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This is about:

• When is the equational theory of a TRS consistent (CON), when does 
it have unique normal forms (UN),…

• How can we prove it?

• How are these issues related to -substitutions, substitutions with 
infinitary terms in their range …

Ultimately, we got:

• The result mentioned in the title.

• A new proof technique for proving consistency.



In this talk…

• …I will gloss over the straightforward parts of the proof (and skip 
quickly over slides with that content)

• …and focus mostly on the trickier areas



The issue:

• We are generally interested in the consistency of equational theories, 
i.e. that not everything is equal to everything (on open terms)

• This is normally proved via confluence (CR): A confluent system is 
consistent, because:
• Variables are normal forms

• Distinct variables are distinct normal forms

• Other kinds of consistency proofs?
• One can create a non-trivial equational model, but…

• …that is hard to “bootstrap” in this case (no CPO structure).



Standard TRS confluence criteria

• For terminating systems: 
• weak confluence, all critical pairs between rewrite rules have common 

reducts

• For non-terminating systems:
• There are no overlaps (rules that give rise to critical pairs) in the first place, 

and…

• The system is left-linear.



Not just for Confluence, UN & CON too:

F(x,x)A

F(C(x),x)B

EC(E)

F(E,E) has distinct normal forms A and B. So this is not UN, despite 
having no overlaps. Moreover, add the rules:

G(A,x,y)x

G(B,x,y)y

Now, x=G(A,x,y)=G(F(E,E),x,y)=G(F(C(E),E),x,y)=G(B,x,y)=y. The modified 
system still has no overlaps but is not CON.



What is going on?

• The system actually did have overlaps, but the standard definition of 
overlap does not acknowledge them:
• If we allow for substitutions to replace variables with infinitary terms then the 

first two rules overlap, i.e. can be applied to the same term

• And we had a finite term that was “semantical equal” to such an infinite term

• So if we move from LL & non-overlapping to non--overlapping then 
this counter-example goes away, but is that it?
• We will not regain confluence, but UN and/or CON?

• Open problem #79 since 1989.



Reducing the problem (i)

It suffices to look at CON:

• (On open terms) UN implies CON

• Suppose we had a non--overlapping TRS that was not UN. Then
• There are distinct but equivalent normal forms t and u.

• We can get non--unifiable but equivalent ground normal forms t’ and u’
from t and u, possibly via signature extension.

• We add rules G(t’,x,y)x, G(u’,x,y)y, with new ternary symbol G.

• The resulting system remains non--overlapping but it fails CON too.



Reducing the problem (ii)

• We can reduce the CON problem of a TRS to the CON problem of its 
constructor translation.

• The constructor translation of a TRS T is:
• A constructor TRS (first-order functional program) T’, with…

• Back-and-forth translations between the terms of T and T’, which preserves 
variables and…

• preserves equations either way. (So this preserves and reflects CON.)

• Aside: our translation also preserves and reflects SN (and WN).



Constructor Translation of a TRS

• Step 1: duplicate the signature; the new constructor TRS has a 
destructor Fd and a constructor Fc for every symbol F of the original 
signature

• Step 2: for every old rule F(p1,…,pn)r we get a new rule:
𝐹𝑑 𝑝1 , … , 𝑝𝑛 → 𝑟

• Step 3: for every non-variable pattern G(q1,…,qk) (strict subterm of a 
left-hand side of an old rule) we get a new rule:
𝐺𝑑 𝑞1 , … , 𝑞𝑘 → 𝐺𝑐 𝑞1 , … , 𝑞𝑘



Example

• Take Combinatory Logic: 𝐾 𝑥 𝑦 → 𝑥, 𝑆 𝑥 𝑦 𝑧 → 𝑥 𝑧 𝑦 𝑧 .

• As a TRS this really is: 𝐴 𝐴 𝐾, 𝑥 , 𝑦 → 𝑥, 𝐴 𝐴 𝐴 𝑆, 𝑥 , 𝑦 , 𝑧 →
𝐴 𝐴 𝑥, 𝑧 , 𝐴 𝑦, 𝑧 .

• Constructor translation (slightly abbreviated) for this:
𝐴𝑑 𝐴𝑐 𝐾, 𝑥 , 𝑦 → 𝑥
𝐴𝑑 𝐾, 𝑥 → 𝐴𝑐(𝐾, 𝑥)

𝐴𝑑 𝐴𝑐 𝐴𝑐 𝑆, 𝑥 , 𝑦 , 𝑧 → 𝐴𝑑 𝐴𝑑 𝑥, 𝑧 , 𝐴𝑑 𝑦, 𝑧
𝐴𝑑 𝐴𝑐 𝑆, 𝑥 , 𝑦 → 𝐴𝑐 𝐴𝑐 𝑆, 𝑥 , 𝑦

𝐴𝑑 𝑆, 𝑥 → 𝐴𝑐 𝑆, 𝑥



What does the translation do to overlaps?

• The translation does not introduce overlaps, except between pattern 
rules.

• If a TRS is non--overlapping then its constructor-translation is 
“strongly almost non--overlapping”. This means: whenever two 
rules overlap then they are substitution instances of a common 
generalisation rule.

• For rules derived for patterns with root G we always have the 
generalisation 𝐺𝑑 𝑥1, … , 𝑥𝑛 → 𝐺𝑐(𝑥1, … , 𝑥𝑛)

• This implies that all -overlaps between rules are trivial (“almost non-
-overlapping”), but is even stronger than that.



Intermission: a tool for reasoning about terms

• Given a relation R between terms, we write ෨𝑅 write for the relation 
on terms defined as: 
𝑡 ෨𝑅 𝑢 ≡ ∃𝐹 ∈ Σ, 𝑡1, … , 𝑡𝑛, 𝑢1, … , 𝑢𝑛. 𝑡 = 𝐹 𝑡1, … , 𝑡𝑛 ∧ 𝑢 = 𝐹 𝑢1, … , 𝑢𝑛 ∧

∀𝑖. 𝑡𝑖 𝑅 𝑢𝑖

• Similarly, 𝑡 ෠𝑅𝑢 and 𝑡𝑅𝑢 express the corresponding relations when the 
shared symbol 𝐹 is requested to be constructor (in Σ𝑐) or destructor 
(in Σ𝑑), respectively.

• A relation R is called Σ-closed iff ෨𝑅 ⊆ 𝑅.



Observation: confluence vs. consistency

Why does confluence give us consistency?

• A system is confluent iff the joinability relation  is transitive.

• The joinability relation can be defined like this:
↓ ≡ 𝜇𝑥. 𝑖𝑑 ∪ 𝑥 ∪ 𝑥−1 ∪ ෤𝑥 ∪ →𝑅⋅ 𝑥

• Thus: joinability is by construction reflexive, symmetric and Σ-closed, 
and contains rewrite steps. It is just short of transitivity from being a 
congruence.

• It is also by construction consistent.

Note: there are other relations that share these properties with , so 
they could take its part in consistency proofs.



Computational invariants

• We typically prove confluence by showing that  is some kind of 
computational invariant. For this it needs to “survive” pattern 
matching. Relation-algebraically, it is this property:

• A relation R between terms is called constructor-compatible iff we 
have ෡𝑖𝑑 ⋅ 𝑅 ⋅ ෡𝑖𝑑 ⊆ ෠𝑅

• In long form: if two constructor-topped terms are related by R then 
they are topped by the same constructor and their direct subterms
are pairwise related by R

•  is always constructor-compatible



Pattern Matching; Rule Application

• Let 𝑝 be a constructor term. 

• Let 𝑡 = 𝜎(𝑝) and 𝑢 = 𝜃(𝑝) be two substitution instances of 𝑝.

• If 𝑡 𝑅 𝑢 and 𝑅 is constructor-compatible then 𝜎 and 𝜃 are pointwise 
related by 𝑅. (on variables occurring in 𝑝)

• If in addition 𝑅 is Σ-closed then it must survive parallel rule 
application with the same rule.



We need more though…

• How can we make sure though that parallel rule applications are with 
the same rule?

• We have this result: whenever two redexes t and u are related by =𝑐, 
where =𝑐 is a constructor-compatible equivalence, then t and u are 
instances of two -unifiable left-hand sides.

• Why? Informal reason: when we do -unification of we perform 
some equational transformations. If the terms we unify are 
constructor terms then each transformational step is sound for any 
constructor-compatible equivalence.



Another invariant

• The semi-joinability relation can be defined like this:
 ≡ 𝜇𝑥. 𝑖𝑑 ∪ 𝑥 ∪ 𝑥−1 ∪ ෤𝑥 ∪ 𝑥 ⋅ 𝑥 ∪ →

𝜀
⋅ 𝑥

• So, this relation  is reflexive, symmetric, Σ-closed, closed under 
prefixing with root-rewrite-steps, and it is closed under prefixing with 
itself on subterms of destructor-topped terms.

• Regardless of TRS, this relation is also constructor-compatible (and 
therefore consistent – when we view variables as constructors).

• So, this gives us a more relaxed invariant for consistency proofs than 
joinability. So, if  is transitive then we are home and dry.



One key difference to joinability

• Joinability is closed under prefixing with ↠𝑅, semi-joinability is closed 
under prefixing with ഥ⇓ - which is a symmetric relation.

• This gives extra flexibility when trying to construct a common “semi-
reduct”.



Term-coalgebras

• Σ-coalgebras are sets whose elements (nodes) are term-like objects.
• We may have additional structure, e.g. node labels.

• The terms associated with nodes could be infinitary, and we may have the 
same term associated with more than one node.

• Term-coalgebras (for Σ) is the special case of sets of finite terms, 
closed under subterms.

• The ෨𝑅 notations carry over naturally to term-coalgebras (and indeed 
arbitrary Σ-coalgebras).



Transporting definitions

• We can view relations such as  as being defined (in the same way), 
for a particular coalgebra A.

• However, ⇓𝐴 is not just the restriction of  to AxA, because A is not 
required to include all terms – a redex may lose redex-status.

• In any case, ⇓𝐴 (on a term-coalgebra A) is a subrelation of  - because 
of monotonicity of the construction.

• Generally, if 𝑡 ⇓ 𝑢 holds then it is also the case that 𝑡 ⇓𝐴 𝑢 for some 
finite term-coalgebra A.



Constructing an equivalence

• To prove that ⇓𝐴 is an equivalence for a finite term coalgebra A we 
simply build an equivalence relation which:
• is constructor-compatible,

• is a subrelation of ⇓𝐴,

• is Σ-closed and contains ⇓𝐴
∗ as a subrelation, and which

• includes “sufficiently many” redex contractions



How do we build it?

• As a union/find structure (with proof annotations).

• The node set of the structure is all of A.

• An edge from a to b requires that either

𝑎 ഥ⇓ 𝑏 or 𝑎→
𝜖
𝑏 or 𝑎 ෞ=𝑒 𝑏 where =𝑒 is the equivalence defined by the structure.

• We merge equivalence classes by adding an edge to a root of the 
structure that points to another class.

• We prioritise ഥ⇓ edges over redex edges.



Proof graphs…

• The co-algebra is a set of finite terms (closed under subterms).

• These terms are the nodes of our union/find-structure.

• Our invariant relation ⇓𝐴 is reflexive (and symmetric), i.e. every term 
is related to itself

• The edge relation →𝑒 of the union/find structure preserves the 
invariant: →𝑒⋅⇓𝐴 ⊆ ⇓𝐴

• Therefore all elements in a connected component are ⇓𝐴-related to 
each other.

• Overall: any proof graph defines a constructor-compatible 
equivalence, which is a subrelation of the invariant



Prioritisation

• In a proof graph we can connect at most one edge to a node

• For terms with a destructor-root this could be a redex-contraction or 
an “inner”-step.

• We prioritise inner steps, so that all equivalence classes of the 

relation ⇓𝐴
∗
are eventually connected in the graph.

• Consequence: the equivalence =𝑒 defined by the proof graph is 
necessarily -closed, because it is a subrelation of ⇓𝐴; overall it is a 
constructor-compatible congruence relation.

• But is it the same as =𝑅?



Missing rewrite steps?

• Let 𝑎→
𝜖
𝑏 be any rewrite step of the co-algebra that is not an edge in 

the completed proof graph. Then either:

• 𝑎 is the (local) root of its equivalence class of ⇓𝐴
∗

and 𝑏 is also in that class 
(and therefore 𝑎 =𝑒 𝑏), or…

• The local root of 𝑎 is some redex 𝑐, with 𝑐→
𝜖
𝑑, and 𝑐 =𝑒 𝑑. Then 𝑎 and 𝑐 are 

connected with inner steps in the proof graph (and we can ensure that these 
steps lie within =𝑒)

• Hence 𝑎 =𝑒 𝑐 and therefore 𝑏 and 𝑑 are related by =𝑒 (because it is a 
constructor-compatible congruence parallel steps stay within the invariant), 
and so 𝑎 =𝑒 𝑏.



Consequences

• ⇓𝐴 is transitive (for finite A) for “well-behaved” TRSs 

•  is transitive for well-behaved TRSs too:
• If 𝑡 ⇓ 𝑢 and 𝑢 ⇓ 𝑣 then for some finite term-coalgebras A and B we have 
𝑡 ⇓𝐴 𝑢 and 𝑢 ⇓𝐵 𝑣 .

• But C = 𝐴 ∪ 𝐵 is then a term-coalgebra too, we get 𝑡 ⇓𝐶 𝑢 and 𝑢 ⇓𝐶 𝑣 by 
monotonicity, 𝑡 ⇓𝐶 𝑣 by transitivity of  ⇓𝐶, and 𝑡 ⇓ 𝑣 by monotonicity.

• Thus, “well-behaved” TRSs are consistent.

• Strongly almost non--overlapping Constructor TRSs are “well-
behaved”.

• Therefore: non--overlapping TRSs have unique normal forms.



Future Work

Almost non--overlapping Constructor TRSs
Parallel steps could be with different rules, but we should still have our 
consistency invariant property.

Relaxing the condition on constructor-compatible equivalences:
We currently require that for all constructor-compatible sub-equivalences S of 
 that CT(S) holds for the contracta whenever ҧ𝑆 holds between redexes.

But: one does not need “all”, one only needs “all that are sufficiently large”.


