBK) FORT 0.2 17/19

Experiments

Example

"GUN & ~UN & ~GUNC"

b→ a d→ c f(x , e)→ A

b→ c d→ e f(x ,A)→ A

c→ c f(x , a)→ A f(c, x)→ A

Comparison (GCR)

AGCP is recent tool for ground-confluence of many-sorted TRSs based on
rewriting induction (Aoto and Toyama, FSCD 2016)

65 TRSs AGCP (∅ time) FORT 0.2 (∅ time)

FORT 1.0 (∅ time)

yes 8 (0.02 s) 42 (0.42 s)

43 (0.26 s)

no – 14 (3.88 s)

18 (0.96 s)

maybe 56 (0.19 s) –

–

timeout 1 9

4

total time 71 s 612 s

268 s

Let’s see what happens at

FR (ICS @ UIBK) FORT 0.2 17/19

Experiments

Example

"GUN & ~UN & ~GUNC"

b→ a d→ c f(x , e)→ A

b→ c d→ e f(x ,A)→ A

c→ c f(x , a)→ A f(c, x)→ A

Comparison (GCR)

AGCP is recent tool for ground-confluence of many-sorted TRSs based on
rewriting induction (Aoto and Toyama, FSCD 2016)

65 TRSs AGCP (∅ time) FORT 0.2 (∅ time) FORT 1.0 (∅ time)

yes 8 (0.02 s) 42 (0.42 s) 43 (0.26 s)

no – 14 (3.88 s) 18 (0.96 s)

maybe 56 (0.19 s) – –

timeout 1 9 4

total time 71 s 612 s 268 s

Let’s see what happens at

FR (ICS @ UIBK) FORT 0.2 17/19

Experiments

Example

"GUN & ~UN & ~GUNC"

b→ a d→ c f(x , e)→ A

b→ c d→ e f(x ,A)→ A

c→ c f(x , a)→ A f(c, x)→ A

Comparison (GCR)

AGCP is recent tool for ground-confluence of many-sorted TRSs based on
rewriting induction (Aoto and Toyama, FSCD 2016)

65 TRSs AGCP (∅ time) FORT 0.2 (∅ time) FORT 1.0 (∅ time)

yes 8 (0.02 s) 42 (0.42 s) 43 (0.26 s)

no – 14 (3.88 s) 18 (0.96 s)

maybe 56 (0.19 s) – –

timeout 1 9 4

total time 71 s 612 s 268 s

Let’s see what happens at

FR (ICS @ UIBK) FORT 0.2 17/19

Future Work

Outline

First-Order Theory of Rewriting

Automation

Properties on Open Terms

Experiments

Future Work

FR (ICS @ UIBK) FORT 0.2 18/19

Future Work

Limitation

restriction to left-linear right-ground TRSs is hard to overcome because first-order
theory of one-step rewriting (→) is undecidable

• . . . even for linear non-erasing TRSs (Treinen, 1998)

• . . . even for complete right-ground TRSs (Vorobyov, 2002)

Ongoing and Future Work

• generating witnesses for existential formulas and formulas with free variables

• support for combinations of TRSs (e.g., to express commutation)

• incorporating rewrite strategies

• formalizing underlying theory in Isabelle/HOL

FR (ICS @ UIBK) FORT 0.2 19/19

Future Work

Limitation

restriction to left-linear right-ground TRSs is hard to overcome because first-order
theory of one-step rewriting (→) is undecidable

• . . . even for linear non-erasing TRSs (Treinen, 1998)

• . . . even for complete right-ground TRSs (Vorobyov, 2002)

Ongoing and Future Work

• generating witnesses for existential formulas and formulas with free variables

• support for combinations of TRSs (e.g., to express commutation)

• incorporating rewrite strategies

• formalizing underlying theory in Isabelle/HOL

FR (ICS @ UIBK) FORT 0.2 19/19

Future Work

Limitation

restriction to left-linear right-ground TRSs is hard to overcome because first-order
theory of one-step rewriting (→) is undecidable

• . . . even for linear non-erasing TRSs (Treinen, 1998)

• . . . even for complete right-ground TRSs (Vorobyov, 2002)

Ongoing and Future Work

• generating witnesses for existential formulas and formulas with free variables

• support for combinations of TRSs (e.g., to express commutation)

• incorporating rewrite strategies

• formalizing underlying theory in Isabelle/HOL

FR (ICS @ UIBK) FORT 0.2 19/19

Future Work

Limitation

restriction to left-linear right-ground TRSs is hard to overcome because first-order
theory of one-step rewriting (→) is undecidable

• . . . even for linear non-erasing TRSs (Treinen, 1998)

• . . . even for complete right-ground TRSs (Vorobyov, 2002)

Ongoing and Future Work

• generating witnesses for existential formulas and formulas with free variables

• support for combinations of TRSs (e.g., to express commutation)

• incorporating rewrite strategies

• formalizing underlying theory in Isabelle/HOL

FR (ICS @ UIBK) FORT 0.2 19/19

Future Work

Limitation

restriction to left-linear right-ground TRSs is hard to overcome because first-order
theory of one-step rewriting (→) is undecidable

• . . . even for linear non-erasing TRSs (Treinen, 1998)

• . . . even for complete right-ground TRSs (Vorobyov, 2002)

Ongoing and Future Work

• generating witnesses for existential formulas and formulas with free variables

• support for combinations of TRSs (e.g., to express commutation)

• incorporating rewrite strategies

• formalizing underlying theory in Isabelle/HOL

FR (ICS @ UIBK) FORT 0.2 19/19

Future Work

Limitation

restriction to left-linear right-ground TRSs is hard to overcome because first-order
theory of one-step rewriting (→) is undecidable

• . . . even for linear non-erasing TRSs (Treinen, 1998)

• . . . even for complete right-ground TRSs (Vorobyov, 2002)

Ongoing and Future Work

• generating witnesses for existential formulas and formulas with free variables

• support for combinations of TRSs (e.g., to express commutation)

• incorporating rewrite strategies

• formalizing underlying theory in Isabelle/HOL

FR (ICS @ UIBK) FORT 0.2 19/19

Future Work

Limitation

restriction to left-linear right-ground TRSs is hard to overcome because first-order
theory of one-step rewriting (→) is undecidable

• . . . even for linear non-erasing TRSs (Treinen, 1998)

• . . . even for complete right-ground TRSs (Vorobyov, 2002)

Ongoing and Future Work

• generating witnesses for existential formulas and formulas with free variables

• support for combinations of TRSs (e.g., to express commutation)

• incorporating rewrite strategies

• formalizing underlying theory in Isabelle/HOL

FR (ICS @ UIBK) FORT 0.2 19/19

	First-Order Theory of Rewriting
	Automation
	Properties on Open Terms
	Experiments
	Future Work

