Research Report; IFIP WG 10.4 July 2001

Connecting Tools Together

John Rushby

Computer Science Laboratory
SRI International
Menlo Park, California, USA

John Rushby, SRI Invisible Formal Methods: 1

Horses for Courses

e NO one formal methods tool is universally effective
o Often want to apply several tools to a single design

description
o Tool suites are usually of uneven quality

e Results from one tool can help further analysis by another

e [he components of one tool may be useful to another

John Rushby, SRI Invisible Formal Methods: 2

Apply Several Tools To A Single Description

Cf. IF, MoObius, Veritech,. ..

Our approach, SAL, is based on transition relations
(nondeterministic state machines) as the common

representation

Natural representation for several kinds of computational
systems

And used by many Off-The-Shelf tools

John Rushby, SRI Invisible Formal Methods: 3

SAL Language

A way to specify transition relations and their properties

Developed in a loose collaboration with Stanford (David Dill),
Berkeley (Tom Henzinger), and Verimag (Saddek Bensalem)

o InVeSt has adopted the SAL language

Has definitions, guarded commands, modules, synchronous
and asynchronous composition

External representations use XML

John Rushby, SRI Invisible Formal Methods: 4

SAL Tools

We provide

Parser and prettyprinter

Typechecker

Like PVS, can use theorem proving to discharge certain
“well-formedness” requirements

o E.g., no causal loops in synchronous composition
Predicate and data abstractor

Explicit-state model-checker
Tool Bus

Users provide

e Translators from front-end notations into SAL

e Wrappers/translators from SAL to back-end tools

John Rushby, SRI Invisible Formal Methods: 5

SAL Architecture

The SAL Language serves as a hub

Verification

conditions
-o———— Absdtractions

Properties

Not all of these boxes are populated yet

John Rushby, SRI Invisible Formal Methods: 6

Automated Abstraction

Calculate simplified system description that (hopefully)
preserves the property of interest (cf. Predicate abstraction,
abstract interpretation)

The calculation is done by automated theorem proving

The general theorem proving problem is undecidable

o Full automation requires heuristics, which sometimes fail

Classical verif'n poses correctness as single “big theorem”

o So failure to prove it (when true) is catastrophic

Abstraction creates a context for failure-tolerant theorem
proving

o Prove lots of small theorems instead of one big one

o In a context where some failures can be tolerated

John Rushby, SRI Invisible Formal Methods: 7

Integrated, Iterated Analysis

Results from one tool can help further analysis by another

Example
e Abstraction can work better if you know invariants

A model checker can calculate the reachable states

(strongest invariant) of a finite state system

Concretization of the reachable states of an abstraction is an
invariant of the original

So calculate crude finite state abstraction, generate invariant
with model checker, concretize, and iterate

Final verification by model checking accurate, simple model

John Rushby, SRI Invisible Formal Methods: 8

Integrated, Iterated Analysis

John Rushby, SRI Invisible Formal Methods: 9

Even More Integrated, Iterated Analysis!

e (Approximations to) fixpoints of weakest preconditions or
strongest postconditions also generate invariants and can
strengthen those extracted from an abstraction

o Mechanized by theorem proving

o (Strongest postconditions are equivalent to symbolic
simulation, which is independently useful)

e Counterexamples from failed model check help distinguish
bugs from weak abstractions, and also help refine the
abstraction

o Suggest additional properties (invariants) that will help
the theorem prover construct a tighter model

o Suggest additional predicates on which to abstract

John Rushby, SRI Invisible Formal Methods: 10

Truly Integrated, Iterated Analysis!

Recast the goal as one of calculating and accumulating
properties about a design (symbolic analysis)

Rather than just verifying or refuting a specific property

Properties convey information and insight, and provide
leverage to construct new abstractions

o And hence more properties

Requires restructuring of verification tools

o So that many work together

o And so that they return symbolic values and properties
rather than just yes/no results of verifications

This is what SAL is about: Symbolic Analysis Laboratory

John Rushby, SRI Invisible Formal Methods: 11

The Components Of One Tool May Be Useful To Others
e | ots of people use PVS just to get at its decision procedures

We are making new faster version of these available as ICS

o ICS = Integrated Canonizer-Solver (= ICanSolve)

Decides combination of: propositional satisfiability, equality
over uninterpreted function symbols with (linear) arithmetic,
arrays, datatypes

Will later extend to quantifier elimination for decidable
fragment of these

Differs from other packaged decision procedures (e.g., SVC)
in having rich API for adding/retracting facts, testing
formulas

Aim is to enable invisible or ubiquitous formal methods

John Rushby, SRI Invisible Formal Methods: 12

What We Are building

John Rushby, SRI Invisible Formal Methods: 13

Invisible Formal Methods

Use the power of automated deduction, abstraction, and model
checking to augment traditional tools

e Extended static checking (cf. Compaqg SRC's ESC)

e Table checkers (cf. Ontario Hydro)

e Statechart/Stateflow property checkers (cf. OFIS)

e Test case generators (cf. Verimag/IRISA TGV)

And much more to come...

John Rushby, SRI Invisible Formal Methods: 14

From Refutation To Verification

theorem
provers
experimental tools

SAL

model

checking verification
static
anaysis

typechecking

refutation

invisiblefm

John Rushby, SRI Invisible Formal Methods: 15

Acknowledgments

e N. Shankar, Sam Owre, Harald Ruel3, Hassen Saidi

e Saddek Bensalem, Jean-Christophe Filliatre, Klaus Havelund,
Friedrich von Henke, Yassine Lakhnech, César Muinoz, Holger
Pfeifer, Vlad Rusu, Eli Singerman, and many others

John Rushby, SRI Invisible Formal Methods: 16

