Software Verification/Validation Methods and Tools
...or Practical Formal Methods

John Rushby

Computer Science Laboratory

SRI International
Menlo Park, CA

John Rushby, SR Practical Formal Methods: 1



Need: Growing Importance and Cost of Embedded Software
Most of the innovation in new cars is enabled by embedded software
There is more software in individual functions
But the big gains come from integration across functions

Integrated, distributed systems are hard to get right

o Especially if they have to be fault tolerant

o Or are safety-critical

So it is common for more than 75% of embedded softweare development costs to go

Into verification and verification

There is an opportunity to reduce costs and improve quality by applying automation

to verification and verification of embedded systems

John Rushby, SR Practical Formal Methods: 2



Approach: Formal Methods

The basic idea is to use symbolic calculation to provide cheaper and better methods

of verification and validation for software and systems

A single symbolic calculation can subsume many individual numeric cases

0 Justast—yQI(f—y) X ($‘|‘3/)

o Subsumes 36 — 16 =2 x 10and49 —4 =5 x 9and...
Can be used to find rare error scenarios as well as to verify their absence

Symbolic calculation is mechanized using the methods of automated reasoning:

theorem proving, model checking, constraint solving, etc.

There has been sustained progress in these fields for several decades and they

have recently broken through the barriers to practical application

SRI has been a leader of this technology throughout its history

John Rushby, SR Practical Formal Methods: 3



A Spectrum of Formal Methods

Interactive theorem proving: requires great skill and resources

e Can solve very hard problems

e E.g., Verify that Flexray’'s clock synchronization withstands any single fault

Model checking: analysis is automatic but must specify the model and property

e Can search huge state spaces (trillions of reachable states) efficiently
e E.g., Find the worst case start up delay for Flexray

e E.g., Check that horizontally integrated functions interact as expected

Invisible formal methods: driven directly off model-based developments

Uses symbolic calculation to automate traditional work flows

E.g., Generate unit test cases to provide MC/DC coverage

E.g., “Find me an input vector that gets me to here with x > 3"

Check compliance with guidelines (e.g., no 12 o’clock rule in Stateflow)

John Rushby, SR Practical Formal Methods: 4



. A ssurance

ICS™

invisible

formal methods

Our Tools Cover the Spectrum

e

model

checking

John Rushby, SR

-« PVS—™™

theorem

proving

Practical Formal Methods: 5



Our Tools

e PVS: Industrial strength theorem prover (since 1993)

o Probably the most widely used theorem prover in research and education
o Used for verification of AAMP5 (Rockwell)

o And Time Triggered Architecture (TTTech, NASA, Honeywell)

o GM group in Asia has recently applied for a license

o Some other commercial users (e.g., Sun)

e SAL: Industrial strength suite of model checkers (since 2003)

o Used for analysis of TTA startup

o A current application focus is automated test generation

e |CS: Core decision procedures and SAT solver used in PVS and SAL

o Designed to be embedded in other tools

e Seef m csl . sri . comfor descriptions and our roadmap

John Rushby, SR Practical Formal Methods: 6



Invisible Formal Methods

New design practices: model-based development methods provide the artifacts

needed by automated analysis

o Models serve as formal specifications

o We have a formal semantics and translator for Stateflow

New technology (in SAL): very fast, scalable model checkers that can handle

arithmetic and other data types

New ideas: invisible formal methods

These combine to create new opportunities

Example: Generate test vectors that will drive an implementation through all the

states and transitions of its model

John Rushby, SR Practical Formal Methods: 7



Automated Test Case Generation

Basic approach uses the counterexamples generated by a model checker

Counterexample to you cannot get here is a test case that gets you there

There are several technical issues dealing with arithmetic in specifications

o Which we have solved (patents pending)

Existing methods give many short tests with much redundancy

o We have new methods that generate fewer deeper tests (patent pending)

o E.g., State coverage for a 4-speed shift selector in one test of length 86

We also have technology (automated analysis of hybrid systems) that could take test

test generation beyond unit tests into integration and system tests

John Rushby, SR Practical Formal Methods: 8



Benefits: Simplified Vee Diagram

time and money

system

requirements tost

desi gn/CN /unt/ ntegration
test

Automated formal analysis can tighten the vee

John Rushby, SR Practical Formal Methods: 9



Tightened Vee Diagram

time and money

system
requirements ot
des gn/CN /unt/ ntegration

John Rushby, SR Practical Formal Methods: 10




Competition

e Test generation for Statemate is automated by Motorola in Veristate

o Good integration, relies on user-written “test observers,” weak FM technology

e For Simulink by T-VEC

o Good integration and methods, weak FM technology

e For Stateflow by RSI in Reactis

o Good integration and methods, weak FM technology

e \We have the best FM technology, more powerful test generation methods, the ability

to go beyond test generation, but less integration with commercial products

John Rushby, SR Practical Formal Methods: 11



Summary

e \We are the experts in practical formal methods, and can help others
o Evaluate
o Apply
o Develop

this technology

e Our PVS, SAL, ICS tools are mature (though continually enhanced) and available for

licensing

e \We are seeking partners to help us develop and evaluate our technology for

automated unit test generation

o And other applications for invisible formal methods

John Rushby, SR Practical Formal Methods: 12



