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Overview

© Preliminaries
@ Abstract reduction systems and confluence (CR)
@ Decreasing Church-Rosser (DCR) and decreasing diagrams
@ Cofinality property (CP)
@ Dependencies between CR, DCR and CP

© Two labels suffice
@ Departing question: DCR hierarchy
@ Proof sketch for CP = DCR,
@ Dependencies between properties (updated)

© Further results: commutation



Abstract reduction systems and confluence (CR)

@ ARSA= (A=) with = CAXA
o A is countable if A'is
e (A,—) is confluent (CR) if

(a—»brna—»c)=3deA(b—>dAc—d)

o indexed ARS A = (A, {—a}acr) letting = =, c) ~a



Decreasing Church-Rosser (DCR) and decreasing diagrams

Definition 1 (Decreasing Church—Rosser [4])

A = (A,—) is decreasing Church—Rosser (DCR) if it equals
B = (A, {—a}acs) indexed by a well-founded partial order (/, <) such
that every peak ¢ <—3 a =, b can be joined decreasingly.
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Theorem 2 (Decreasing Diagrams — De Bruijn [1] & Van Oostrom [4])
DCR = CR




Cofinality property (CP)

Definition 3 (Cofinal Reduction)

Let A = (A, —) be an ARS. A finite or infinite reduction sequence
by — by — by — -+ is cofinal in A if a € A implies a — b; for some i.

V.

Definition 4 (Cofinality Property)
An ARS A = (A, —) has the cofinality property (CP) if for every a € A,
there exists a reduction sequence a = by — by — by — - -+ that is cofinal
in Al{p| a-sb}-
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Dependencies between CR, DCR and CP

For countable ARSs, the relevant properties coincide:

CP— DCR— CR

For uncountable systems, the situation is as follows:

CP— DCR— CR

?

Example 5 (Counter-example to DCR = CP)

Let A be the set of finite subsets X of the line R. Consider the reduction
rule X — X U {x} for x &€ X. The uncountable ARS (A, —) is DCR, but
not CP.

Whether CR = DCR for uncountable systems is a long-standing open
problem in abstract rewriting.
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Departing question: DCR hierarchy

Definition 6 (DCR,)

For ordinals «, let DCR,, denote the class of ARSs that can be shown to
satisfy DCR using the label set {3 | 8 < a}. (With < the usual order on
ordinals.)

@ Do we have strict inclusions DCR, C DCRg for all oo < 87
o If not, what does the hierarchy look like?

Our main result:

Theorem 7 (Two Labels Suffice — Klop, Endrullis & Overbeek [2])

CP = DCR,

@ Thus one easily obtains DCR = DCR, for the countable case.

@ Our proof is an adaptation of Van Qostrom’s proof for
CP = DCR [3, Proposition 14.2.30, p. 766].



CP = DCR;: proof sketch (1/4)

Lemma 8 (CP = CP*<" — Mano, 1993)

Let A= (A,—) be a confluent ARS and a € A. If a rewrite sequence is
cofinal in Al¢p|asby, then it is also cofinal in Algp | acsepy-

Thus CP implies that there exists a main road in every weakly connected
component (w.r.t. <*).
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We focus on a single component ARS A = (A, —) satisfying CP, and let
M denote a fixed acyclic main road in A.



CP = DCR;: proof sketch (2/4)

Our labelling function presupposes the following notions.

@ d(a) is the distance of a to the main road M

@ > is a linear order on A

Definition 9 (Minimizing Step)

A step a — b is minimizing if
(i) d(a) =d(b)+1 and
(i) b’ > b for every step a — b’ with d(b') = d(b).

Remark: > exists by the Well-Ordering Theorem, or by construction for
countable systems



CP = DCR;: proof sketch (3/4)

We now label steps a — b with 0 or 1 as follows:

a—yb <= a— bison M or minimizing
a—1 b <= a— bisnoton M and not minimizing

1 1
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CP = DCR;: proof sketch (4/4)

We show DCR. There are three cases for the peaks:

0 1 1
a——p a——p a———p
o‘ = o| 0 1[ "0
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= 0 0

@ —» is deterministic
@ there exist O-labelled paths from any point to M
@ any two points on M can be joined by O-reductions O

11/15



Dependencies between CR, DCR, CP and DCR,

For countable ARSs, we now have:

CP — DCRy, —— DCR — CR

And for uncountable systems:
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CP — DCR, ——> DCR— CR

The implications DCR = DCR, and CR = DCR, are new open
problems for the uncountable case.



Further results: commutation (1/2)

Relation — commutes with ~ in an ARS (A, —,~) if:
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DCR can be used to prove commutation (although it is incomplete):
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Question: do we have DCR = DCR, for commutation?
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Further results: commutation (2/2)

Theorem 10 (Lower DCR hierarchy for commutation)

For commutation, DCR, C DCRg for all ordinals o < f < w

@ plan: extend system to require additional label
@ assume ¢ ~~" dy <" ¢; with two steps > n on one of the reductions
@ peaks from a;, a4 and a; each contain a step > n—+1

@ hence a; ~" ¢; and a; —* ¢, with three steps > n+1
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Further results: commutation (2/2)

Theorem 10 (Lower DCR hierarchy for commutation)

For commutation, DCR, C DCRg for all ordinals o < f < w

plan: extend system to require additional label
assume ¢ ~+* di <* ¢ with two steps > n on one of the reductions
peaks from a;, a4 and a; each contain a step > n+1

hence a; ~* ¢; and a; —* ¢, with three steps > n+1

or: symmetric for ¢; ~~" dp <* ¢, by to by ]
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