
Integrating Verification Components:

The Evidential Tool Bus

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I VSTTE: Integrating Verification Components–1



Integrating (Deductive) Verification Components

• In the beginning there was just (interactive) theorem proving

• Then there were VC generators, decision procedures, model

checkers, abstract interpretation, predicate abstraction, fast

SAT solvers,. . .

• Now there are systems that use several of these

(SDV, Blast,. . . )

• And in 15 years time. . . ?

• We need an architecture that allows us to make opportunistic

use of whatever is out there

◦ And to assemble customized tool chains easily

• It should be robust to changes (in problems and tools)

• And should deliver evidence

John Rushby, SR I VSTTE: Integrating Verification Components–2



Two Kinds of Architecture

Backends Bus

John Rushby, SR I VSTTE: Integrating Verification Components–3



And Two Kinds of Backends

Integrated Endgame

John Rushby, SR I VSTTE: Integrating Verification Components–4



A Simple Case: Endgame Verifiers

• A higher level proof manager calls components (typically,

decision procedures) to discharge subgoals

• Components return only verified or unverified

◦ Embellishments: proof objects and counterexamples

• But the information returned on failure does not guide the

higher-level proof search

◦ Other than to cause it to try something else

◦ Hence endgame verifiers

John Rushby, SR I VSTTE: Integrating Verification Components–5



Endgame Verifier Examples

1979: Stanford Pascal Verifier and STP used decision

procedures for combinations of theories including arithmetic

(STP gave rise to Ehdm, then PVS)

1995: PVS used a BDD-based symbolic model checker

2000: PVS used Mona for WS1S

Not only did theorem provers use model checkers as backends,

some model checkers grew a front-end theorem prover

1998: Cadence SMV had a proof assistant that generated

model checking subproblems by abstraction and composition

And some other systems used an entire interactive theorem

prover for the endgame

1999: VSDITLU: used PVS backend to check side conditions

on Symbolic Definite Integral Table Look-Up in Maple

John Rushby, SR I VSTTE: Integrating Verification Components–6



Integrating Endgame Verifiers

It’s pretty simple

• Provide higher level proof strategies that decompose proof

goals into subgoals that can be steered towards the

competence of the endgame verifier(s)

• Provide a recognizer for proof goals within the competence

of an endgame verifier

• Provide glue code to translate suitable proof goals into the

input of an endgame verifier and to interpret its output

Many classes of endgame verifiers are being honed through

competition

• Improves performance (be careful)

• Standardizes interfaces

• FO provers, BDD packages, SAT solvers, SMT solvers

John Rushby, SR I VSTTE: Integrating Verification Components–7



Evolution of Endgame Verifiers

John Rushby, SR I VSTTE: Integrating Verification Components–8



Evolution of Endgame Verifiers

• One path grows the endgame verifier and specializes and

shrinks the higher-level proof manager

• Example:

◦ SAL language has a type system similar to PVS, but is

specialized for specification of state machines

(as transition relations)

◦ The SAL infinite-state bounded model checker uses an

SMT solver (ICS), so handles specifications over reals and

integers, uninterpreted functions

◦ Often used as a model checker (i.e., for refutation)

◦ But can perform verification with a single higher level

proof rule: k-induction (with lemmas)

◦ Note that counterexamples help debug invariant

John Rushby, SR I VSTTE: Integrating Verification Components–9



Performance of Evolved Endgame Verifiers

• Biphase Mark Protocol is an algorithm for asynchronous

communication

◦ Clocks at either end may be skewed and have different

rates, jitter

◦ So have to encode a clock in the data stream

◦ Used in CDs, Ethernet

◦ Verification identifies parameter values for which data is

reliably transmitted

• Verified in ACL2 by J Moore (1994)

• Three different verifications used PVS

◦ One by Groote and Vaandrager used PVS + UPPAAL

◦ Required 37 invariants, 4,000 proof steps, hours of prover

time to check

John Rushby, SR I VSTTE: Integrating Verification Components–10



Performance of Evolved Endgame Verifiers (ctd.)

• Brown and Pike recently did it with sal-inf-bmc

◦ Used timeout automata to model timed aspects

◦ Statement of theorem discovered systematically using

disjunctive invariants (7 disjuncts)

◦ Three lemmas proved automatically with 1-induction,

◦ Theorem proved automatically using 5-induction

◦ Verification takes seconds to check

• Adapted verification to 8-N-1 protocol (used in UARTs)

◦ Additional lemma proved with 13-induction

◦ Theorem proved with 3-induction (7 disjuncts)

John Rushby, SR I VSTTE: Integrating Verification Components–11



Recap: Two Kinds of Backends

Integrated Endgame

John Rushby, SR I VSTTE: Integrating Verification Components–12



A Difficult Case: Tightly Integrated Components

• Endgame verifiers are easy to integrate because they do not

interact with higher level proof search (nor with each other)

• In fact, they are barely integrated

• Classic Boyer-Moore 1986 paper describes tight integration

of linear arithmetic decision procedure with Nqthm

◦ Two pages of code for endgame decision procedure

◦ Became 60 for integrated version

• PVS takes an intermediate path

◦ Decision procedures are integrated with the rewriter

◦ And used in simplification

• A tractable case is the integration of decision procedures

with each other

John Rushby, SR I VSTTE: Integrating Verification Components–13



Integrated Decision Procedures and SMT Solvers

• Long line of research on integrating decision procedures for

separate theories so they decide the combined theory

◦ Starts with Nelson-Oppen and Shostak methods

◦ Activity continues today: theory, presentation,

verification, and pragmatics

• Recently extended through integration with SAT solving to

yield SMT solvers

◦ Interactions are intense (millions per verification)

◦ Information from decision procedures must be used

efficiently to prune SAT search

◦ Impacts design of individual decision procedures

◦ Engineering choices explored through benchmarking and

competition

• Homogeneous integration: not quite solved, but on the way

John Rushby, SR I VSTTE: Integrating Verification Components–14



SMT Solver Backend

SAT

SMT Solver

ARRAYS

EQUALITY

ARITH

John Rushby, SR I VSTTE: Integrating Verification Components–15



Recap: Two Kinds of Architecture

Backends Bus

John Rushby, SR I VSTTE: Integrating Verification Components–16



A New Case: Integration of Heterogeneous Components

• Modern formal methods tools do more than verification

• They also do refutation (bug finding)

• And test-case generation

• And controller synthesis

• And construction of abstractions

• And generation of invariants

• And . . .

• Observe that these tools can return objects other than

verification outcomes

◦ Counterexamples, test cases, abstractions, invariants

◦ Hence, heterogeneous

John Rushby, SR I VSTTE: Integrating Verification Components–17



Integration of Heterogeneous Components

• The tools that perform these computations can be used in

opportunistic combination

◦ E.g., use static analysis and model checking to find bugs

before attempting verification

• And can use each other as (scripted) components

◦ E.g., use a model checker in test case generation

• And can be used in integrated combinations

◦ E.g., software model checkers generally have a C front

end with CFG analyzer, a predicate abstractor (which

uses decision procedures and possibly a model checker), a

model checker and counterexample generator, a

counterexample concretizer and refinement generator

(using Craig interpolation), and a control loop around the

whole lot

John Rushby, SR I VSTTE: Integrating Verification Components–18



Customized (Re)integration

• LAST (Xia, DiVito, Muñoz) generates MC/DC tests for

avionics code involving nonlinear arithmetic (with floating

point numbers, trigonometric functions etc.)

• It’s built on Blast (Henzinger et al)

• But extends it to handle nonlinear arithmetic using RealPaver

(a numerical nonlinear constraint unsatisfiability checker)

◦ Added 1,000 lines to CIL front end for MC/DC

◦ Added 2,000 lines to RealPaver to integrate with

CVC-Lite (Nelson-Oppen style)

◦ Changed 2,000 lines in Blast to tie it all together

• Applied it to Boeing autopilot simulator

◦ Modules with upto 1,000 lines of C

◦ 220 decisions

Generated tests to (almost) full MC/DC coverage in minutes

John Rushby, SR I VSTTE: Integrating Verification Components–19



A Tool Bus

• How can we construct these customized combinations and

integrations easily and rapidly?

• The integrations are coarse-grained (hundreds, not millions of

interactions per analysis), so they do not need to share state

• So we could take the outputs of one tool, massage it suitably

and pass it to another and so on

• A combination of XML descriptions, translations, and a

scripting language could probably do it

• Suitably engineered, we could call it a tool bus

John Rushby, SR I VSTTE: Integrating Verification Components–20



But . . .

• But we’d need to know the names and capabilities of the

tools out there and explicitly to script the desired interactions

◦ And we’d be vulnerable to change

• Whereas I would like to exploit whatever is out there

◦ And in 15 years time there may be lots of things out there

• That is, I want the bus to operate declaratively

◦ By implicit invocation

• And I want evidence that supports the overall analysis

(i.e., the ingredients for a safety or assurance case)

• That is, I want a semantic integration

John Rushby, SR I VSTTE: Integrating Verification Components–21



A Formal Tool Bus
• The data manipulated by tools on bus are formulas in logic

• In fact, they can be seen as formulas in a logic

◦ The Formal Tool Bus Logic

◦ Each tool operates on a sublogic

◦ Syntactic differences masked with XML wrappers

• No point in limiting the expressiveness of the tool bus logic

◦ Should be at least as expressive as PVS

? Higher order, with predicate, structural, and dependent

subtypes, abstract data types, recursive and inductive

definitions, parameterized theories, interpretations

◦ With structured representations for important cases

? State machines (as in SAL), counterexamples, process

algebras, temporal logics . . .

? Handled directly by some tools, can be expanded to

underlying semantics for others

John Rushby, SR I VSTTE: Integrating Verification Components–22



Tool Bus Judgments

The tools on the bus evaluate and construct predicates over

expressions in the logic—we call these judgments

Parser: A is the AST for string S

Prettyprinter: S is the concrete syntax for A

Typechecker: A is a well-typed formula

Finiteness checker: A is a formula over finite types

Abstractor to PL: A is a propositional abstraction for B

Predicate abstractor: A is an abstraction for formula B wrt.

predicates φ

GDP: A is satisfiable

GDP: C is a context (state) representing input G

SMT: ρ is a satisfying assignment for A

John Rushby, SR I VSTTE: Integrating Verification Components–23



Tool Bus Queries

• Tools publish their capabilities and the bus uses these to

organize answers to queries

Query: well-typed?(A)

Response: PVS-typechecker(...) |- well-typed?(A)

The response includes the exact invocation of the tool

concerned

• Queries can include variables

Query: predicate-abstraction?(a, B, φ)

Response:

SAL-abstractor(...) |- predicate-abstraction?(A, B, φ)

The tool invocation constructs the witness, and returns its

handle A

John Rushby, SR I VSTTE: Integrating Verification Components–24



Tool Bus Operation

• The tool bus operates like a distributed datalog framework,

chaining on queries and responses

• Similar to SRI AIC’s Open Agent Architecture

◦ And maybe similar to MyGrid, Linda, . . . ?

• Can have hints, preferences etc.

• Tools can be local or remote

• Tools can run in parallel, in competition

• The bus needs to integrate with version management

John Rushby, SR I VSTTE: Integrating Verification Components–25



Scripting

Three levels of scripting

Tools:

• Tools should be scriptable

• Better functionality, performance than wrappers

• E.g., SAL model checkers are Scheme scripts over an API

• Test generator is another script over the same API

Wrappers:

• Some functionality can be achieved by a little

programming and maybe some tool invocation

Tool Bus:

• Scripts are chains of judgments

John Rushby, SR I VSTTE: Integrating Verification Components–26



Tool Bus Scripts

• Example

◦ If A is a finite state machine and P a safety property,

then a model checker can verify P for A

◦ If B is a conservative abstraction of B, then verification of

B verifies A

◦ If A is a state machine, and B is predicate abstraction for

A, then B is conservative for A

• How do we know this is sound?

• And that we can trust the computations performed by the

components?

John Rushby, SR I VSTTE: Integrating Verification Components–27



An Evidential Tool Bus

• Each tool should deliver evidence for its judgments

◦ Could be proof objects (independently checkable trail of

basic deductions)

◦ Could be reputation (“Proved by PVS”)

◦ Could be diversity (“using both ICS and CVC-Lite”)

◦ Could be declaration by user

? “Because I say so”

? “By operational experience”

? “By testing”

• And the tool bus assembles these (on demand)

• And the inferences of its own scripts and operations

• To deliver evidence for overall analysis that can be considered

in a safety or assurance case—hence evidential tool bus

John Rushby, SR I VSTTE: Integrating Verification Components–28



The Evidential Tool Bus

• There should be only one evidential tool bus

• Just like only one WWW

• How to do it?

◦ Standards committee?

◦ Competition and cooperation!

• Probably not difficult to integrate multiple buses

◦ Need agreement on ontologies

◦ Fairly minimal glue code to link them together

• We’ll be building one

◦ Initially to integrate PVS and SAL

◦ And to reconstruct Hybrid-SAL

• Will appreciate your input, and hope you’ll like to use it, and

to attach your tools

John Rushby, SR I VSTTE: Integrating Verification Components–29



Thank you!

• And thanks to Bruno Dutertre, Grégoire Hamon,

Leonardo de Moura, Sam Owre, Harald Rueß, Hassen Säıdi,

N. Shankar, and Maria Sorea

• You can get our tools and papers from http://fm.csl.sri.com

John Rushby, SR I VSTTE: Integrating Verification Components–30


