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Introduction
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Safety and Hazards

• Suppose a village wants to build a soccer field

• But the only space available is at the edge of a cliff

• Clearly, there’s a hazard
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Dealing With Hazards

• One way to mitigate the hazard is to build a fence at the

edge of the cliff

• But then we must look at technical properties of the fence

◦ How strong is it?

◦ Can it resist collision by n players of weight w at speed s?

◦ What are reasonable values of these parameters?

◦ And what does resist mean? . . . always, probably?

• The fence itself could introduce new hazards

◦ Particularly if we don’t communicate well to suppliers

◦ e.g., suppose it’s made of barbed wire

• Perhaps we should eliminate the hazard

◦ e.g., by bulldozing the cliff
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Safety

• As soon as we postulate the existence of a system, there are

likely to be some events or behaviors that are undesirable

• We first sharpen the notion of undesirable

safety: loss of life, injury, environmental harm,. . .

security: disclosure of sensitive information, unauthorized

modification, . . .

others: loss of money, goods, reputation

• These critical issues are much more important to larger

society than the function of the system (i.e., people falling to

their death vs. having a good game of soccer)

◦ Though sometimes the two coincide: e.g., failure of the

London computer-aided ambulance dispatch system

• Certification, and hence design and assurance, focus on the

critical issues
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Hazards (again)

• Once we know the undesirable events/behaviors

• We can systematically search for hazards that could bring

those undesirable events about

◦ This is hazard analysis

• Then we design our system to eliminate or mitigate hazards

◦ Mitigate means to lessen their seriousness or frequency

◦ So we need metrics on seriousness

◦ And frequencies or probabilities of occurrence

• Our design decisions may introduce new hazards

◦ Recall discussion of A320 crash in Warsaw

(LH 2094, 14 Sept 1993)

• So the process iterates

John Rushby FM and Argument-based Safety Cases: 6



Risk

• Risk is product of severity of bad outcome and its frequency

• Usually want inverse rl’nship between severity and frequency

• e.g., FAA AC 25.1309-1A for civil aircraft: failure conditions

catastrophic: unable to continue safe flight and landing

◦ Not expected to occur in the entire operational life of

all airplanes of one type

severe major: high workload or physical distress so crew

cannot perform tasks accurately or completely

◦ Not expected to occur in the entire operational life of

any one airplane

severe: significant increase in workload or conditions

impairing crew efficiency

◦ Expected to occur one or more times during the

operational life of each airplane of one type

minor: . . .
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Safety and Reliability

• Suppose the hazard is fire in the hold of an airplane

• We could eliminate this by removing oxygen

◦ e.g., pressurizing the hold with nitrogen

• Or we could mitigate it with a fire suppression system

◦ Then the reliability of that system becomes an issue

• Generally best to eliminate rather than mitigate hazards

• But complex systems usually have some components for

mitigation or operation that require extreme reliability

• Reliability is concerned with failure, and there are several

types of failure

◦ e.g., loss of function, malfunction, unintended function

The last two are generally the most serious
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The 10−9 Requirement

• Suppose 1,000 airplanes of one type

• Each flies 3,000 hours per year

• Over a lifetime of 33 years

• That’s 108 hours

• Suppose 10 software-based systems on board with potentially

catastrophic failure conditions

• Then budget for each is a failure rate of 10−9 per hour,

sustained for 15 hours (length of flight)

• That’s where the well-known numbers come from

catastrophic: 10−9 per hour

severe major: 10−7 per hour

severe: 10−5 per hour
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Achieving 10−9

• Hardware is subject to random failures at about 10−6/hr

• Often worse at 35,000 feet (SEUs due to cosmic rays)

• Getting worse as transistors get smaller

• So we need fault-tolerant designs

• Fault tolerance is hard: it adds complexity

◦ Intuitions of engineers from traditional disciplines

(continuous math) are counterproductive, lead to

failure-prone homespun designs

• Most failures in flight s/w are due to faults in fault tolerance

• So rational designs for fault-tolerant systems

◦ And strong evidence for their correctness

Are good intellectual investments
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Assurance for 10−9

• There are two issues for which assurance is required

◦ Fault tolerance correctly deals with random faults

◦ There are no design (aka. systematic) faults

• Assurance for fault tolerance, has two sub-issues

◦ Given assumptions about the kinds of random faults, and

their number (and/or arrival rates)

◦ Prove: assumptions satisfied implies faults tolerated

◦ Probabilistic analysis that assumptions will be satisfied

• Assurance for complete absence of design/software faults

◦ Is unrealistic, and unnecessary (we only need 10−9)

◦ Hence interest in software reliability
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Software Reliability

• Software contributes to system failures through faults in its

requirements, design, implementation—bugs

• A bug that leads to failure is certain to do so whenever it is

encountered in similar circumstances

◦ There’s nothing probabilistic about it

• Aaah, but the circumstances of the system are a stochastic

process

• So there is a probability of encountering the circumstances

that activate the bug

• Hence, probabilistic statements about software reliability or

failure are perfectly reasonable

• Typically speak of probability of failure on demand (pfd), or

failure rate (per hour, say)
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Software Assurance for 10−9

• How can we demonstrate that software (or any complex

discrete system) has failure rates around 10−9?

• Down to about 10−4, it is feasible to measure software

reliability by statistically valid random testing

• But 10−9 would need 114,000 years on test

• What we actually do is a lot of Verif’n and Valid’n (V&V)

◦ Good development processes, plenty of reviews etc.

• What V&V, how much, spec’d by standards and guidelines

◦ e.g., 57 V&V “objectives” at DO-178B Level C (10−5)

◦ 65 objectives at DO-178B Level B (10−7)

◦ 66 objectives at DO-178B Level A (10−9)

• How does amount of V&V (a static global concept) connect

to reliability (a dynamic execution concept)?
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Overview

• Now we’ve seen the main concepts, I can list the topics I

plan to cover

• Formal Methods in support of some aspects of safety analysis

◦ SMT solving, infinite bounded model checking,

k-induction

◦ Assumption synthesis, human factors, real-time, test

generation . . .

• The nature of software assurance

• Argument-based safety cases (vs. standards)
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Formal Methods
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Formal Methods: Analogy with Engineering Mathematics

• Engineers in traditional disciplines build mathematical models

of their designs

• And use calculation to establish that the design, in the

context of a modeled environment, satisfies its requirements

• Only useful when mechanized (e.g., CFD)

• Used in the design loop (exploration, debugging)

◦ Model, calculate, interpret, repeat

• Also used in certification

◦ Verify by calculation that the modeled system satisfies

certain requirements

• Need to be sure that model faithfully represents the design,

design is implemented correctly, environment is modeled

faithfully, and calculations are performed without error
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Formal Methods: Analogy with Engineering Math (ctd.)

• Formal methods: same idea, applied to computational

systems

• The applied math of Computer Science is formal logic

• So the models are formal descriptions in some logical system

◦ E.g., a program reinterpreted as a mathematical formula

rather than instructions to a machine

• And calculation is mechanized by automated deduction:

theorem proving, model checking, static analysis, etc.

• The singular advantage of formal methods over testing,

simulation etc., is that formal calculations (can) cover all

modeled behaviors

• Because finite formulas can represent infinite sets of states

◦ e.g., x < y represents {(0,1), (0,2), ... (1,2), (1,3)...}
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Formal Calculations: The Basic Challenge

• Build mathematical model of system and deduce properties

by calculation

• Calculation is done by automated deduction

• Where all problems are NP-hard, most are superexponential

(22n

), nonelementary (22
2..

.

}n

), or undecidable

• Why? Have to search a massive space of discrete possibilities

• Which exactly mirrors why it’s so hard to provide assurance

for computational systems

• But at least we’ve reduced the problem to a previously

unsolved problem!
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Formal Calculations: Meeting The Basic Challenge

Ways to cope with the massive computational complexity

• Use human guidance

◦ That’s interactive theorem proving—e.g., PVS

• Restrict attention to specific kinds of problems

◦ E.g., model checking—focuses on state machines

• Use approximate models, incomplete search

◦ model checkers are often used this way

• Aim at something other than verification

◦ E.g., bug finding, test case generation

• Verify weak properties

◦ That’s what static analysis typically does

• Give up soundness and/or completeness

◦ Again, that’s what static analysis typically does

• Schedule a breakthrough: disruptive innovation
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Disruptive Innovation

Performance

Time

Low-end disruption is when low-end technology overtakes the

performance of high-end (Christensen)
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Low End Technology: SAT Solving

• Find satisfying assignment to a propositional logic formula

• Formula can be represented as a set of clauses

◦ In CNF: conjunction of disjunctions

◦ Find an assignment of truth values to variable that makes

at least one literal in each clause TRUE

◦ Literal: an atomic proposition A or its negation Ā

• Example: given following 4 clauses

◦ A,B
◦ C ,D
◦ E
◦ Ā, D̄, Ē

One solution is A, C,E, D̄

(A, D, E is not and cannot be extended to be one)

• Do this when there are 100,000s of variables and clauses
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SAT Solvers

• SAT solving is the quintessential NP-complete problem

• But now amazingly fast in practice (most of the time)

◦ Breakthroughs (starting with Chaff) since 2001

? Building on earlier innovations in SATO, GRASP

◦ Sustained improvements, honed by competition

• Has become a commodity technology

◦ MiniSAT is 700 SLOC

• Can think of it as massively effective search

◦ So use it when your problem can be formulated as SAT

• Used in bounded model checking and in AI planning

◦ Routine to handle 10300 states
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SAT Plus Theories

• SAT can encode operations and relations on bounded

integers

◦ Using bitvector representation

◦ With adders etc. represented as Boolean circuits

And other finite data types and structures

• But cannot do not unbounded types (e.g., reals),

or infinite structures (e.g., queues, lists)

• And even bounded arithmetic can be slow when large

• There are fast decision procedures for these theories
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Decision Procedures

Many important theories are decidable (usually unquantified)

• Equality with uninterpreted function symbols

x = y ∧ f(f(f(x))) = f(x) ⊃ f(f(f(f(f(y))))) = f(x)

• Function, record, and tuple updates

f with [(x) := y](z) def= if z = x then y else f(z)

• Linear Arithmetic (over integers and rationals)

x ≤ y ∧ x ≤ 1− y ∧ 2× x ≥ 1 ⊃ 4× x = 2

• It’s known how to combine these

(e.g., Nelson-Oppen method)

Can then decide the combination of theories

2× car(x)− 3× cdr(x) = f(cdr(x)) ⊃

f(cons(4× car(x)− 2× f(cdr(x)), y)) = f(cons(6× cdr(x), y))
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SMT Solving

• Individual and combined decision procedures usually decide

conjunctions of formulas in their decided theories

• SMT allows general propositional structure

◦ e.g., (x ≤ y ∨ y = 5) ∧ (x < 0 ∨ y ≤ x) ∧ x 6= y

. . . possibly continued for 1,000s of terms

• Should exploit search strategies of modern SAT solvers

• So replace the terms by propositional variables

◦ i.e., (A ∨B) ∧ (C ∨D) ∧ E

• Get a solution from a SAT solver (if none, we are done)

◦ e.g., A, D, E

• Restore the interpretation of variables and send the

conjunction to the core decision procedure

◦ i.e., x ≤ y ∧ y ≤ x ∧ x 6= y
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SMT Solving by “Lemmas On Demand”

• If satisfiable, we are done

• If not, ask SAT solver for a new assignment

• But isn’t it expensive to keep doing this?

• Yes, so first, do a little bit of work to find fragments that

explain the unsatisfiability, and send these back to the SAT

solver as additional constraints (i.e., lemmas)

◦ A ∧D ⊃ Ē (equivalently, Ā ∨ D̄ ∨ Ē)

• Iterate to termination

◦ e.g., A, C,E, D̄

◦ i.e., x ≤ y, x < 0, x 6= y, y 6≤ x (simplifies to x < y, x < 0)

◦ A satisfying assignment is x = −3, y = 1

• This is called “lemmas on demand” (de Moura, Ruess,

Sorea) or “DPLL(T)”; it yields effective SMT solvers
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SMT Solvers: Disruptive Innovation in Theorem Proving

• SMT stands for Satisfiability Modulo Theories

• SMT solvers extend decision procedures with the ability to

handle arbitrary propositional structure

◦ Traditionally, case analysis is handled heuristically in the

theorem prover front end

? Where must be careful to avoid case explosion

◦ SMT solvers use the brute force of modern SAT solving

• Or, dually, they generalize SAT solving by adding the ability

to handle arithmetic and other decidable theories

• There is an annual competition for SMT solvers

• Very rapid growth in performance

• Application to verification

◦ Via bounded model checking and k-induction

• And to synthesis, by solving exists-forall problems
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Bounded Model Checking (BMC)

• Given system specified by initiality predicate I and transition

relation T on states S

• Is there a counterexample to property P in k steps or less?

• Can try k = 1, 2, . . .

• Find assignment to states s0, . . . , sk satisfying

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Given a Boolean encoding of I, T , and P (i.e., circuit), this is

a propositional satisfiability (SAT) problem

• If I, T , and P are over the theories decided by an SMT

solver, then this is an SMT problem

◦ Called Infinite Bounded Model Checking (inf-BMC)

• Works for LTL (via Büchi automata), not just invariants
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Verification via BMC: k-Induction

• Ordinary inductive invariance (for P):

Basis: I(s0) ⊃ P (s0)
Step: P (r0) ∧ T (r0, r1) ⊃ P (r1)

• Extend to induction of depth k:

Basis: No counterexample of length k or less (i.e., Inf-BMC)

Step: P (r0)∧T (r0, r1)∧P (r1)∧ · · ·∧P (rk−1)∧T (rk−1, rk) ⊃ P (rk)

This is a close relative of the BMC formula

• Works for LTL safety properties, not just invariants

• Induction for k = 2, 3, 4 . . . may succeed where k = 1 does not

• Note that counterexamples help debug invariant

• Can easily extend to use lemmas

• Inf-BMC blurs line between model checking and theorem

proving: automation, counterexamples, with expressiveness
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Applications of Inf-BMC
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Hazard Analysis

• We need systematic ways to search for hazards

• In physical systems it is common to look for sources of

energy and trace their propagation

• Also look at “pipework” and raise questions prompted by a

list of guidewords

◦ e.g., too much, not enough, early, late, wrong

This is called HAZOP, and it can be reinterpreted for

software (look at data and control flows)

• Can also suppose there has been a system failure, then ask

what could have brought this about

◦ This is fault tree analysis (FTA)

• Or suppose some component has failed and ask what the

consequences could be

◦ This is failure modes and effects analysis (FMEA)
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Hazard Analysis as Model Checking

• We can think of many safety analyses as attempts to

anticipate all possible scenarios/reachable states to check for

safety violations: it’s like state exploration/model checking

• But generally applied to very abstract system model

◦ Done early in the lifecycle, few details available

◦ Analysis done by hand, cannot handle state explosion

• Analysis is approximate (because done by hand)

◦ Explore only paths likely to contain violations

◦ e.g., those that start from component failure (FMEA)

◦ Or backwards from those ending in system failure (FTA)

• Could be improved by automation

• Provided we can stay suitably abstract
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Partially Mechanized Hazard Analysis

• Classical model checking (explicit, symbolic, bounded)

requires a totally concrete design (equivalent to a program)

• Interactive theorem proving can deal with abstract designs

• Use of uninterpreted functions, predicates, and types is key

◦ f(x), g(p, q) etc. where you know nothing about f, g

◦ Except what you add via axioms

• Generally eschewed in HOL, Isabelle, ACL2

◦ Axioms may introduce inconsistencies

• Welcomed in PVS

◦ Soundness guaranteed via theory interpretation and

constructive model

◦ Has decision procedure for ground equality with

uninterpreted functions

• But I’m after pushbutton automation
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Mechanized Hazard Analysis/Assumption Synthesis

• Aha! Inf-BMC can do this

• But how to introduce axioms/assumptions on the

uninterpreted functions?

• Aha! Can do this via synchronous observers
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Synchronous Observers

• Observers are components in a model that “watch” the

behavior of other components: a bit like an assert statement

• Observers raise a flag under certain conditions

◦ Can encode safety and bounded liveness properties

Easy for engineers to write (same language as model)

• Verification

◦ Flag raised on property violation

◦ Model check for G(flag down)

• Test generation

◦ Flag raised when a good test is recognized

◦ Model check for G(flag down), counterexample is test

• Hazard analysis/assumption synthesis

◦ Flag raised when assumptions violated

◦ Model check for G(flag down => behavior is correct)
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Example: Assumption Synthesis

• This is related to hazard analysis, as we’ll see

• Recall for fault tolerance, we need to prove

◦ assumptions satisfied implies faults tolerated

• We turn it around and ask under what assumptions does our

design work (i.e., tolerate faults)?

• Violations of these assumptions are then the hazards to this

design

• We must find all these hazards and consider their probability

of occurrence

John Rushby FM and Argument-based Safety Cases: 36



Example: Self-Checking Pair

• A component that fails by stopping cleanly is fairly easy to

deal with

• The danger is components that do the wrong thing

• We’re concerned with random faults, so faults in separate

components should be independent

◦ Provided they are designed as fault containment units

(FCUs) — independent power supplies, locations etc.

◦ And ignoring high intensity radiated fields (HIRF) — and

other initiators of correlated faults

• So we can duplicate the component and compare the outputs

◦ Pass on the output when both agree

◦ Signal failure on disagreement

• Under what assumptions does this work?
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Example: Self-Checking Pair (ctd. 1)

control_out
data_in

data_in

control_out
m_data

d
is
tr
ib
u
to
r

c
h
e
c
k
e
r

controller

c_data

safe_out

fault

con_out

data_in

mon_out
controller
(monitor)

• Controllers apply some control law to their input

• Controllers and distributor can fail

◦ For simplicity, checker is assumed not to fail

• Need some way to specify requirements and assumptions

• Aha! correctness requirement can be an idealized controller
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Example: Self-Checking Pair (ctd. 2)

control_out
data_in

data_in

control_out
m_data

ideal

d
is
tr
ib
u
to
r

c
h
e
c
k
e
r

controller

c_data

ideal_out

safe_out

fault

con_out

data_in

mon_out
controller
(monitor)

The controllers can fail, the ideal cannot

If no fault indicated safe out and ideal out should be the same

Model check for G((NOT fault => safe out = ideal out))
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Example: Self-Checking Pair (ctd. 3)

control_out

errorflag
data_in

data_in
control_out

errorflag

m_data

ideal

d
is
tr
ib
u
to
r

ch
ec
k
er

controller

c_data

ideal_out

safe_out

fault

con_out

data_in

merror

cerror

mon_out
controller
(monitor)

assumptions

violation

We need assumptions about the types of fault that can be

tolerated: encode these in the assumptions observer

G(violation = down => (NOT fault => safe out = ideal out))
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Synthesized Assumptions for Self-Checking Pair

• We will examine this example with the SAL model checker

• Initially, no assumptions

• Counterexamples help us understand what is wrong or

missing

• Will discover four assumptions

• Then verify that the design is correct under these

assumptions

• Then consider the probability of violating these assumptions

and modify our design so that the most likely one is

eliminated
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selfcheck.sal: Types

selfcheck: CONTEXT =

BEGIN

sensor_data: TYPE;

actuator_data: TYPE;

init: actuator_data;

laws(x: sensor_data): actuator_data;

metasignal: TYPE = {up, down};
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selfcheck.sal: Ideal Controller

ideal: MODULE =

BEGIN

INPUT

data_in: sensor_data

OUTPUT

ideal_out: actuator_data

INITIALIZATION

ideal_out = init;

TRANSITION

ideal_out’ = laws(data_in)

END;
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selfcheck.sal: Ordinary Controller

controller: MODULE =

BEGIN

INPUT

data_in: sensor_data

OUTPUT

control_out: actuator_data, errorflag: metasignal

INITIALIZATION

control_out = init; errorflag = down;

TRANSITION

[ normal: TRUE -->

control_out’ = laws(data_in); errorflag’ = down;

[] hardware_fault: TRUE -->

control_out’ IN {x: actuator_data | x /= laws(data_in)};
errorflag’ = up;

] END;
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selfcheck.sal: Distributor

distributor: MODULE =

BEGIN

INPUT

data_in: sensor_data

OUTPUT

c_data, m_data: sensor_data

INITIALIZATION

c_data = data_in; m_data = data_in;

TRANSITION

[ distributor_ok: TRUE -->

c_data’ = data_in’; m_data’ = data_in’;

[] distributor_bad: TRUE -->

c_data’ IN {x: sensor_data | TRUE};
m_data’ IN {y: sensor_data | TRUE};

] END;
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selfcheck.sal: Checker

checker: MODULE =

BEGIN

INPUT

con_out: actuator_data, mon_out: actuator_data

OUTPUT

safe_out: actuator_data, fault: boolean

INITIALIZATION

safe_out = init; fault = FALSE;

TRANSITION

safe_out’ = con_out’;

[

disagree: con_out’ /= mon_out’ --> fault’ = TRUE

[] ELSE -->

]

END;
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selfcheck.sal: Wiring up the Self-Checking Pair

scpair: MODULE = distributor

|| (RENAME

control_out TO con_out,

data_in TO c_data,

errorflag TO cerror

IN controller)

|| (RENAME

control_out TO mon_out,

data_in to m_data,

errorflag TO merror

IN controller);

|| checker
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selfcheck.sal: Assumptions

assumptions: MODULE =

BEGIN

OUTPUT

violation: metasignal

INPUT

data_in, c_data, m_data: sensor_data,

cerror, merror: metasignal,

con_out, mon_out: actuator_data

INITIALIZATION

violation = down

TRANSITION

[ assumption_violation:

FALSE % OR your assumption here (actually hazard)

--> violation’ = up;

[] ELSE --> ] END;
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selfcheck.sal: Testing the Assumptions

scpair_ok: LEMMA

scpair || assumptions || ideal |-

G(violation = down

=> (NOT fault => safe_out = ideal_out));

% sal-inf-bmc selfcheck scpair_ok -v 3 -it
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Assumption Synthesis: First Counterexample

• Both controllers have hardware faults

• And generate same, wrong result

• Derived hazard (assumption is its negation)

cerror’ = up AND merror’ = up AND con_out’ = mon_out’

Assumption module reads data of different ”ticks”;

important to reference correct values (new state here)

• This hazard requires a double failure

◦ Any double failure may be considered improbable

• Here, require double failure that gives same result

◦ Highly improbable, unless a systematic fault

Worth thinking about
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Assumption Synthesis: Second Counterexample

• Distributor has a fault: sends wrong value to one controller

• The controller that got the good value has a fault, generates

same result as correct one that got the bad input

• Derived hazard (assumption is its negation)

m_data /= c_data

AND (merror’ = up OR cerror’ = up)

AND mon_out’ = con_out’

• Double fault, so highly improbable
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Assumption Synthesis: Third Counterexample

• Distributor has a fault: sends (different) wrong value(s) to

one or both controllers: Byzantine/SOS fault

• It just happens the different inputs produce same outputs

• Very dubious you could find this with a concrete model

◦ Such as is needed for conventional model checking

◦ Likely to use laws(x) = x+1 or similar

• Derived hazard (assumption is its negation)
m_data /= c_data

AND (merror’ = down AND cerror’ = down)

AND mon_out’ = con_out’

• Quite plausible

• But fixable: pass inputs to checker

◦ This also reduces likelihood of the previous hazard
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Assumption Synthesis: Fourth Counterexample

• Distributor has a fault: sends same wrong value to both

controllers

• Derived hazard (assumption is its negation)

m_data = c_data AND m_data /= data_in

• This one we need to worry about

• Byzantine/SOS fault at the distributor is most likely to

generate the previous two cases

◦ This is an unlikely random fault, but suggests a possible

systematic fault
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Assumption Synthesis Example: Summary

• We found four assumptions for the self-checking pair

◦ When both members of pair are faulty, their outputs differ

◦ When the members of the pair receive different inputs,

their outputs should differ

? When neither is faulty: can be eliminated

? When one or more is faulty

◦ When both members of the pair receive the same input,

it is the correct input

• Can prove by 1-induction that these are sufficient

◦ sal-inf-bmc selfcheck scpair ok -v 3 -i -d 1

• One assumption can be eliminated by redesign, two require

double faults

• Attention is directed to the most significant case
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Aside: Dealing with Actuator Faults

• One approach, based on self-checking pairs does not attempt

to distinguish computer from actuator faults

• Must tolerate one actuator fault and one computer fault

simultaneously

241 3

actuator 1 actuator 2

P M

self−checking
pair

• Can take up to four frames to recover control
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Consequences of Slow Recovery

• Must use large, slow moving ailerons rather than small, fast

ones

◦ Hybrid systems/control theory verification question: why?

• As a result, wing is structurally inferior

• Holds less fuel

• And plane has inferior flying qualities

• All from a choice about how to do fault tolerance
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Physical Averaging At The Actuators

• Alternative uses averaging at the actuators

◦ E.g., multiple coils on a single solenoid

◦ Or multiple pistons in a single hydraulic pot

• Hybrid systems verification question: how well can this work?
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Conclusions

• Formal methods, and formal analysis and calculation can be

used for several purposes

◦ Verification

◦ Consistency and completeness checking

◦ And also exploration, synthesis, test generation

• Most faults, and most serious faults, are introduced early in

the lifecycle

◦ Hazard analysis and safety analysis (see Nimrod report)

◦ Requirements

So that’s where the biggest payoff for formal methods may be

• Need abstraction and automation: Inf-BMC is a suitable tool
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More Examples

If there is interest, we can look at more examples using

Inf-BMC and other automated techniques at 13:30 on

Wednesday

• Byzantine agreement (cf. assumptions needed for the

self-checking pair)

◦ This is a good example to compare SMC and BMC, and

to see “dial twiddling” in SMC

• Real time systems

• Automated test generation

• Human factors (mental models)

• Doron’s little fairness example

• Relational algebra in PVS
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Argument-Based Safety Cases
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The Basis For Assurance and Certification

• We have claims or goals that we want to substantiate

◦ In our case, they will claims be about safety

◦ In other fields, they may be about security, or

performance

◦ Or some combination

E.g., no catastrophic failure condition in the life of the fleet

• We produce evidence about the product and its development

process to support the claims

◦ E.g., analysis and testing of the product and its design

◦ And documentation for the process of its development

• And we have an argument that the evidence is sufficient to

support the claims

• Surely, this is the intellectual basis for all certification regimes

John Rushby FM and Argument-based Safety Cases: 61



Standards-Based Approaches to Certification

• Applicant follows a prescribed process

◦ Delivers prescribed outputs

? e.g., documented requirements, designs, analyses, tests

and outcomes; traceability among these

These provide evidence

• The goals and argument are largely implicit

• DO-178B (civil aircraft) is like this

• Works well in fields that are stable or change slowly

◦ No accidents due to software, but several incidents

◦ Can institutionalize lessons learned, best practice

? e.g. evolution of DO-178 from A to B to C
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Standards-Based Approaches to Certification (ctd.)

• May be less suitable with novel problems, solutions, methods

• Basis in lessons learned may not anticipate new challenges

◦ NextGen (decentralized air traffic control) may be like this

◦ Also rapidly moving fields, like medical devices

• Basis in tried-and-true methods can be a brake on innovation

◦ Reluctance to use automated verification may be like this

• In the absence of explicit arguments, don’t know what

alternative evidence might be equally or more effective

◦ E.g., what argument does MC/DC testing support?

◦ MC/DC is a fairly onerous structural coverage criterion

◦ For DO-178B Level A, must generate tests from

requirements, achieve MC/DC on the code
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Predator Crash near Nogales

• NTSB A-07-65 through 86

• Predator B crashed near Nogales NM, 25 April 2006

• Operated by Customs and Border Protection

• Pilot inadvertently shutdown the engine

◦ Numerous operational errors

• No engine, so went to battery power

• Battery bus overload

• Load shedding turned off satcomms and transponder

• Descended out of control through civil airspace with no

transponder and crashed 100 yards from a house

• Novel kind of system, or just didn’t do a good job?

John Rushby FM and Argument-based Safety Cases: 64



Another Recent Incident

• Fuel emergency on Airbus A340-642, G-VATL, on 8 February

2005 (AAIB SPECIAL Bulletin S1/2005)

• Toward the end of a flight from Hong Kong to London: two

engines flamed out, crew found certain tanks were critically

low on fuel, declared an emergency, landed at Amsterdam

• Two Fuel Control Monitoring Computers (FCMCs) on this

type of airplane; they cross-compare and the “healthiest” one

drives the outputs to the data bus

• Both FCMCs had fault indications, and one of them was

unable to drive the data bus

• Unfortunately, this one was judged the healthiest and was

given control of the bus even though it could not exercise it

• Further backup systems were not invoked because the

FCMCs indicated they were not both failed
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Implicit and Explicit Factors

• See also ATSB incident report for in-flight upset of Boeing

777, 9M-MRG (Malaysian Airlines, near Perth Australia)

• And accident report for violent pitching of A330, VH-QPA

(QANTAS, near Perth Australia)

• How could gross errors like these pass through rigorous

assurance standards?

• Maybe effectiveness of current certification methods depends

on implicit factors such as safety culture, conservatism

• Current business models are leading to a loss of these

◦ Outsourcing, COTS, complacency, innovation

• Surely, a credible certification regime should be effective on

the basis of its explicit practices

• How else can we cope with challenges of the future?
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The Argument-Based Approach to Certification

• E.g., UK air traffic management (CAP670 SW01), defence

(DefStan 00-56), Railways (Yellow Book), EU Nuclear,

growing interest elsewhere (e.g., FDA, NTSB)

• Applicant develops a safety case

◦ Whose outline form may be specified by standards or

regulation (e.g., 00-56)

◦ Makes an explicit set of goals or claims

◦ Provides supporting evidence for the claims

◦ And arguments that link the evidence to the claims

? Make clear the underlying assumptions and judgments

? Should allow different viewpoints and levels of detail

• The case is evaluated by independent assessors

• Generalized to security, dependability, assurance cases
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Pros and Cons

• The main novelty in safety cases is the explicit argument

• Allows innovation, helps in accident analysis

• Could alleviate some burdens at higher DALs/SILs

• But how credible is the assessment of a novel argument?

◦ cf. Nimrod safety case

• Especially when real safety cases are huge

• Need tools to manage/analyze large cases

• Safety cases had origin in UK due to numerous disasters:

maybe they should just learn to apply standards

• Standards establish a floor

• Can still employ standards in parts of a case
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Standards in Argument-Based Safety Cases

• Cases contain high-level elements such as “all hazards

identified and dealt with”

• All hazards? How do we argue this?

• Could appeal to accepted process for hazard identification

◦ E.g., ISO 14971 (medical devices)

• So there is a role for standards within safety cases

• Not enough to say “we applied 14971”

• Need to supply evidence from its application to this case

John Rushby FM and Argument-based Safety Cases: 69



Safety and Correctness

• Currently, we apply safety analysis methods to an informal

system description

◦ Little automation, but in principle

◦ These are abstracted ways to examine all reachable states

◦ So the tools of automated verification (a species of

formal methods) can assist here

• Then, to be sure the implementation does not introduce new

hazards, we require it exactly matches the analyzed

description

◦ Hence, most implementations standards are about

correctness, not safety

◦ And are burdensome at higher DALs/SILs
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Implementation Standards Focus on Correctness

safety

verification

correctness

safety goal system rqts

software rqts

code

software specs

system specs

validation

• As more of the system design goes into software

• The design/implementation boundary should move

• Safety/correctness analysis moves with it
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Systems and Components

• The FAA certifies airplanes, engines and propellers

• Components are certified only as part of an airplane or engine

• That’s because it’s the interactions that matter and it’s not

known how to certify these compositionally

◦ i.e., in a modular manner

• But modern engineering and business practices use massive

subcontracting and component-based development that

provide little visibility into subsystem designs

• And for systems like NextGen there is no choice but a

compositional approach

• And it may in part be an adaptive system

◦ i.e., some of its behavior determined at runtime

John Rushby FM and Argument-based Safety Cases: 72



Compositional and Incremental Certification

• These are immensely difficult

◦ Undesired emergent behavior due to interactions

• Safety case may not decompose along architectural lines

◦ Important insight (Ibrahim Habli & Tim Kelly)

• But, in some application areas we can insist that it does

◦ Goes to the heart of what is an architecture

◦ A good one supports and enforces the safety case

• This is what partitioning in IMA is all about

◦ IMA is integrated modular avionics

• But also need better understanding and control of failures in

intended interactions

◦ cf. elementary and composite interfaces (Kopetz)
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Two Kinds of Uncertainty In Certification

• One kind concerns failure of a claim, usually stated

probabilistically (frequentist interpretation)

◦ E.g., 10−9 probability of failure per hour,

or 10−3 probability of failure on demand

• The other kind concerns failure of the assurance process

◦ Seldom made explicit

◦ But can be stated in terms of subjective probability

? E.g., 95% confident this system achieves 10−3

probability of failure on demand

• Demands for multiple sources of evidence are generally aimed

at the second of these
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Probabilistic Support for Arguments

• If each assumption or subargument has only a probability of

being valid

• How valid is the conclusion?

• Difficult topic, several approaches, none perfect

◦ Probabilistic logic (Carnap)

◦ Evidential reasoning (Dempster-Shaefer)

◦ Bayesian analysis and Bayesian Belief Nets (BBNs)

• Common approach, recently shown sound, is to develop

assurance for, say 10−5 with 95% confidence, then use within

the safety case as if it were 10−3 with certainly

• May also employ multi-legged arguments
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Bayesian Belief Nets

• Bayes Theorem is the principal tool for analyzing subjective

probabilities

• Allows a prior assessment of probability to be updated by

new evidence to yield a rational posterior probability

◦ E.g., P(C) vs. P(C | E)

• Math gets difficult when the models are complex

◦ i.e., when we have many conditional probabilities of the

form p(A | B and C or D)

• BBNs provide a graphical representation for hierarchical

models, and tools to automate the calculations

• Can allow principled construction of multi-legged arguments
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BBN Example (Multi-Legged Argument)

O

T

C

V

Z

S

Z: System Specification

O: Test Oracle

S: System’s true quality

T: Test results

V: Verification outcome

C: Conclusion

Example joint probability table: successful test outcome

Correct System Incorrect System

Correct Oracle Bad Oracle Correct Oracle Bad Oracle

100% 50% 5% 30%
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Connections to Philosophy

• Philosophy of science touches on similar topics

• Theories cannot be confirmed, only refuted (Popper)

• Yes, but some theories have more confirmation than others

• Studied by confirmation theory

(part of Bayesian Epistemology)

• Confirmation for claim C given evidence E:

c(C, E) = P(E | C) - P(E | not C)

Or logarithm of this

• Argumentation is also a topic of study, distinct from formal

proof (there are journals devoted to this)
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Argumentation

• Certification is ultimately a judgement

• So classical formal reasoning may not be entirely appropriate

• Advocates of assurance cases often look to Toulmin’s model

of argument

(Argument)

(Evidence)

Backing

Grounds
Qualifier Claim

Rebuttal
Warrant

subclaim
Grounds

(Evidence)

GSN, CAE are based on this
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Toulmin’s Model of Argument (ctd.)

Claim: This is the expressed opinion or conclusion that the

arguer wants accepted by the audience

Grounds: This is the evidence or data for the claim

Qualifier: An adverbial phrase indicating the strength of the

claim (e.g., certainly, presumably, probably, possibly, etc.)

Warrant: The reasoning or argument (e.g., rules or principles)

for connecting the data to the claim

Backing: Further facts or reasoning used to support or

legitimate the warrant

Rebuttal: Circumstances or conditions that cast doubt on the

argument; it represents any reservations or “exceptions to

the rule” that undermine the reasoning expressed in the

warrant or the backing for it
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Formal Methods Support for Arguments

• Formal logic focuses on inference whereas in safety cases

we’re interested in justification and persuasion

• Toulmin stresses these

• Makes sense if we’re arguing about aesthetics or morality,

where reasonable people may have different views

◦ But we’re arguing about properties of designed artifacts

• Furthermore, he had only the logic technology of 1950

• I suspect we can now do better using formal verification

technology to represent and analyze cases

◦ Make cases “active” so you can explore them like a

spreadsheet: use Inf-BMC or other automation to allow

interactive examination

◦ But no illusions that you can “verify” each subclaim
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Argument Support for Formal Methods

• Formal verification typically proves

◦ assumptions + design => requirements

And we think of the proof as absolute, but

• How do we know these are the right assumptions?

• How do we know these are the right requirements?

• How do we know the design is implemented correctly?

◦ All the way down

• Is this really the whole design?

• Safety cases provide a framework for addressing these

◦ Provides the useful notion of assurance deficit
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Conclusion

• Whether done by following standards or by developing an

argument-based safety case, assurance for a safety-critical

system is a huge amount of work, all of it important

• Human judgement and experience are vital

• I believe we should use formal methods to the greatest

extent possible, and in such a way that human talent is

liberated to focus on the topics that really need it

• So I adovcate using formal methods for exploration and

synthesis, in addition to verification

• And also to tie the whole argument (including its nonformal

parts) together

• And I advocate ecelecticism in methods and tools

◦ Loose federations interacting via a toolbus

• What do you think?
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What Does V&V Achieve?

This is joint work with Bev Littlewood (City Univ, London)

John Rushby FM and Argument-based Safety Cases: 84



Measuring/Predicting Software Reliability

• For pfds down to about 10−4, it is feasible to measure

software reliability by statistically valid random testing

• But 10−9 would need 114,000 years on test

• So how do we establish that a piece of software is adequately

reliable for a system that requires extreme reliability?

• Most standards for system safety (e.g., IEC 61508,

DO178B) require you to show that you did a lot of V&V

◦ e.g., 57 V&V “objectives” at DO178B Level C (10−5)

• And you have to do more for higher levels

◦ 65 objectives at DO178B Level B (10−7)

◦ 66 objectives at DO178B Level A (10−9)

• What’s the connection between amount of V&V and degree

of software reliability?
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Aleatory and Epistemic Uncertainty

• Aleatory or irreducible uncertainty

◦ is “uncertainty in the world”

◦ e.g., if I have a coin with P (heads) = ph, I cannot predict

exactly how many heads will occur in 100 trials because

of randomness in the world

Frequentist interpretation of probability needed here

• Epistemic or reducible uncertainty

◦ is “uncertainty about the world”

◦ e.g., if I give you the coin, you will not know ph; you can

estimate it, and can try to improve your estimate by

doing experiments, learning something about its

manufacture, the historical record of similar coins etc.

Frequentist and subjective interpretations OK here
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Aleatory and Epistemic Uncertainty in Models

• In much scientific modeling, the aleatory uncertainty is

captured conditionally in a model with parameters

• And the epistemic uncertainty centers upon the values of

these parameters

• As in the coin tossing example: ph is the parameter
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Aleatory and Epistemic Uncertainty for Software

• We have some probabilistic property of the software’s

dynamic behavior

◦ There is aleatoric uncertainty due to variability in the

circumstances of the software’s operation

• We examine the static attributes of the software to form an

epistemic estimate of the property

◦ More examination refines the estimate

• For what kinds of properties does this work?
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Perfect Software

• Property cannot be about individual executions of the

software

◦ Because the epistemic examination is static (i.e., global)

◦ This is the difficulty with reliability

• Must be a global property, like correctness

• But correctness is relative to specifications, which themselves

may be flawed

• We want correctness relative to the critical claims

• Call that perfection

• Software that will never experience a failure in operation, no

matter how much operational exposure it has
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Possibly Perfect Software

• You might not believe a given piece of software is perfect

• But you might concede it has a possibility of being perfect

• And the more V&V it has had, the greater that possibility

• So we can speak of a probability of perfection

◦ A subjective probability

• For a frequentist interpretation, think of all the software that

might have been developed by comparable engineering

processes to solve the same design problem as the software

at hand

◦ And that has had the same degree of V&V

◦ The probability of perfection is then the probability that

any software randomly selected from this class is perfect
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Probabilities of Perfection and Failure

• Probability of perfection relates to correctness-based V&V

• And it also relates to reliability:

By the formula for total probability

P (s/w fails [on a randomly selected demand]) (1)

= P (s/w fails | s/w perfect)× P (s/w perfect)

+ P (s/w fails | s/w imperfect)× P (s/w imperfect).

• The first term in this sum is zero, because the software does

not fail if it is perfect (other properties won’t do)

• Hence, define

◦ pnp probability the software is imperfect

◦ pfnp probability that it fails, if it is imperfect

• Then P (software fails) < pfnp × pnp

• This analysis is aleatoric, with parameters pfnp and pnp
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Epistemic Estimation

• To apply this result, we need to assess values for pfnp and pnp

• These are most likely subjective probabilities

◦ i.e., degrees of belief

• Beliefs about pfnp and pnp may not be independent

• So will be represented by some joint distribution F (pfnp, pnp)

• Probability of system failure will be given by the

Riemann-Stieltjes integral∫
0≤pfnp≤1
0≤pnp≤1

pfnp × pnp dF (pfnp, pnp). (2)

• If beliefs can be separated F factorizes as F (pfnp)× F (pnp)

• And (2) becomes Pfnp × Pnp

Where these are the means of the posterior distributions

representing the assessor’s beliefs about the two parameters
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Crude Epistemic Estimation

• If beliefs cannot be separated, we can make conservative

approximations to assess P (software fails) < pfnp × pnp

• Assume software always fails if it is imperfect (i.e., pfnp = 1)

• Then, very crudely, and very conservatively,

P (software fails) < P (software imperfect)

Dually, probability of perfection is a lower bound on reliability

• Alternatively, can assume software is imperfect (i.e., pnp = 1)

◦ This is the conventional assumption

◦ Estimate of pfnp is then taken as system failure rate

◦ Any value pnp < 1 would improve this
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Less Crude Epistemic Estimation

• Littlewood and Povyakalo show that if we have

◦ pnp < a with doubt A (i.e., confidence 1−A)

◦ pfnp < b with doubt B (i.e., P (pfnp < b) > 1−B)

Then system failure rate is less than a× b with doubt A + B

• e.g., pnp, pfnp both 10−3 at 95% confidence,

gives 10−6 for system at 90% confidence

• They also show (under independence assumption) that large

number of failure-free runs shifts assessment from imperfect

but reliable toward perfect

• Also some evidence for perfection can come from other

comparable software
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Two Channel Systems

• We saw a self-checking pair earlier

• Components were identical; threat was random faults

• Diverse components could protect against software faults

• Many safety-critical systems have two (or more) diverse

“channels” like this: e.g., nuclear shutdown, flight control

• One operational channel does the business

• A simpler channel provides a backup or monitor

• Cannot simply multiply the pfds of the two channels to get

pfd for the system

◦ Failures are unlikely to be independent

◦ E.g., failure of one channel suggests this is a difficult

case, so failure of the other is more likely

◦ Infeasible to measure amount of dependence

So, traditionally, difficult to assess the reliabilty delivered
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Two Channel Systems and Possible Perfection

• But if the second channel is simple enough to support a

plausible claim of possible perfection

◦ Its imperfection is conditionally independent of failures in

the first channel at the aleatory level

◦ Hence, system pfd is conservatively bounded by product

of pfd of first channel and probability of imperfection of

the second

◦ P (system fails on randomly selected demand ≤ pfdA × pnpB

• Epistemic assessment raises same issues as before

• May provide justification for some of the architectures

suggested in ARP 4754

◦ e.g., 10−9 system made of Level C operational channel

and Level A monitor
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Type 1 and Type 2 Backup/Monitor Failures

• Fuel emergency on Airbus A340-642, G-VATL,

8 February 2005

◦ Type 1 failure: monitor did not work

• EFIS Reboot during spin recovery on Airbus A300 (American

Airlines Flight 903), 12 May 1997

◦ Type 2 failure: monitor triggered false alarm

• These were the wrong way round on preprints

• Full treatment derives risk of these kinds of failures given

possibly perfect backups or monitors

• Current proposals are for formally synthesized/verified

monitors

• So estimates of perfection for formal monitors are of interest
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Formal Verification and the Probability of Perfection

• We want to assess pnp

• Context is likely a safety case in which claims about a system

are justified by an argument based on evidence about the

system and its development

• Suppose part of the evidence is formal verification

• ◦ i.e., what is the probability of perfection of formally

verified software?

• Let’s consider where formal verification can go wrong
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The Basic Requirements For The Software Are Wrong

• This error is made before any formalization

• It seems to be the dominant source of errors in flight software

• But monitoring and backup software is built to requirements

taken directly from the safety case

◦ If these are wrong, we have big problems

• In any case, it’s not specific to formal verification

• So we’ll discount this concern
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The Requirements etc. are Formalized Incorrectly

• Could also be the assumptions, or the design

• Formalization may be inconsistent

◦ i.e., meaningless

Can be eliminated using constructive specifications

◦ In a tool-supported framework

◦ That guarantees conservative extension

But that’s not always appropriate

◦ Prefer to state assumptions as axioms

◦ Consistency can then be guaranteed by exhibiting a

constructive model (interpretation)

◦ PVS can do this

• So we can eliminate concern about inconsistency
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The Requirements etc. are Formalized Incorrectly (ctd.)

• Formalization may be consistent, but wrong

• Formal specifications that have not been subjected to

analysis are no more likely to be correct than programs that

have never been run

◦ In fact, less so: engineers have better intuitions about

programs than specifications

• Should challenge formal specifications

◦ Prove putative theorems

◦ Get counterexamples for deliberately false conjectures

◦ Directly execute them on test cases

• Social process operates on widely used theories

• In my experience, incorrect formalization is the dominant

source of errors in formal verification

◦ There are papers on errors in my specifications
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The Requirements etc. are Formalized Incorrectly (ctd. 2)

• Even if a theory or specification is formalized incorrectly, it

does not necessarily invalidate all theorems that use it

• Only if the verification actually exploits the incorrectness will

the validity of the theorem be in doubt

◦ Even then, it could still be true, but unproven

• Some verification systems identify all the axioms and

definitions on which a formally verified conclusion depends

◦ PVS does this

If these are correct, then logical validity of the verified

conclusion follows by soundness of the verification system

◦ Can apply special scrutiny to them

• So concern about incorrect formalization can be managed
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The Formal Specification and Verification is

Discontinuous or Incomplete

• Discontinuities arise when several analysis tools are applied in

the same specification

◦ e.g., static analyzer, model checker, timing analyzer

Concern is that different tools ascribe different semantics

• Increasing issue as specialized tools outstrip monolithic ones

◦ Need integrating frameworks such as a tool bus

• Most significant incompleteness is generally the gap between

the most detailed model and the real thing

◦ Algorithms vs. code, libraries, OS calls

That’s one reason why we still need testing

◦ Driven from the formal specification

◦ Cf. penetration tests for security: probe the assumptions

• Concerns about incompletness need to be managed
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Unsoundness In the Verification System

• All verification systems have had soundness bugs

• But none have been exploited to prove a false theorem

• Many efforts to guarantee soundness are costly

◦ e.g., reduction to elementary steps, proof objects

◦ What does soundness matter if you cannot do the proof?

• A better approach is KOT: the Kernel Of Truth (Shankar)

◦ A ladder of increasingly powerful verified checkers

◦ Untrusted prover leaves a trail, blessed by verified checker

◦ More powerful checkers guaranteed by one-time check of

its verification by the one below

◦ The more powerful the verified checker, the more

economical the trail can be (little more than hints)

• So concern about unsoundness can be reduced
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KOT: A Ladder of Verified Checkers

Hints

Certificates

Proofs

Offline

Trusted

Verified

Verifier

Untrusted

Frontline

Kernel

Verified

Checker

Proof 

Verifier

Shankar and Marc Vaucher have verified a modern SAT solver

that is executable (modulo lacunae in the PVS evaluator)
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Application

• Suppose our goal is pnp of 10−4

• Bulk of this “budget” should be divided between incorrect

formalization and incompleteness of the formal analysis, with

small fraction allocated to unsoundness of verification system

• Through sufficiently careful and comprehensive formal

challenges, it is plausible an assessor can assign a subjective

posterior probability of imperfection on the order of 10−4 to

the formal statements on which a formal verification depends

• Through testing and other scrutiny, a similar figure can be

assigned to the probability of imperfection due to

discontinuities and incompleteness in the formal analysis

• By use of a verification system with a trusted or verified

kernel, or trusted, verified, or diverse checkers, assessor can

assign probability of 10−5 or smaller that the theorem prover

incorrectly verified the theorems that attest to perfection
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Discussion

• Probability of perfection is a radical and valuable idea

• Provides the bridge between correctness-based verification

activities and probabilistic claims needed at the system level

• Relieves formal verification, and its tools, of the burden of

absolute perfection

• But perfection is a strong claim, is pnp < 10−4 credible?

◦ Why 10−4 and not 10−3 or 10−5?

◦ We need to develop a basis for numerical estimates

◦ But if you believe my analysis, historical record suggests

DO-178B Level A does justify very strong estimates
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The End

• Safety-critical systems are among the most interesting topics

in computer science

• Raise interesting challenges in design

• And in assurance and certification

◦ Correctness vs. reliability

◦ Formalization vs. argument

• These provide intellectual and practical challenges of great

interest and value
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