Integrating Verification Components:
The Evidential Tool Bus

John Rushby

Computer Science Laboratory
SRI International
Menlo Park, California, USA

John Rushby, SRI VSTTE: Integrating Verification Components—1

Integrating (Deductive) Verification Components
In the beginning there was just (interactive) theorem proving

Then there were VC generators, decision procedures, model
checkers, abstract interpretation, predicate abstraction, fast
SAT solvers,. ..

Now there are systems that use several of these
(SDV, Blast,...)

And in 15 years time...?

We need an architecture that allows us to make opportunistic
use of whatever is out there

o And to assemble customized tool chains easily
It should be robust to changes (in problems and tools)

And should deliver evidence

John Rushby, SRI VSTTE: Integrating Verification Components—2

Two Kinds of Architecture

/
\

Backends

John Rushby, SRI VSTTE: Integrating Verification Components—3

And Two Kinds of Backends

P

Integrated Endgame

John Rushby, SRI VSTTE: Integrating Verification Components—4

A Simple Case: Endgame Verifiers

e A higher level proof manager calls components (typically,
decision procedures) to discharge subgoals

e Components return only verified or unverified

o Embellishments: proof objects and counterexamples

e But the information returned on failure does not guide the
higher-level proof search

o Other than to cause it to try something else
o Hence endgame verifiers

John Rushby, SRI VSTTE: Integrating Verification Components—5

Endgame Verifier Examples

1979: Stanford Pascal Verifier and STP used decision
procedures for combinations of theories including arithmetic
(STP gave rise to Ehdm, then PVS)

1995: PVS used a BDD-based symbolic model checker
2000: PVS used Mona for WS1S

Not only did theorem provers use model checkers as backends,
some model checkers grew a front-end theorem prover

1998: Cadence SMV had a proof assistant that generated
model checking subproblems by abstraction and composition

And some other systems used an entire interactive theorem
prover for the endgame

1999: VSDITLU: used PVS backend to check side conditions
on Symbolic Definite Integral Table Look-Up in Maple

John Rushby, SRI VSTTE: Integrating Verification Components—6

Integrating Endgame Verifiers
It's pretty simple

e Provide higher level proof strategies that decompose proof
goals into subgoals that can be steered towards the
competence of the endgame verifier(s)

Provide a recognizer for proof goals within the competence
of an endgame verifier

Provide glue code to translate suitable proof goals into the
input of an endgame verifier and to interpret its output

Many classes of endgame verifiers are being honed through
competition

e Improves performance (be careful)

e Standardizes interfaces
e FO provers, BDD packages, SAT solvers, SMT solvers

John Rushby, SRI VSTTE: Integrating Verification Components—7

Evolution of Endgame Verifiers

John Rushby, SRI VSTTE: Integrating Verification Components—8

Evolution of Endgame Verifiers

e One path grows the endgame verifier and specializes and
shrinks the higher-level proof manager

e Example:

o SAL language has a type system similar to PVS, but is
specialized for specification of state machines
(as transition relations)

The SAL infinite-state bounded model checker uses an
SMT solver (ICS), so handles specifications over reals and
integers, uninterpreted functions

Often used as a model checker (i.e., for refutation)

But can perform verification with a single higher level
proof rule: k-induction (with lemmas)

Note that counterexamples help debug invariant

John Rushby, SRI VSTTE: Integrating Verification Components—9

Performance of Evolved Endgame Verifiers

e Biphase Mark Protocol is an algorithm for asynchronous
communication

Clocks at either end may be skewed and have different
rates, jitter

So have to encode a clock in the data stream

Used in CDs, Ethernet

Verification identifies parameter values for which data is
reliably transmitted

e Verified in ACL2 by J Moore (1994)

e [hree different verifications used PVS

o One by Groote and VVaandrager used PVS + UPPAAL

o Required 37 invariants, 4,000 proof steps, hours of prover
time to check

John Rushby, SRI VSTTE: Integrating Verification Components—10

Performance of Evolved Endgame Verifiers (ctd.)

e Brown and Pike recently did it with sal-inf-bmc

Used timeout automata to model timed aspects
Statement of theorem discovered systematically using
disjunctive invariants (7 disjuncts)

T hree lemmas proved automatically with 1-induction,
Theorem proved automatically using 5-induction
Verification takes seconds to check

e Adapted verification to 8-N-1 protocol (used in UARTS)

o Additional lemma proved with 13-induction
o Theorem proved with 3-induction (7 disjuncts)

John Rushby, SRI VSTTE: Integrating Verification Components—11

Recap: Two Kinds of Backends

P

Integrated Endgame

John Rushby, SRI VSTTE: Integrating Verification Components—12

A Difficult Case: Tightly Integrated Components

Endgame verifiers are easy to integrate because they do not
interact with higher level proof search (nor with each other)

In fact, they are barely integrated

Classic Boyer-Moore 1986 paper describes tight integration
of linear arithmetic decision procedure with Ngthm

o Two pages of code for endgame decision procedure
o Became 60 for integrated version

PVS takes an intermediate path

o Decision procedures are integrated with the rewriter
o And used in simplification

A tractable case is the integration of decision procedures
with each other

John Rushby, SRI VSTTE: Integrating Verification Components—13

Integrated Decision Procedures and SMT Solvers

e Long line of research on integrating decision procedures for
separate theories so they decide the combined theory
o Starts with Nelson-Oppen and Shostak methods
o Activity continues today: theory, presentation,
verification, and pragmatics

e Recently extended through integration with SAT solving to
yield SMT solvers

Interactions are intense (millions per verification)

Information from decision procedures must be used
efficiently to prune SAT search

Impacts design of individual decision procedures
Engineering choices explored through benchmarking and
competition

e Homogeneous integration: not quite solved, but on the way

John Rushby, SRI VSTTE: Integrating Verification Components—14

SMT Solver Backend

EQUALITY

John Rushby, SRI VSTTE: Integrating Verification Components—15

Recap: Two Kinds of Architecture

/
\

Backends

John Rushby, SRI VSTTE: Integrating Verification Components—16

A New Case: Integration of Heterogeneous Components

Modern formal methods tools do more than verification

They also do refutation (bug finding)

And test-case generation

And controller synthesis

And construction of abstractions
And generation of invariants
And ...

Observe that these tools can return objects other than
verification outcomes

o Counterexamples, test cases, abstractions, invariants
o Hence, heterogeneous

John Rushby, SRI VSTTE: Integrating Verification Components—17

Integration of Heterogeneous Components

e [he tools that perform these computations can be used in
opportunistic combination

o E.g., use static analysis and model checking to find bugs
before attempting verification

e And can use each other as (scripted) components

o E.g., use a model checker in test case generation

e And can be used in integrated combinations

o E.g., software model checkers generally have a C front
end with CFG analyzer, a predicate abstractor (which
uses decision procedures and possibly a model checker), a
model checker and counterexample generator, a
counterexample concretizer and refinement generator
(using Craig interpolation), and a control loop around the
whole lot

John Rushby, SRI VSTTE: Integrating Verification Components—18

Customized (Re)integration

LAST (Xia, DiVito, Muinoz) generates MC/DC tests for
avionics code involving nonlinear arithmetic (with floating
point numbers, trigonometric functions etc.)

It's built on Blast (Henzinger et al)

But extends it to handle nonlinear arithmetic using RealPaver
(a numerical nonlinear constraint unsatisfiability checker)

o Added 1,000 lines to CIL front end for MC/DC

o Added 2,000 lines to RealPaver to integrate with
CVC-Lite (Nelson-Oppen style)

o Changed 2,000 lines in Blast to tie it all together
Applied it to Boeing autopilot simulator

o Modules with upto 1,000 lines of C
o 220 decisions

Generated tests to (almost) full MC/DC coverage in minutes

John Rushby, SRI VSTTE: Integrating Verification Components—19

A Tool Bus

How can we construct these customized combinations and
integrations easily and rapidly?

The integrations are coarse-grained (hundreds, not millions of
interactions per analysis), so they do not need to share state

So we could take the outputs of one tool, massage it suitably
and pass it to another and so on

A combination of XML descriptions, translations, and a
scripting language could probably do it

Suitably engineered, we could call it a tool bus

John Rushby, SRI VSTTE: Integrating Verification Components—20

But ...

But we'd need to know the names and capabilities of the
tools out there and explicitly to script the desired interactions

o And we'd be vulnerable to change

Whereas I would like to exploit whatever is out there

o And in 15 years time there may be lots of things out there

That is, I want the bus to operate declaratively

o By implicit invocation

And I want evidence that supports the overall analysis
(i.e., the ingredients for a safety or assurance case)

That is, I want a semantic integration

John Rushby, SRI VSTTE: Integrating Verification Components—21

A Formal Tool Bus
e [he data manipulated by tools on bus are formulas in logic

e In fact, they can be seen as formulas in a logic
o The Formal Tool Bus Logic
o Each tool operates on a sublogic
o Syntactic differences masked with XML wrappers

e NoO point in limiting the expressiveness of the tool bus logic

o Should be at least as expressive as PVS

*x Higher order, with predicate, structural, and dependent
subtypes, abstract data types, recursive and inductive
definitions, parameterized theories, interpretations

o With structured representations for important cases

* State machines (as in SAL), counterexamples, process
algebras, temporal logics . ..

* Handled directly by some tools, can be expanded to
underlying semantics for others

John Rushby, SRI VSTTE: Integrating Verification Components—22

Tool Bus Judgments

The tools on the bus evaluate and construct predicates over
expressions in the logic—we call these judgments

Parser: A is the AST for string S

Prettyprinter: S is the concrete syntax for A
Typechecker: A is a well-typed formula

Finiteness checker: A is a formula over finite types
Abstractor to PL: A is a propositional abstraction for B

Predicate abstractor: A is an abstraction for formula B wrt.
predicates ¢

GDP: A is satisfiable

GDP: C is a context (state) representing input G

SMT: pis a satisfying assignment for A

John Rushby, SRI VSTTE: Integrating Verification Components—23

Tool Bus Queries

e [o0o0Is publish their capabilities and the bus uses these to
organize answers to queries

Query: well-typed?(A)
Response: PVS-typechecker(...) |- well-typed?(A)

The response includes the exact invocation of the tool
concerned

Queries can include variables

Query: predicate-abstraction?(a, B, ¢)
Response:
SAL-abstractor(...) |-predicate-abstraction?(A, B, ¢)

The tool invocation constructs the witness, and returns its
handle A

John Rushby, SRI VSTTE: Integrating Verification Components—24

Tool Bus Operation

The tool bus operates like a distributed datalog framework,
chaining on queries and responses

Similar to SRI AIC’s Open Agent Architecture
o And maybe similar to MyGrid, Linda, ...7

Can have hints, preferences etc.
Tools can be local or remote
Tools can run in parallel, in competition

The bus needs to integrate with version management

John Rushby, SRI VSTTE: Integrating Verification Components—25

Scripting
T hree levels of scripting

Tools:

e [0o0ls should be scriptable

e Better functionality, performance than wrappers

e E.g., SAL model checkers are Scheme scripts over an API
e [est generator is another script over the same API

Wrappers:

e Some functionality can be achieved by a little
programming and maybe some tool invocation

Tool Bus:

e Scripts are chains of judgments

John Rushby, SRI VSTTE: Integrating Verification Components—26

Tool Bus Scripts

e Example
o If A is a finite state machine and P a safety property,
then a model checker can verify P for A

o If B is a conservative abstraction of B, then verification of
B verifies A

o If A is a state machine, and B is predicate abstraction for
A, then B is conservative for A

e How do we know this is sound?

e And that we can trust the computations performed by the
components?

John Rushby, SRI VSTTE: Integrating Verification Components—27

An Evidential Tool Bus

e Each tool should deliver evidence for its judgments
Could be proof objects (independently checkable trail of
basic deductions)
Could be reputation (“Proved by PVS")
Could be diversity (“using both ICS and CVC-Lite")
Could be declaration by user

*x “Because I say so”
* ‘By operational experience”
* "By testing”

e And the tool bus assembles these (on demand)

e And the inferences of its own scripts and operations

e [0 deliver evidence for overall analysis that can be considered
in a safety or assurance case—hence evidential tool bus

John Rushby, SRI VSTTE: Integrating Verification Components—28

T he Evidential Tool Bus

There should be only one evidential tool bus
Just like only one WWW

How to do it?

o Standards committee?
o Competition and cooperation!

Probably not difficult to integrate multiple buses

o Need agreement on ontologies

o Fairly minimal glue code to link them together

We'll be building one

o Initially to integrate PVS and SAL
o And to reconstruct Hybrid-SAL

Will appreciate your input, and hope you'll like to use it, and
to attach your tools

John Rushby, SRI VSTTE: Integrating Verification Components—29

Thank you!

And thanks to Bruno Dutertre, Grégoire Hamon,
lLLeonardo de Moura, Sam Owre, Harald Ruel3, Hassen Saidi,

N. Shankar, and Maria Sorea

You can get our tools and papers from http://fm.csl.sri.com

John Rushby, SRI VSTTE: Integrating Verification Components—30

