
Ground Confluence Proof

with Pattern Complementation

IWC 2016, obergurgle

Takahito Aoto (Niigata University)

Yoshihito Toyama (Tohoku University)



Outline:

1. Proving Ground Confluence by Rewriting Induction

2. GCR Proof with Pattern Complementation



Ground Confluence (GCR)

•

• •

•

∗ ∗

∗ ∗

on ground terms

for any ground term sg, tg, ug such that tg
∗
←R

sg
∗
→R ug, there exists a ground term vg such that

tg
∗
→R vg

∗
←R ug.

1/14



Rewriting Induction

Rewriting induction [Reddy, 1990] is a method to prove

inductive theorems.

Inductive theorems

An equation s
.
= t is an inductive theorem of R

(R |=ind s
.
= t)

⇔ For any ground substitution σg, sσg
∗
↔R tσg

(⇔ s
.
= t is valid on the initial model of R)

Theorem. [Reddy, 1990]

Suppose R: SN, QR. Let > be a reduction order with

R ⊆ >. If 〈E, ∅〉
∗
❀RI 〈∅,H〉 then R |=ind E.

Here, R: QR
def
⇔ any ground basic term is reducible.

2/14



Rewriting Induction

Rewriting induction [Reddy, 1990] is a method to prove

inductive theorems.

Inductive theorems

An equation s
.
= t is an inductive theorem of R

(R |=ind s
.
= t)

⇔ For any ground substitution σg, sσg
∗
↔R tσg

(⇔ s
.
= t is valid on the initial model of R)

Theorem.

Suppose R: SN, QR. Let > be a reduction order with

R ⊆ >. If 〈CP(R), ∅〉
∗
❀RI 〈∅,H〉 then R: GCR.

Here, R: QR
def
⇔ any ground basic term is reducible.

2/14



(Basic) Rewriting Induction

Input: a TRS R

a reduction order > such that R ⊆ >

a set E0 of equations

Inference rules: (starting from 〈E0, ∅〉)

Expand

〈E ⊎ {s
.
= t}, H〉

〈E ∪ Expdu(s, t), H ∪ {s→ t}〉
s > t, u ∈ B(s)

Simplify

〈E ⊎ {s
.
= t}, H〉

〈E ∪ {s′
.
= t}, H〉

s→R∪H s′

Delete

〈E ⊎ {s
.
= s}, H〉

〈E, H〉
3/14



Expand Rule

Expand

〈E ∪ {s
.
= t}, H〉

〈E ∪ Expdu(s, t), H ∪ {s→ t}〉
s > t, u ∈ B(s)

B(s): a set of basic subterms of s

subterms of the form f(c1, . . . , cn)

with f ∈ D = {l(ǫ) | l→ r ∈ R}

and constructor terms c1, . . . , cn ∈ T(C,V).

4/14



Expand Rule

Expand

〈E ∪ {s
.
= t}, H〉

〈E ∪ Expdu(s, t), H ∪ {s→ t}〉
s > t, u ∈ B(s)

B(s): a set of basic subterms of s

subterms of the form f(c1, . . . , cn)

with f ∈ D = {l(ǫ) | l→ r ∈ R}

and constructor terms c1, . . . , cn ∈ T(C,V).

Expdu(s, t)= {C[r]σ
.
= tσ | s = C[u], σ = mgu(u, l),

l→ r ∈ R}

lhs-expansion (narrowing) of the equation s
.
= t

C[r]σ ←R C[l]σ = C[u]σ = sσ
.
= tσ

4/14



Example

R











+(0, 0) → 0

+(s(x), y) → s(+(x, y))

+(x, s(y)) → s(+(y, x))

〈{s(+(x, s(y)))
.
= s(+(y, s(x))}, ∅〉

∗
❀

s
〈{s(s(+(y, x)))

.
= s(s(+(x, y)))}, ∅〉

❀
e 〈{s(s(0))

.
= s(s(0)), s(s(s(+(y′, x))))

.
= s(s(+(x, s(y′)))),

s(s(s(+(x′, y))))
.
= s(s(+(s(x′), y)))},

{s(s(+(y, x)))→ s(s(+(x, y)))}〉
∗
❀

s
〈{s(s(0))

.
= s(s(0)), s(s(s(+(y′, x))))

.
= s(s(s(+(y′, x)))),

s(s(s(+(x′, y))))
.
= s(s(s(+(x′, y))))},

{s(s(+(y, x)))→ s(s(+(x, y)))}〉
∗
❀

d
〈∅, {s(s(+(y, x)))→ s(s(+(x, y)))}〉

5/14



Advanced RI System for GCR
Expand

〈E ⊎ {s
.
= t}, H〉

〈E ∪ {s′i
.
= ti}i, H ∪ {s→ t}〉

u ∈ B(s), s ≻ t

{si→ ti}i = Expdu(s, t),

si→(H∪H−1)% s′i
Simplify

〈E ⊎ {s
.
= t}, H〉

〈E ∪ {s′
.
= t}, H〉

s→R∪H≻ ◦ →(H∪H−1)% s′

Delete

〈E ⊎ {s
.
= t}, H〉

〈E, H〉 s
=
↔H t

Theorem. [Aoto&Toyama, 2016]

Suppose R: SN, QR. Let % be a reduction quasi-order

with R ⊆ ≻. If 〈CP(R), ∅〉
∗
❀ 〈∅,H〉 then R: GCR.

6/14



GCR Proving Procedure

Step 1. Compute (possibly multiple) candidates for the

partition F = D ⊎ C of function symbols. (Our system

includes more general non-free constructor case.)

Step 2. Compute (possibly multiple) candidates for

(strongly) quasi-reducible R0 ⊆ R.

Step 3. Find a reduction quasi-order % such thatR0 ⊆ ≻.

Step 4. Run RI for GCR of R0 with %.

Step 5. Run RI for proving R0 |=ind (R \R0).

Step 6. Return YES if it succeeds in steps 4 & 5.

7/14



GCR Proving Procedure

Step 1. Compute (possibly multiple) candidates for the

partition F = D ⊎ C of function symbols. (Our system

includes more general non-free constructor case.)

Step 2. Compute (possibly multiple) candidates for

(strongly) quasi-reducible R0 ⊆ R.

Step 3. Find a reduction quasi-order % such thatR0 ⊆ ≻.

Step 4. Run RI for GCR of R0 with %.

Step 5. Run RI for proving R0 |=ind (R \R0).

Step 6. Return YES if it succeeds in steps 4 & 5.

7/14



GCR Proving Procedure

Step 1. Compute (possibly multiple) candidates for the

partition F = D ⊎ C of function symbols. (Our system

includes more general non-free constructor case.)

Step 2. Compute (possibly multiple) candidates for

(strongly) quasi-reducible R0 ⊆ R.

Step 3. Find a reduction quasi-order % such thatR0 ⊆ ≻.

Step 4. Run RI for GCR of R0 with %.

Step 5. Run RI for proving R0 |=ind (R \R0).

Step 6. Return YES if it succeeds in steps 4 & 5.

Our procedure requires R0 ⊆ R with SN, QR.
7/14



Outline:

1. Proving Ground Confluence by Rewriting Induction

2. GCR Proof with Pattern Complementation



Failure of GCR Proving

Example. (from Cops 128)

Let F = {+ : Nat × Nat → Nat, s : Nat → Nat, 0 : Nat}

and

R =











+(0, y) → y (a)

+(x, s(y)) → s(+(x, y)) (b)

+(x, y) → +(y, x) (c)











Then there exists no quasi-reducible and terminating

subsets of R.

Note +(s(0), 0) ∈ NF({(a), (b)})

8/14



Our Idea

A natural candidate of quasi-reducible terminating R0:

R0 =

{

+(0, y) → y (a)

+(s(x), y) → s(+(x, y)) (b′)

}

Validity of the rewrite rule (b′):

+(s(x), y)→(c) +(y, s(x))→(b) s(+(y, x))

→(c) s(+(x, y))

How we compute missing patterns?

⇒ Pattern Complementation Algorithm

[Lazrek & Lescanne & Thiel, 1990]
9/14



Complement of linear substitution

A complement C(t) of t ∈ TL(C,V) (linear constr. term):

C(x) = ∅

C(c(t1, . . . , tn)) = {c′(x1, . . . , xn) | c 6= c′ ∈ C}

∪
⋃

1≤k≤n{c(t1, . . . , tk−1, v, xk+1, . . .) | v ∈ C(tk)}

Then T(C) \ Inst(t) =
⋃

v∈C(t) Inst(v) where

Inst(v) = {vσgc | σgc:V → T(C)}

A complement C(σ) of linear σ : V → T(C,V):

C(σ) = {ρ : V → T(C,V) | dom(ρ) = dom(σ),

ρ(x) ∈ C(σ(x)) ∪ {σ(x)}, ρ 6= σ}

10/14



Pattern Complementation

Let P,Q ⊆ TLB(D, C,V) (i.e. sets of linear basic terms)

P is a complement of Q if Inst(P )⊎ Inst(Q) = TB(D, C)

where Inst(P ) = {pσgc | p ∈ P, σgc : V → T(C)}

Subtraction on patterns P ⊖Q:

P ⊖Q =

{

Ps ⊖Qt if ∃s ∈ P, t ∈ Q, σ = mgu(s, t)

P otherwise

where Ps = (P \ {s}) ∪ {sρ | ρ ∈ C(σ), sρ 6= sσ}

Qt = (Q \ {t}) ∪ {tρ | ρ ∈ C(σ), tρ 6= tσ}

Complement C(P ) of a pattern P :

C(P ) = {f(x1, . . . , xn) | f ∈ D} ⊖ P
11/14



New Procedure

Step 1. Compute (possibly multiple) candidates for the

partition F = D ⊎ C of function symbols.

Step 2. Find left-linear R0 ⊆ R and a reduction quasi-

order % such that R0 ⊆ ≻.

Step 3. Compute complement {pi}i of lhs(R0). For

each i, find p′
i such that pi

∗
→R p′

i and p ≻ p′
i. Let

R1 = R0 ∪ {pi→ p′
i}i.

Step 4. Run RI for GCR of R1 with %.

Step 5. Run RI for proving R1 |=ind (R \R0).

Step 6. Return YES if it succeeds in steps 4 & 5.
12/14



Experiments by AGCP

problem added equation(s)
steps

#1 #2 #3

Cops 128 +(s(x), 0) → s(x) × X X

Cops 130







and3(F, T, T) → F

and3(F, F, T) → F
and3(T, F, T) → F







× × X

Cops 133 +(0, s(x)) → s(x) × X X

Cops 137 max(0, s(y)) → s(y) × X X

Cops 140 +(s(x), 0) → s(x) × X X

Cops 146 +(0, s(x)) → s(x) × X X

Cops 165 max(0, s(y)) → s(y) × X X

Cops 174 +(0, s(x)) → s(x) × X X

Cops 180 +(s(x), 0) → s(x) × X X

Cops 186 +(0, s(x)) → s(x) × X X

Cops 197 or(F, T) → T × X X

Cops 210 +(s(x), 0) → s(x) × X X

Cops 234 eq(0, 0) → true X X X

total time (seconds) 32.694 32.620 33.052

Improvement: 86/121⇒ 99/121
13/14



Conclusion

• Rewriting induction for GCR may fail when defining

rules are not fully presented.

• Such hidden defining rules may be obtained by

(1) computing lack of defining patterns by pattern

complementation algorithm and (2) searching an

appropriate rhs for the rewrite rule.

• By adding the proposed method to our GCR prover, we

can automatically prove 13 new examples from our 121

GCR problem collection.

14/14


