# Coherence of quasi-terminating decreasing 2-polygraphs

**Philippe Malbos** 

Institut Camille Jordan, Université Claude Bernard Lyon 1

Joint works with Clément Alleaume

**IWC 2016** 

Friday, September 9, 2016, Obergurgl

# Motivation: compute syzygies

- ▶ A syzygy is a relation between generators (from Greek συζυγια, a pair).
- Syzygies problem in linear algebra.
  - $\triangleright$  Given a finitely generated module M on a commutative ring R and a set of generators:

$$\{y_1,\ldots,y_k\},\$$

 $\triangleright$  a syzygy of M is an element  $(\lambda_1, ..., \lambda_k)$  in  $R^k$  for which

$$\lambda_1 \mathbf{y}_1 + \ldots + \lambda_k \mathbf{y}_k = 0.$$

- $\triangleright$  The set of all syzygies with respect to a given generating set is a submodule of  $R^n$  called the module of syzygies.
- ► Schreyer, 1980 : computation of linear syzygies by means of the division algorithm.
- ▷ Buchberger's completion algorithm for computing Gröbner bases allows the computation of the first syzygy module.
- ▶ The reduction to zero of the S-polynomial of two polynomials in a Gröbner basis gives a syzygy.

# Motivation: compute syzygies for presentations of monoids

- ► Syzygy problem for a monoid M
  - presented by **generators** and **relations**.
- $\triangleright$  We would like build a (small !) cofibrant approximation of M in the category of  $(\infty,1)$ -categories,
  - that is, a free  $(\infty, 1)$ -category homotopically equivalent to M.
- ► In low dimensions : coherent presentations
- ► Applications:
  - Explicit description of actions of a monoid on categories in representation theory.
  - Coherence theorems for monoids.
  - Algorithms in homological algebra.

### **Examples**

► The Artin monoid B<sub>3</sub><sup>+</sup> of braids on 3 strands.

$$s = \times \mid t = \mid \times \mid$$

► The Artin presentation:

$$Art_2(\mathbf{B}_3^+) = \langle s, t \mid tst = sts \rangle$$

 $\blacktriangleright$  We will prove that there is no syzygy between relations induced by tst = sts.



With presentation  $Art_2(B_3^+)$  two proofs of the same equality in  $B_3^+$  are equal.

#### Motivation

► The Artin monoid B<sub>4</sub><sup>+</sup> of braids on 4 strands.

$$r = \times \mid \mid s = \mid \times \mid t = \mid \mid \times$$

► The Artin presentation

$$Art_2(\mathbf{B}_4^+) = \langle r, s, t \mid rsr = srs, rt = tr, tst = sts \rangle$$

► The relations amongst the braid relations on 4 strands are generated by the following Zamolodchikov relation (Deligne, 1997).



#### **Motivation**

- ► Computation of finite coherent presentations with homotopical completion-reduction procedure (Guiraud-M.-Mimram, RTA 2013).
  - ▶ Knuth-Bendix's completion procedure.
  - ▶ Squier's homotopical theorem for convergent rewriting systems.
  - ▶ Homotopically reduce generators, rules, syzygies.
- ► The Knuth-Bendix procedure does not terminate for
  - $ightharpoonup B_3^+ = \langle s, t \mid sts = tst \rangle$  on the two generators s and t, (Kapur-Narendran, 1985)
  - ▶ Plactic monoid P<sub>4</sub> on the generators 1, 2, 3, 4, (Kubat-Okniński, 2014).
- ▶ Computation of coherent presentations with convergent presentations using new generators.
  - ▶ The Artin monoid B<sup>+</sup>(W) with Garside's presentation, (Gaussent-Guiraud-M., 2015)
  - $\triangleright$  Plactic monoid  $P_n$  with column presentation, (Hage-M., 2016).



# I. Polygraphs and coherent presentations of monoids

- Polygraphs as higher-dimensional rewriting systems
- Coherent presentations of monoids
- Homotopical completion-reduction procedure

# II. Decreasing two-dimensional polygraphs

- Labelled polygraphs
- Decreasing two-dimensional polygraphs
- Decreasingness of Peiffer branchings

# III. Coherence by decreasingness

- Decreasing Squier's completion
- Main result
- Example

# Part I. Coherent presentations of monoids

# **Polygraphs**

► A 1-polygraph is an directed graph  $(\Sigma_0, \Sigma_1)$ 

$$\Sigma_0 \stackrel{s_0}{\longleftarrow} \Sigma_1$$

- ▶ A 2-polygraph is a triple  $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$  where
  - $\triangleright (\Sigma_0, \Sigma_1)$  is a 1-polygraph,
  - $\triangleright \Sigma_2$  is a globular extension of the free 1-category  $\Sigma_1^*$ .





▶ A rewriting step is a 2-cell of the free 2-category  $\Sigma_2^*$  over  $\Sigma$  with shape





where  $u \stackrel{\alpha}{\Longrightarrow} v$  is a 2-cell of  $\Sigma_2$  and w, w' are 1-cells of  $\Sigma_1^*$ .

#### **Termination**

 $\blacktriangleright$  A 2-polygraph  $\Sigma$  terminates if it does not generate any infinite reduction sequence

$$u_1 \Longrightarrow u_2 \Longrightarrow \cdots \Longrightarrow u_n \Longrightarrow \cdots$$

 $\blacktriangleright$  A 2-polygraph  $\Sigma$  is quasi-terminating if every infinite reduction sequence

$$u_1 \Longrightarrow u_2 \Longrightarrow \cdots \Longrightarrow u_n \Longrightarrow \cdots$$

cycles, that is the sequence contains an infinite number of occurrences of the same 1-cell.

- ▶ A 1-cell u of  $\Sigma_1^*$  is called a **semi-normal form** if for any rewriting step with source u leading to a 1-cell v, there exists a rewriting sequence from v to u.
- ▶ If  $\Sigma$  is quasi-terminating, any 1-cell u of  $\Sigma_1^*$  admits a semi-normal form.
  - ightharpoonup Note that, this semi-normal form is neither irreducible nor unique in general.



# Example

► The 2-polygraph

$$\Sigma(\mathsf{B}_3^+) = \langle \mathsf{s}, \mathsf{t} \mid \mathsf{sts} \stackrel{\alpha}{\Longrightarrow} \mathsf{tst}, \; \mathsf{tst} \stackrel{\beta}{\Longrightarrow} \mathsf{sts} \rangle$$

presents the monoid  $B_3^+$ .

- ▶ It is not terminating but it is quasi-terminating.
- ▶ It has four critical branchings:

$$(\alpha t, s\beta)$$
,  $(\beta s, t\alpha)$ ,  $(\alpha ts, st\alpha)$  and  $(\beta st, ts\beta)$ .

These four branchings are confluent as follows



# **Polygraphs**

- ightharpoonup A (3,1)-polygraph is a data made of
  - $\triangleright$  a 2-polygraph  $(\Sigma_0, \Sigma_1, \Sigma_2)$ ,
  - $\triangleright$  a globular extension  $\Sigma_3$  of the free  $(2,1)\text{-category }\Sigma_2^\top.$

$$\Sigma_0 \xleftarrow{s_0} \Sigma_1^* \xleftarrow{s_1} \Sigma_2^\top \xleftarrow{s_2} \Sigma_3$$



▶ The (2,1)-category  $\Sigma_2^{\top}$  corresponds to the 2-category of congruences generated by  $\Sigma_2$ .

# Coherent presentations of categories

- ▶ A coherent presentation of M is a (3,1)-polygraph  $(\Sigma_0, \Sigma_1, \Sigma_2, \Sigma_3)$  such that
  - $\triangleright (\Sigma_0, \Sigma_1, \Sigma_2)$  is a presentation of **M**:

$$\Sigma_0 = \{ullet\}$$
 and  $M \simeq \Sigma_1^*/\Sigma_2$ ,

 $\triangleright$  the cellular extension  $\Sigma_3$  is a homotopy basis.

In other words:

- $\triangleright$  the quotient (2,1)-category  $\Sigma_2^{\top}/\Sigma_3$  is aspherical,
- ightharpoonup the congruence generated by  $\Sigma_3$  on the (2,1)-category  $\Sigma_2^{\top}$  contains every pair of parallel 2-cells.



 $\triangleright$  3-cells of  $\Sigma_3$  generate a tiling of  $\Sigma_2^{\top}$ .

# Coherent presentations

#### Problems.

- 1. How to compute a coherent presentation ?
- 2. How to reduce a coherent presentation?

Example. The Kapur-Narendran's presentation of  $B_3^+$ , obtained from Artin's presentation by coherent adjunction of the Coxeter element st

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

The deglex order generated by t > s > a proves the termination of  $\Sigma_2^{\rm KN}$ .

$$\mathcal{S}(\Sigma_2^{\mathrm{KN}}) = \langle \, s, t, a \, \mid \, ta \, \stackrel{\alpha}{\Longrightarrow} \, as, \, st \, \stackrel{\beta}{\Longrightarrow} \, a, \, sas \, \stackrel{\gamma}{\Longrightarrow} \, aa, \, saa \, \stackrel{\delta}{\Longrightarrow} \, aat \, \mid \, A, \, B, \, C, \, D \, \rangle$$

$$\begin{array}{c} \beta a \\ sta \quad \downarrow A \\ s\alpha \end{array} \begin{array}{c} \gamma t \\ sast \quad \downarrow B \\ saa \end{array} \begin{array}{c} \delta \\ sasa \end{array} \begin{array}{c} aaas \\ saa \end{array} \begin{array}{c} aaas \\ saa \end{array} \begin{array}{c} aaaa \\ saa \end{array} \begin{array}{c} aaaaa \\ saa \end{array} \begin{array}{c} aaaa \\ saa \end{array} \begin{array}{c} aaaa \\ saa \end{array} \begin{array}{c} aaaa \\ saa \end{array} \begin{array}$$

**However.** The coherent presentation  $S(\Sigma_2^{KN})$  obtained is bigger than necessary.

Example.  $\Sigma_{2}^{\mathrm{KN}} = \left\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \right\rangle$   $\delta(\Sigma_{2}^{\mathrm{KN}}) = \left\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \right\rangle$   $\left\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, \nearrow D \right\rangle$ 

▶ There are four critical triple branchings, overlapping on

sasta, sasast, sasasas, sasasaa.

▶ Critical triple branching on *sasta* proves that *C* is redundant:



$$C = sas \alpha^{-1} \star_1 (Ba \star_1 aa\alpha) \star_2 (saA \star_1 \delta a \star_1 aa\alpha)$$

Example.

$$\Sigma_2^{\mathrm{KN}} = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a \rangle$$

$$S(\Sigma_2^{\mathrm{KN}}) = \langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, C, D \rangle$$

$$\langle s, t, a \mid ta \xrightarrow{\alpha} as, st \xrightarrow{\beta} a, sas \xrightarrow{\gamma} aa, saa \xrightarrow{\delta} aat \mid A, B, \times, \times \rangle$$

▶ Critical triple branching on *sasast* proves that *D* is redundant:

$$D = sasa\beta^{-1} \star_1 \left( (Ct \star_1 aaa\beta) \star_2 (saB \star_1 \delta at \star_1 aa\alpha t \star_1 aaa\beta) \right)$$

Example.

$$\Sigma_{2}^{\mathrm{KN}} = \left\langle s, t, a \mid ta \overset{\alpha}{\Longrightarrow} as, st \overset{\beta}{\Longrightarrow} a \right\rangle$$

$$S(\Sigma_{2}^{\mathrm{KN}}) = \left\langle s, t, a \mid ta \overset{\alpha}{\Longrightarrow} as, st \overset{\beta}{\Longrightarrow} a, sas \overset{\gamma}{\Longrightarrow} aa, saa \overset{\delta}{\Longrightarrow} aat \mid A, B, C, D \right\rangle$$

$$\left\langle s, t, a \mid ta \overset{\alpha}{\Longrightarrow} as, st \overset{\beta}{\Longrightarrow} a, sas \overset{\gamma}{\Longrightarrow} aa, saa \overset{\delta}{\Longrightarrow} aat \mid A, B, C, D \right\rangle$$

▶ The 3-cells A and B are collapsible and the rules  $\gamma$  and  $\delta$  are redundant.



Example.

$$\Sigma_{2}^{\mathrm{KN}} = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a \rangle$$

$$S(\Sigma_{2}^{\mathrm{KN}}) = \langle s, t, a \mid ta \stackrel{\alpha}{\Longrightarrow} as, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \rangle$$

$$\langle s, t, \rangle \mid tst \stackrel{\alpha}{\Longrightarrow} sts, st \stackrel{\beta}{\Longrightarrow} a, sas \stackrel{\gamma}{\Longrightarrow} aa, saa \stackrel{\delta}{\Longrightarrow} aat \mid A, B, C, D \rangle$$

ightharpoonup The rule  $st \stackrel{|\beta|}{\Longrightarrow} a$  is collapsible and the generator a is redundant.

# Coherent presentations

#### Problems.

- 1. How to compute a coherent presentation without adding generators ?
- 2. How to weaken the terminating hypothesis?

# Part II. Decreasing two-dimensional polygraphs

# Labelled two-dimensional polygraphs

▶ A well-founded labelling for a 2-polygraph  $\Sigma$  is a data  $(W, \prec, \psi)$  made of a set W, a well-founded order  $\prec$  on W and a map

$$\psi: \Sigma_{\textit{stp}} \longrightarrow W$$

that associates to a rewriting step f a label  $\psi(f)$ .

▶ Given a rewriting sequence  $f = f_1 \cdot \ldots \cdot f_k$ , we denote by

$$L^{W}(f) = \{\psi(f_1), \ldots, \psi(f_k)\}$$

the set of labels of rewriting steps in f.

# Labelling to the semi-normal form

- $\blacktriangleright$  Let  $\Sigma$  be a confluent and quasi-terminating 2-polygraph.
  - $\triangleright$  By quasi-termination, any 1-cell u admits a (non-unique) semi-normal form.
  - ightharpoonup Given a 1-cell u in  $\Sigma_1^*$ , we fix a semi-normal form  $\widetilde{u}$ .
  - ightharpoonup By confluence, any two congruent 1-cells of  $\Sigma_1^*$  have the same semi-normal form.
- ▶ The labelling to the semi-normal form associated is the map

$$\psi^{\mathrm{SNF}}:\Sigma_{\mathit{stp}}\longrightarrow\mathbb{N}$$

defined, for any rewriting step f of  $\Sigma$ .

$$\psi^{\mathrm{SNF}}(f) = d(t_1(f), \widetilde{t_1(f)}),$$

the length of the shortest rewriting sequence from  $t_1(f)$  to its semi-normal form.

# Decreasing two-dimensional polygraphs

- ▶ Decreasingness from ARS, (van Oostrom, 1994).
  - ▶ Let  $\Sigma$  be a 2-polygraph with a well-founded labelling  $(W, \psi, \prec)$ .
- ▶ A local branching (f,g) of  $\Sigma$  is decreasing if there is a decreasing confluence diagram:



with

- i) for each  $k \in L^W(f')$ , we have  $k \prec \psi(f)$ ,
- ii) for each  $k \in L^W(g')$ , we have  $k \prec \psi(g)$ ,
- iii) f'' (resp. g'') is an identity or a rewriting step labelled by  $\psi(f)$  (resp.  $\psi(g)$ ),
- iv) for each  $k \in L^W(h_1) \cup L^W(h_2)$ , we have  $k \prec \psi(f)$  or  $k \prec \psi(g)$ .
- ▶ A 2-polygraph  $\Sigma$  is decreasing if there exists a well-founded labelling  $(W, \prec, \psi)$  of  $\Sigma$  making all its local branching decreasing.

Theorem. Any decreasing 2-polygraph is confluent.

# Decreasingness from quasi-termination

- $\blacktriangleright$  Any confluent and quasi-terminating 2-polygraph  $\Sigma$  is decreasing with respect to any semi-normal form labelling  $\psi^{\rm SNF}.$
- ightharpoonup For any local branching  $u\Rightarrow (v,w)$  there is a semi-normal form  $\widetilde{u}$  giving a confluence diagram as follows:



 $\triangleright$  We choose the rewriting sequences f' and g' of minimal length, thus making this confluence diagram decreasing with respect  $\psi^{\mathrm{SNF}}$ .

# Decreasingness of Peiffer branchings

► Given a Peiffer branching



of a 2-polygraph  $\Sigma$ .

▶ We will call Peiffer confluence the following confluence diagram



- ▶ If ∑ is decreasing,
  - ▶ all its Peiffer branchings can be completed into a decreasing confluence diagram.
  - ▶ However, the Peiffer confluence for this branching is not necessarily decreasing.
- $\triangleright$  it is the case for a labelling SNF when the source uv is already the chosen semi-normal form.

# Decreasingness of Peiffer branchings

**Example.** Consider the 2-polygraph  $\Sigma = \langle a, b \mid a \stackrel{\alpha}{\Longrightarrow} b, b \stackrel{\beta}{\Longrightarrow} a \rangle$ .

- ${\,\vartriangleright\,} \Sigma$  is confluent and quasi-terminating.
- $\triangleright$  For each 1-cell u of  $\Sigma_1^*$ , we set  $\widetilde{u} = a^{\ell(u)}$ .
- $\triangleright \Sigma$  is decreasing for the labelling  $\psi^{\rm SNF}$  associated.
- ▶ The following Peiffer confluence:



is not decreasing. We have  $\psi^{\rm SNF}(\alpha a) = \psi^{\rm SNF}(a\alpha) = 1$  and  $\psi^{\rm SNF}(\alpha b) = \psi^{\rm SNF}(b\alpha) = 2$ .

▶ This Peiffer branching is decreasing by using the diagram

$$a\alpha$$
  $ab$   $a\beta$   $a^2$   $a^2$   $a^3$   $ba$   $ba$   $ba$ 

Indeed, 
$$\psi^{\mathrm{SNF}}(a\beta) = \psi^{\mathrm{SNF}}(\beta a) = 0.$$

# Peiffer decreasingness

- ▶ Let  $\Sigma$  be a 2-polygraph and let  $\Sigma_3$  be a globular extension of the (2,1)-category  $\Sigma_2^\top$ .
- ▶ The 2-polygraph  $\Sigma$  is Peiffer decreasing with respect to  $\Sigma_3$  if there exists a well-founded labelling  $(W, \prec, \psi)$  such that the following conditions hold
  - $\triangleright \Sigma$  is decreasing with respect to  $(W, \prec, \psi)$ ,
- $\triangleright$  for any Peiffer branching  $(fv, ug): uv \Rightarrow (u'v, uv')$ , there exists a decreasing confluence diagram  $(fv \cdot f', ug \cdot g')$ :



such that

$$u'g \star_1 (fv')^- \equiv_{\Sigma_3} f' \star_1 (g')^-.$$

# Whisker compatibility

- ▶ Let  $\Sigma$  be a 2-polygraph with a well-founded labelling  $(W, \prec, \psi)$ .
- ► The labelling is whisker compatible if for any decreasing confluence diagram



where (f,g) is a local branching, and for any 1-cells  $u_1$  and  $u_2$  in  $\Sigma_1^*$ , then the following confluence diagram is decreasing:



▶ Note that a labelling SNF is not whisker compatible in general.

#### Example

**Example.** Consider the 2-polygraph  $\Sigma = \langle a, b \mid a \stackrel{\alpha}{\Longrightarrow} b, b \stackrel{\beta}{\Longrightarrow} a \rangle$ .

- $\triangleright$  For each 1-cell u of  $\Sigma_1^*$ , we set  $\widetilde{u} = a^{\ell(u)}$ .
- $\triangleright$  The labelling  $\psi^{\rm SNF}$  associated is whisker compatible.
- $\flat \ \psi^{\mathrm{SNF}}(\mathit{u}_{1}\mathit{fu}_{2}) = \psi^{\mathrm{SNF}}(\mathit{u}_{1}) + \psi^{\mathrm{SNF}}(\mathit{f}) + \psi^{\mathrm{SNF}}(\mathit{u}_{2}) \text{, for } \mathit{f} \ \text{in } \Sigma_{\mathit{stp}} \ \text{and } 1\text{-cells } \mathit{u}_{1}, \ \mathit{u}_{2}.$
- ▶ If the labelling  $\psi^{\rm SNF}$  is associated to semi-normal forms of the form
  - $ho \ \widetilde{u} = a^{\ell(u)}$ , for any 1-cell u such that  $\ell(u) \neq 3$ , and  $\widetilde{a^3} = a^3$  and  $\widetilde{b^3} = b^3$ .
  - ▶ The diagram



is decreasing with  $\psi^{\rm SNF}(a\alpha)=\psi^{\rm SNF}(\alpha a)=1$  and  $\psi^{\rm SNF}(a\beta)=\psi^{\rm SNF}(\beta a)=0$ .

▶ However, the diagram

$$ba \stackrel{ba}{\longrightarrow} bab \stackrel{ba}{\longrightarrow} ba^2$$

$$ba^2 \qquad ba^3$$

$$ba^3 \qquad b^3 \qquad$$

is not decreasing with  $\psi^{\mathrm{SNF}}(ba\alpha) = \psi^{\mathrm{SNF}}(b\alpha a) = 1$  and  $\psi^{\mathrm{SNF}}(ba\beta) = \psi^{\mathrm{SNF}}(b\beta a) = 2$ .

# **Example**

► Consider the 2-polygraph

$$\Sigma(\mathbf{B}_3^+) = \langle s, t \mid sts \implies tst, tst \implies sts \rangle$$

▶ We define the labelling SNF  $\psi^{\rm SNF}$  associated to semi-normal forms given for each 1-cell u of  $\Sigma(B_3^+)_1^*$  by

$$\widetilde{u} = (sts)^{N_{\mathbf{u}}} v,$$

where v is a 1-cell of  $\Sigma(\mathsf{B}_3^+)_1^*$  and

$$N_u = \max\{n \mid u = (sts)^n v \text{ holds in } \mathbf{B}_3^+\}.$$

- ▶ The labelling  $\psi^{SNF}$  is whisker compatible.
  - $\triangleright$  Indeed, for any rewriting steps f and g, have

$$\psi^{\mathrm{SNF}}(g) < \psi^{\mathrm{SNF}}(f) \qquad \text{implies} \qquad \psi^{\mathrm{SNF}}(\textit{u}_1\textit{fu}_2) < \psi^{\mathrm{SNF}}(\textit{u}_1\textit{gu}_2)$$

for any 1-cells  $u_1$  and  $u_2$ .



- ▶ Let  $\Sigma$  be a decreasing 2-polygraph for a well-founded labelling  $(W, \prec, \psi)$ .
- ▶ A family of generating decreasing confluences of  $\Sigma$  with respect to  $\psi$  is a globular extension of the (2,1)-category  $\Sigma_2^{\top}$  that contains,
  - $\triangleright$  for every critical branching (f,g) of  $\Sigma$ , one 3-cell of the form



- $\triangleright$  where the confluence diagram  $(f \cdot f', g \cdot g')$  is decreasing with respect to  $\psi$ .
- ▶ Any decreasing 2-polygraph admits such a family of generating decreasing confluences.
- ▶ Such a family is not unique in general.

- ▶ Let  $\Sigma$  be a decreasing 2-polygraph for a well-founded labelling  $(W, \prec, \psi)$ .
- ▶ A decreasing Squier's completion of  $\Sigma$  with respect to  $\psi$  is a (3,1)-polygraph  $\mathcal{D}(\Sigma,\psi)$ 
  - $\triangleright$  that extends the 2-polygraph  $\Sigma$ ,
  - by a globular extension

$${\tt O}(\Sigma,\psi)\cup {\tt \mathcal{L}}(\Sigma)$$

#### where

 $ightharpoonup \mathcal{O}(\Sigma,\psi)$  is a chosen family of generating decreasing confluences with respect to  $\psi$ ,



 $\triangleright \mathcal{L}(\Sigma)$  is a loop extension of  $\Sigma$ , containing exactly one loop for each equivalence classes of elementary loops of  $\Sigma_2^*$ .



**Example**. The 2-polygraph

$$\Sigma(\mathsf{B}_3^+) = \langle \mathsf{s}, \mathsf{t} \mid \mathsf{sts} \stackrel{\alpha}{\Longrightarrow} \mathsf{tst}, \; \mathsf{tst} \stackrel{\beta}{\Longrightarrow} \mathsf{sts} \rangle$$

is decreasing for the labelling SNF  $\psi^{\rm SNF}$  defined with the semi-normal form of the  $(sts)^N v$ .

▶ A decreasing Squier's completion of the 2-polygraph  $\Sigma(B_3^+)$  is given by

The confluences diagrams are decreasing:

$$\begin{split} &\psi^{\mathrm{SNF}}(\alpha t)=\psi^{\mathrm{SNF}}(s\beta)=1 \quad \text{and} \quad \psi^{\mathrm{SNF}}(\beta t)=\psi^{\mathrm{SNF}}(s\alpha)=0.\\ &\psi^{\mathrm{SNF}}(\beta s)=0,\ \psi^{\mathrm{SNF}}(t\alpha)=2 \quad \text{and} \quad \psi^{\mathrm{SNF}}(t\beta)=1, \psi^{\mathrm{SNF}}(\beta s)=0.\\ &\psi^{\mathrm{SNF}}(\alpha ts)=\psi^{\mathrm{SNF}}(st\alpha)=1 \quad \text{and} \quad \psi^{\mathrm{SNF}}(\beta ts)=\psi^{\mathrm{SNF}}(st\beta)=0.\\ &\psi^{\mathrm{SNF}}(\beta st)=0,\ \psi^{\mathrm{SNF}}(ts\beta)=2 \quad \text{and} \quad \psi^{\mathrm{SNF}}(ts\alpha)=1, \psi^{\mathrm{SNF}}(\beta st)=0. \end{split}$$

Theorem. (Alleaume-M., 2016)

Let  $\Sigma$  be a 2-polygraph and let  $\psi^{SNF}$  be a SNF labelling of  $\Sigma$ .

Let  $\mathcal{D}(\Sigma, \psi^{\mathrm{SNF}})$  be a decreasing Squier's completion of  $\Sigma$ .

If the three following conditions hold

 $\triangleright \Sigma$  is quasi-terminating,  $\triangleright \psi^{\text{SNF}}$  is whisker compatible,

 $\triangleright \Sigma$  is Peiffer decreasing with respect to  $\psi^{\rm SNF}$  and with respect to  $\mathcal{D}(\Sigma, \psi^{\rm SNF})$ .

Then  $\mathcal{D}(\Sigma, \psi^{SNF})$  is a coherent presentation of the monoid presented by  $\Sigma$ .

#### Corollary (Squier, 1994)

Let  $\Sigma$  be a convergent 2-polygraph. Any Squier's completion of  $\Sigma$  is a coherent presentation of the monoid presented by  $\Sigma$ .

Example. Consider the 2-polygraph

$$\Sigma(\mathbf{B}_3^+) = \langle s, t \mid sts \stackrel{\alpha}{\Longrightarrow} tst, tst \stackrel{\beta}{\Longrightarrow} sts \rangle$$

with the labelling  $\psi^{\mathrm{SNF}}$  defined using the semi-normal forms  $(sts)^{N}v$ .

- $\triangleright \Sigma(\mathsf{B}_3^+)$  is quasi-terminating,
- $\triangleright \psi^{\rm SNF}$  is whisker compatible
- $\triangleright \ \Sigma(B_3^+) \ \text{is Peiffer decreasing with respect to} \ \psi^{\mathrm{SNF}} \ \text{and with respect to} \ \mathcal{L}(\Sigma).$
- ▶ Thus the following 3-cells extend  $\psi^{\rm SNF}$  into a coherent presentation of B<sub>3</sub><sup>+</sup>:



► This is another proof that Artin's presentation of B<sub>3</sub><sup>+</sup> has no syzygy.