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Ground Confluence (GCR)
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Rewriting Induction

Rewriting induction [Reddy, 1990] is a method to prove
inductive theorems.

Inductive theorems

An equation s = t is an inductive theorem of R
(R =i 5 = t)

& For any ground substitution o, so, &r toy,

(< s = t is valid on the initial model of R)

Theorem. [Reddy, 1990]
Suppose R: SN, QR. Let > be a reduction order with
R C >. If (E,0) g (0, H) then R =/, E.

def

Here, R: QR < any ground basic term is reducible.
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(Basic) Rewriting Induction

Input: a TRS R
a reduction order > such that R C >
a set FE;, of equations

Inference rules: (starting from (Ej, 0))

Ezxpand
(Bw {s=t}, H)
(E U Expd,(s,t), HU{s —t})
Simplify
(BEw{s=t}, H)
(EU{s’'=1t}, H)

s > t,u € B(s)

s ->RrRuH S’

Delete
(EW{s=s}, H)
(E, H)
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Expand Rule

Expand
(EU{s=1t}, H)
(E U Expd,(s,t), HU{s—t})

s > t,u € B(s)

B(s): a set of basic subterms of s
subterms of the form f(ci,...,cy)
with fe D ={l(e) |l - rr € R}
and constructor terms c;,...,¢c, € T(C,V).
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Expand Rule

Expand
(EU{s=1t}, H)
(E U Expd,(s,t), HU{s—t})

s > t,u € B(s)

B(s): a set of basic subterms of s

subterms of the form f(cy,...,c,)
with f e D ={l(e) |l - r € R}
and constructor terms c;,...,¢c, € T(C,V).

Expd,(s,t) ={C|r]oc = to | s = C|u],c = mgu(u,l),
[l >reR}

lhs-expansion (narrowing) of the equation s =t
C|r]lo «+x C|lloc = Clu]lo = so = to
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Example

y

+(0,0) — 0
R +(s(z),y) — s(+(z,y))
(w,s(y)) — S( (y,il?))

({s(+(@,5(9))) = s(+(y,s(2))}, 0)

({s(s(+(y, @) = s(s(+(z,y)))}, )

({5(5(0)) = s(5(0)), s(s(s(+ (1> @)))) = s(s(+(w,5()))),
s(s(s(+(@", 4)))) = s(s(+(s(z"), ¥))) },

{s(s(+ (s ))) = s(s(+(,9))})

({5(5(0)) = s(5(0)), s(s(s(+ (¥, @)))) = s(s(s(+('s 2)))),
s(s(s(+ (2", )))) = s(s(s(+(a', 1))},

{s(s(+ (s ))) = s(s(+(,9))})

(@, {s(s(+(y,=))) = s(s(+(=,9)))})
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Advanced Rl System for GCR

Expand

(Bw{s=t, my  »SBbhs=t

{Si — ti}i — EXpdu(89 t)a

;-
(EU{s. =t;};, HU{s—t}) S = (HUH-1)- !
Simplify

(Bw{s=t}, H)

(EU{s"=1t}, H)
Delete

(Bw{s=t}, H) _

(B, H) sont

/

Theorem. [Aoto&Toyama, 2016]
Suppose R: SN, QR. Let ~ be a reduction quasi-order
with R C . If (CP(R),0) ~ (@, H) then R: GCR.
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GCR Proving Procedure

Step 1. Compute (possibly multiple) candidates for the
partition F = D W C of function symbols. (Our system
includes more general non-free constructor case.)

Step 2. Compute (possibly

multiple) candidates for

(strongly) quasi-reducible Ry C R.

Step 3. Find a reduction quasi-order ~ such that Ry C >.

Step 4. Run RI for GCR of Ry with .

Step 5. Run RI for proving R,

=ind (R \ Ro)-

Step 6. Return YES if it succeeds in steps 4 & 5.
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partition F = D W C of function symbols. (Our system
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Step 2. Compute (possibly

multiple) candidates for

(strongly) quasi-reducible Ry C R.

Step 3. Find a reduction quasi-order ~ such that Ry C >.

Step 4. Run RI for GCR of Ry with .

Step 5. Run RI for proving R,

=ind (R \ Ro).

Step 6. Return YES if it succeeds in steps 4 & 5.
Our procedure requires Ro C R with SN, QR.
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Failure of GCR Proving

Example. (from Cops 128)
Let 7 = {4 : Nat x Nat — Nat,s : Nat — Nat, 0 : Nat}

and

+(0,y) — y (a)
R =1 +(=,s(y)) — s(+(=z,y)) (b)
+(z,y) — +(y,x) (c)

Then there exists no quasi-reducible and terminating
subsets of R.

Note +(s(0),0) € NF({(a), (b)})
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Our ldea

A natural candidate of quasi-reducible terminating R:

_J+0y) -y (a)
RO_{‘F(S(w)ay) — s(+(z,y)) (b') }

Validity of the rewrite rule (b):

+(s(x),y) =) +(y,s(x)) =) s(+(y, 7))
_>(c) S(—-(ZIZ, y))

How we compute missing patterns?
= Pattern Complementation Algorithm
[Lazrek & Lescanne & Thiel, 1990]
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Complement of linear substitution

A complement C'(t) of t € Tr(C, V) (linear constr. term):

C(x) 0
C(c(tyy... tn)) {c(x1y...,25) |cF# ' €C}
U Ulgkzén{c(tl’ c ooy tk—la Vo Lt19-- .) | V€ C(tk,)}

Then T(C) \ Inst(t) = U,ec ) Inst(v) where
Inst(v) = {voge | 04V — T(C)}

A complement C(o) of linear o : V — T(C,V):

Coc) = {p:V —T(,V) | dom(p) = dom(o),
p(r) € Clo(x)) U{o(x)},p# o}
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Pattern Complementation

Let P,QQ C Trg(D,C,V) (i.e. sets of linear basic terms)
P is a complement of Q if Inst(P) WInst(Q) = Tr(D,C)
where Inst(P) = {pogc | p € P,ogc: V — T(C)}

Subtraction on patterns P S Q:

P, o5 Q; ifdse P,t € Q,0 = mgu(s,t)
P otherwise

poa-|

where P, = (P \ {s})U{sp | p€ C(o),sp # so}
Q: = (Q\ {t}) U{tp | p € C(o),tp # to}

Complement C(P) of a pattern P:
C(P)={f(z1,...,zn) | fFED}OP
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New Procedure

Step 1. Compute (possibly multiple) candidates for the
partition F = D W C of function symbols.

Step 2. Find left-linear Ry C R and a reduction quasi-

order ~~ such that Ry C >.

Step 3. Compute complement {p;}; of lhs(Ry). For
each i, find p) such that p; % p, and p > p}. Let

Ri=RoU {pi — P, }si

Step 4. Run RI for GCR of R, with ~.

Step 5. Run RI for proving R,

=ind (R \ Ro)-

Step 6. Return YES if it succeeds in steps 4 & 5.
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Experiments by AGCP

, steps
problem added equation(s) ) ) 73
Cops 128 | +(s(x),0) — s(x) X v v
and3(F, T, T) — F
Cops 130 { and3(F,F, T) — F } X X v
and3(T,F, T) —» F
Cops 133 | +(0,s(x)) — s(x) X v v
Cops 137 | max(0,s(y)) — s(y) X v v
Cops 140 | +(s(x),0) — s(x) X v v
Cops 146 | +(0,s(x)) — s(x) X v v
Cops 165 | max(0,s(y)) — s(y) X v v
Cops 174 | 4+(0,s(x)) — s(x) X v v
Cops 180 | +(s(x),0) — s(x) X v v
Cops 186 | +(0,s(x)) — s(x) X v v
Cops 197 | or(F, T) — T X v v
Cops 210 | +(s(x),0) — s(x) X v v
Cops 234 | eq(0,0) — true v v v
total time (seconds) | 32.694 | 32.620 | 33.052

Improvement: 86/121 = 99/121
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Conclusion

e Rewriting induction for GCR may fail when defining
rules are not fully presented.

e Such hidden defining rules may be obtained by
(1) computing lack of defining patterns by pattern
complementation algorithm and (2) searching an
appropriate rhs for the rewrite rule.

e By adding the proposed method to our GCR prover, we
can automatically prove 13 new examples from our 121
GCR problem collection.
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