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Some Different Approaches to Formal Analysis

(of safety properties of concurrent systems

defined as transition relations)

. . . to be demonstrated on a concrete example

Namely, Lamport’s Bakery Algorithm

• Explicit, symbolic, bounded model checking

• Deduction (theorem proving)

• Abstraction and model checking

• Automated abstraction (failure tolerant theorem proving)

• Bounded model checking (for infinite state systems)

Focus is on pragmatics and tools (many demos), not theory

If there is time and interest, will also look at test generation,

static analysis, and timed systems

John Rushby Formal Calculation: 2



Formal Methods: Analogy with Engineering Mathematics

• Engineers in traditional disciplines build mathematical models

of their designs

• And use calculation to establish that the design, in the

context of a modeled environment, satisfies its requirements

• Only useful when mechanized (e.g., CFD)

• Used in the design loop (exploration, debugging)

◦ Model, calculate, interpret, repeat

• Also used in certification

◦ Verify by calculation that the modeled system satisfies

certain requirements

• Need to be sure that model faithfully represents the design,

design is implemented correctly, environment is modeled

faithfully, and calculations are performed without error
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Formal Methods: Analogy with Engineering Math (ctd.)

• Formal methods: same idea, applied to computational

systems

• The applied math of Computer Science is formal logic

• So the models are formal descriptions in some logical system

◦ E.g., a program reinterpreted as a mathematical formula

rather than instructions to a machine

• And calculation is mechanized by automated deduction:

theorem proving, model checking, static analysis, etc.

• Formal calculations (can) cover all modeled behaviors

• If the model is accurate, this provides verification

• If the model is approximate, can still be good for debugging

(aka. refutation)
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Formal Methods: In Pictures

Testing/Simulation Formal Analysis

Complete coverage

Formal ModelReal System

Partial coverage
(of the modeled system)

Accurate model:

Approximate model:

verification

debugging

John Rushby Formal Calculation: 5



Comparison with Simulation, Testing etc.

• Simulation also considers a model of the system

(designed for execution rather than analysis)

• Testing considers the real thing

• Both differ from formal methods in that they examine only

some of the possible behaviors

• For continuous systems, verification by extrapolation from

partial tests is valid, but for discrete systems, it is not

• Can make only statistical projections, and it’s expensive

◦ 114,000 years on test for 10−9

Limit to evidence provided by testing is about 10−4

• In most applications, testing is used for debugging rather

than verification
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Comparison with Simulation, Testing etc. (ctd)

• Debugging depends on choosing right test cases

◦ Can be improved by explicit coverage measures

◦ Good coverage is almost impossible when the environment

can introduce huge numbers of different behaviors

(e.g., fault arrivals, real-time, asynchronous interactions)

So depends on skill, luck

• Since formal methods can consider all behaviors, certain to

find the bugs

◦ Provided the model, environment, and the properties

checked are sufficiently accurate to manifest them

So depends on skill, luck

• Experience is you find more bugs (and more high-value bugs)

by exploring all behaviors of an approximate model than by

exploring some behaviors of a more accurate one

John Rushby Formal Calculation: 7



Formal Calculations: The Basic Challenge

• Build mathematical model of system and deduce properties

by calculation

• The applied math of computer science is formal logic

• So calculation is done by automated deduction

• Where all problems are NP-hard, most are superexponential

(22
n

), nonelementary (22
2

.
.
.

}n

), or undecidable

• Why? Have to search a massive space of discrete possibilities

• Which exactly mirrors why it’s so hard to provide assurance

for computational systems

• But at least we’ve reduced the problem to a previously

unsolved problem!
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Formal Calculations: Meeting The Basic Challenge

Ways to cope with the massive computational complexity

• Use human guidance

◦ That’s interactive theorem proving—e.g., PVS

• Restrict attention to specific kinds of problems

◦ E.g., model checking—focuses on state machines etc.

• Use approximate models, incomplete search

◦ model checkers are often used this way

• Aim at something other than verification

◦ E.g., bug finding, test case generation

• Verify weak properties

◦ That’s what static analysis typically does

• Give up soundness and/or completeness

◦ Again, that’s what static analysis typically does
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Let’s do an example: Bakery
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The Bakery Algorithm for Distributed Mutual Exclusion

• Idea is based on the way people queue for service in US

delicatessens and bakeries (or Vietnam Airlines in HCMC)

• A machine dispenses tickets printed with numbers that

increase monotonically

• People who want service take a ticket

• The unserved person with the lowest numbered ticket is

served next

◦ Safe: at most one person is served

(i.e., is in the “critical section”) at a time

◦ Live: each person is eventually served

• Preserve the idea without centralized ticket dispenser
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Informal Protocol Description

• Works for n ≥ 1 processes

• Each process has a ticket register, initially zero

• When it wants to enter its critical section, a process sets its

ticket greater than that of any other process

• Then it waits until its ticket is smaller than that of any other

process with a nonzero ticket

• At which point it enters its critical section

• Resets its ticket to zero when it exits its critical section

• Show that at most one process is in its critical section at any

time (i.e., mutual exclusion)
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Formal Modeling and Analysis

• Build a mathematical model of the protocol

• Analyze it for a desired property

• Must choose how much detail to include in the model

◦ Too much detail: analysis may be infeasible

◦ Too little detail: analysis may be inaccurate

(i.e., fail to detect bugs, or report spurious ones)

◦ Must also choose a modeling style that supports intended

form of analysis

• Requires judgment (skill, luck) to do this
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Modeling the Example System and its Properties:

Accuracy and Level of Detail

• The protocol uses shared memory and is sensitive to the

atomicity of concurrent reads and writes

• And to the memory model (on multiprocessors with relaxed

memory models, reads and writes from different processors

may be reordered)

• And to any faults the memory may exhibit

• If we wish to examine the mutual exclusion property of a

particular implementation of the protocol, we will need to

represent the memory model, fault model, and atomicity

employed—which will be quite challenging

• Abstractly (or at first), we may prefer to focus on the

behavior of the protocol in an ideal environment with

fault-free sequentially consistent atomic memory

John Rushby Formal Calculation: 14



Modeling the Example System and its Properties (ctd.)

• Also, although the protocol is suitable for n processes, we

may prefer to focus on the important special case n = 2

• And although each process will perform activities other than

the given protocol, we will abstract these details away and

assume each process is in one of three phases

idle: performing work outside its critical section

trying: to enter its critical section

critical: performing work inside its critical section
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Formalizing the Model (continued)

• We will need to model a system state comprising

For each process:

◦ The value of its ticket, which is a natural number

◦ The phase it is in—recorded in its “program counter”

which takes values idle, trying, critical

• Then we model the (possibly nondeterministic) transitions in

the system state produced by each protocol step

• And check that the desired property is always preserved
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A Formal Description of the Protocol (in SAL)

bakery : CONTEXT =

BEGIN

phase : TYPE = {idle, trying, critical};

ticket: TYPE = NATURAL;

process : MODULE =

BEGIN

INPUT other_t: ticket

OUTPUT my_t: ticket

OUTPUT pc: phase

INITIALIZATION

pc = idle;

my_t = 0
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More Formal Protocol Description (continued)

TRANSITION

[

try: pc = idle -->

my_t’ = other_t + 1;

pc’ = trying

[]

enter: pc = trying AND (other_t = 0 OR my_t < other_t) -->

pc’ = critical

[]

leave: pc = critical -->

my_t’ = 0;

pc’ = idle

]

END;
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More Formal Protocol Description (continued again)

P1 : MODULE = RENAME pc TO pc1 IN process;

P2 : MODULE = RENAME other_t TO my_t,

my_t TO other_t,

pc TO pc2 IN process;

system : MODULE = P1 [] P2;

safety: THEOREM

system |- G(NOT (pc1 = critical AND pc2 = critical));

END
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Analyzing the Specification Using Model Checking

• They are called model checkers because they check whether

a system, interpreted as an automaton, is a (Kripke) model

of a property expressed as a temporal logic formula

• The simplest type of model checker is one that does explicit

state exploration

◦ Basically, a simulator that remembers the states it’s seen

before and backtracks to explore all of them (either

depth-first, breadth-first, or a combination)

◦ Defeated by the state explosion problem at around a few

tens of millions of states

• To get further, need symbolic representations (a short

formula can represent many explicit states)

◦ Symbolic model checkers use BDDs

◦ Bounded model checkers use SAT and SMT solvers
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Explicit State Reachability Analysis

• Keep a set of all states visited so far, and a list of all states

whose successors have not yet been calculated

◦ Initialize both with the initial states

• Pick a state off the list and calculate all its successors

◦ i.e., run all possible one-step simulations from that state

Throw away those seen before

• Add new ones to the set and the list

• Check each new state for the desired (invariant) properties

◦ More complex properties use Büchi automaton in parallel

• Iterate to termination, or some state fails a property

◦ Or run out of memory, time, patience

• On failure, counterexample (backtrace) manifests problem
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Analyzing the Spec’n Using Explicit State Model Checking

• We’ll use sal-esmc

◦ An explicit-state LTL model checker for SAL

◦ Not part of the SAL distribution, just used for demos

Later, we’ll look at symbolic and bounded model checking

• This is an infinite-state specification, so cannot enumerate

the whole state space, but sal-esmc will do its best. . .

sal-esmc -v 3 bakery safety

building execution engine...

num. bits used to encode a state: 44

verifying property using depth-first search...

computing set of initial states...

number of initial states: 1

number of visited states: 1001, states to process: 1001, depth: 749

number of visited states: 10001, states to process: 10001, depth: 7499

number of visited states: 20001, states to process: 20001, depth: 14999

...
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Bug Finding Using Explicit State Model Checking

• So verification will take forever

• But can be useful for finding bugs: if we remove the +1

adjustment to the tickets, we get a counterexample

INVALID, generating counterexample...

number of visited states: 7, verification time: 0.02 secs

------------------------

my_t = 0 other_t = 0

pc1 = idle pc2 = idle

------------------------

pc2 = trying

------------------------

pc2 = critical

------------------------

pc1 = trying

------------------------

my_t = 0 other_t = 0

pc1 = critical pc2 = critical
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Verification by Finite State Model Checking

• For traditional methods of model checking, we need to make

the state space finite

• Use property preserving abstractions (later)

• Or drastic simplification (“downscaling”)

◦ We’ve already done this to some extent, by fixing the

number of processors, n, as 2

◦ We also need to set an upper bound on the tickets

• We’ll start at 8, then raise the limit to 80, 800, . . . until the

search becomes too slow

• We have to modify the protocol to bound the tickets

◦ So it’s not the same protocol

◦ May miss some bugs, or get spurious ones

◦ But it’s a useful check
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The Bounded Specification in SAL

bakery : CONTEXT =

BEGIN

phase : TYPE = {idle, trying, critical};

max: NATURAL = 8;

ticket: TYPE = [0..max];

process : MODULE =

BEGIN

INPUT other_t: ticket

OUTPUT my_t: ticket

OUTPUT pc: phase

INITIALIZATION

pc = idle;

my_t = 0
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The Bounded Specification in SAL (continued)

TRANSITION

[

try: pc = idle AND other_t < max -->

my_t’ = other_t + 1;

pc’ = trying

[]

enter: pc = trying AND (other_t = 0 OR my_t < other_t) -->

pc’ = critical

[]

leave: pc = critical -->

my_t’ = 0;

pc’ = idle

]

END;
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The Bounded Specification in SAL (continued again)

P1 : MODULE = RENAME pc TO pc1 IN process;

P2 : MODULE = RENAME other_t TO my_t,

my_t TO other_t,

pc TO pc2 IN process;

system : MODULE = P1 [] P2;

safety: THEOREM

system |- G(NOT (pc1 = critical AND pc2 = critical));

END
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Results of Model Checking

• For max = 800, sal-esmc reports

sal-esmc -v 3 smallbakery safety

num. bits used to encode a state: 24

verifying property using depth-first search...

computing set of initial states...

number of initial states: 1

number of visited states: 1001, states to process: 1001, depth: 749

number of visited states: 2001, states to process: 2001, depth: 1499

number of visited states: 3001, states to process: 3001, depth: 2249

number of visited states: 4002, states to process: 804, depth: 602

number of visited states: 5002, states to process: 1804, depth: 1352

number of visited states: 6002, states to process: 2804, depth: 2102

number of visited states: 6397

verification time: 0.54 secs

proved.

• For max = 8000, number of visited states grows to 63,997,

and time to 23.86 secs
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More Explicit State Checks

• Sometimes properties are true for the wrong reason

• It is prudent to introduce a bug and make sure it is detected

before declaring victory

◦ We can remove the +1 adjustment to tickets and get a

counterexample as before

• We can check that the counters are capable of increasing

indefinitely by adding the invariant
unbounded: THEOREM system |- G(my_t < max);

(After undoing the deliberate errors just introduced)

• We get another counterexample

• The pattern is: P1 tries, then the following sequence repeats

P1 enters, P2 tries, P1 quits, P2 enters, P1 tries, P2 quits
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Benefits of Explicit State Model Checking

• Can only explore a few million states, but that’s enough

when there are plenty of bugs to find

• Can use hashing (supertrace) to go further

• Can have arbitrarily complex transition relation

◦ Language can include any datatypes and operations

supported by the API

• Breadth first search finds short counterexamples

◦ Can write special search strategies to target specific

cases, or to ignore others (symmetry, partial order)

• LTL is handled via Büchi automata

• Can evaluate functions, not just predicates, on the reachable

states: can calculate worst-cases, do optimization

But it runs out of steam on big examples
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Analysis by Symbolic Model Checking (SMC)

• We could take a symbolic representation of the transition

relation and repeatedly compose it with itself until it reaches

a fixpoint (must exist for finite systems)

• That would give us a representation of the reachable states,

from which we could check safety properties directly

◦ Again, LTL is handled via Büchi automata

• Reduced Ordered Binary Decision Diagrams (BDDs) are a

suitable representation for doing this

• This is the basic idea of symbolic model checking

◦ In practice, use different methods of calculation,

depending on the type of property being checked

• Can construct counterexamples for false properties

• Can (sometimes) handle huge statespaces very efficiently
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Symbolic Model Checking (ctd)

• Our symbolic representation is a purely Boolean one

• So we have to compile the transition relation down to what

is essentially a circuit

◦ Bounded integers represented by bitvectors of suitable size

◦ Addition requires the circuit for a boolean adder

◦ Similarly for other datatypes and operations

• We are doing a kind of circuit synthesis

• May fail for large or complex transition relations

• BDD operations depend on finding a good variable ordering

• Automated heuristics usually effective to about 600 state bits

• After that, manual ordering, special tricks are needed

• Seldom get beyond 1,000 state bits
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Symbolic Model Checking with SAL

• We’ll use sal-smc, uses CUDD for its BDD operations

• For max = 80

sal-smc smallbakery safety

Requires 46 BDD variables, 240 iterations, 637 states, 2.9

seconds to get to proved

• For max = 8000, it’d be tedious doing as above, but

sal-smc smallbakery safety --backward

Requires 70 BDD variables, 5 iterations, 131,180,871 states,

0.5 seconds to get to proved

• Symbolic model checking is “automatic”

• But requires dial twiddling
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More Checks With Symbolic Model Checking

• Do the tickets always increase without bound?
bounded: LEMMA system |- F(my_t > 3);

• The counterexample to this liveness property is a prefix,

followed by a loop (lasso)

• The pattern is P1 tries, enters, leaves, and then repeats

• Does P1 ever get into the critical region?
liveness: THEOREM system |- F(pc1 = critical);

Same counterexample as above (with P2 rather than P1)

• If it tries, does it always succeed?
response: THEOREM system |-

G(pc1 = trying => F(pc1 = critical));

Proved
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Yet More Checks With Symbolic Model Checking

• If it tries infinitely often, does it eventually succeed infinitely

often?
weak_fair: THEOREM system |-

F(G(pc1 = trying)) => G(F(pc1 = critical))

Proved

• If it tries continuously, does it eventually succeed infinitely

often?
strong_fair: THEOREM system |-

G(F(pc1 = trying)) => G(F(pc1 = critical))

Proved

• These properties are getting complicated

• We should look at LTL
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Linear Temporal Logic

• A language for specifying properties of the execution traces

of a system

• Given a system specified by initiality predicate I and

transition relation T , a trace is an infinite sequence of states

s = s0, s1, . . . , si, . . . where I(s0) and T (si, si+1)

• The semantics of LTL defines whether a trace s satisfies a

formula p (written as s |= p)

• The base cases are when p is a predicate on states, and the

operators X (next), and U (strong until)

• s |= φ, where φ is a predicate on states, iff φ is true on the

initial state, i.e., φ(s0)

• s |= X(p) iff w |= p where w = s1, . . . , si, . . .

• s |= U(p, q) iff ∃n : s = s0, s1, . . . sn.w,

∀i ∈ {0, ..., n} : si, . . . sn.w |= p, and w |= q
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Linear Temporal Logic (ctd)

• R (release), G (always), F (eventually), B (before), and W

(weak until) are defined in terms of these

R(p, q) = NOT U(NOT p, NOT q)

G(p) = R(FALSE, p)

F(p) = U(TRUE, p)

B(p, q) = R(p, NOT q)

W(p, q) = G(p) OR U(p, q)

• Iterated next state can be defined in SAL
XXXX(a:boolean): boolean = X(X(X(X(a))));

Or even
posnat: TYPE = {x: natural | x>0};

Xn(a: boolean, n: posnat): boolean =

IF n = 1 THEN X(a) ELSE Xn(X(a), n-1) ENDIF;

X24(a: boolean): boolean = Xn(a, 24);
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Fairness etc.

• G(F(expr)): expr is true infinitely often

• G(F(NOT en OR oc)): if en is enabled continuously, then oc

will occur infinitely often

◦ Weak fairness, often sufficient for progress in

asynchronous systems

◦ Easier as G(F(NOT en) OR F(oc)) or G(G(en) => F(oc))

• G(F(en)) => G(F(oc)): if en is enabled infinitely often, then

oc will occur infinitely often

◦ Strong fairness, often necessary for synchronous

interaction

• G(en => F(oc)): everytime en is true, eventually oc will also

be true; this is a response formula

• init => G(expr): expr is always true in any trace that begins

with a state satisfying init
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Complex LTL Formulas

• Can vizualize complex LTL formulas as Büchi automata

ltl2buchi smallbakery response -dotty
dotty is broken in Ubuntu 8.04, so we have to do
ltl2buchi smallbakery response | neato -tps | gv -

• There are web pages giving LTL for common requirements

• Other property languages

◦ CTL: computation tree logic is a branching time logic

⋆ LTL and CTL are incomparable

⋆ SAL accepts CTL syntax on the common fragment

PSL: Accellera Property Specification Language is a

language developed by industry

• For safety properties, may prefer a synchronous observer

◦ Module that observes the system, sets error flag when it

sees a violation

◦ Model check for G(NOT error)
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From Symbolic to Bounded Model Checking

• Using a different example, sal-smc -v 3 om1 validity

◦ Oral Messages algorithm with n “relays”

• With 3 relays, 10,749,517,287 reachable states

• With 4 relays, 66,708,834,289,920 reachable states

• With 5 relays, run out of patience waiting for counterexample

• Bounded model checkers are specialized to finding

counterexamples

• Sometimes can handle bigger problems than SMC
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Analysis by Bounded Model Checking (BMC)

• Given system specified by initiality predicate I and transition

relation T on states S

• Is there a counterexample to property P in k steps or less?

• Can try k = 1, 2, . . .

• Find assignment to states s0, . . . , sk satisfying

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Given a Boolean encoding of I, T , and P (i.e., circuit), this is

a propositional satisfiability (SAT) problem

• SAT solvers have become amazingly fast recently (see later)

• BMC uses same front end reduction to a Boolean

representation as SMC, but a different back end

• BMC generally needs less tinkering than SMC
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Bounded Model Checking with SAL

• We’ll use sal-bmc, Yices as its SAT solver (can use many

others); the depth k defaults to 10

• Finds the counterexample in the OM1 example in a few

seconds
sal-bmc -v 3 om1 validity -d 3

• And also all these examples
sal-bmc -v 3 smallbakery liveness

sal-bmc -v 3 smallbakery bounded

sal-bmc -v 3 smallbakery unbounded -d 20

• But what about the true property?
sal-bmc -v 3 smallbakery safety -d 20

Can keep increasing the depth, but what does that tell us?
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Extending BMC to Verification

• We should require that s0, . . . , ska are distinct

◦ Otherwise there’s a shorter counterexample

• And we should not allow any but s0 to satisfy I

◦ Otherwise there’s a shorter counterexample

• If there’s no path of length k satisfying these two constraints,

and no counterexample has been found of length less than k,

then we have verified P

◦ By finding its finite diameter

• Seldom feasible in practice
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Alternatively, Automated Induction via BMC

• Ordinary inductive invariance (for P):

Basis: I(s0) ⊃ P (s0)

Step: P (r0) ∧ T (r0, r1) ⊃ P (r1)

• Extend to induction of depth k:

Basis: No counterexample of length k or less

Step: P (r0)∧T (r0, r1)∧P (r1)∧ · · ·∧P (rk−1)∧T (rk−1, rk) ⊃ P (rk)

These are close relatives of the BMC formulas

• Induction for k = 2, 3, 4 . . . may succeed where k = 1 does not

• Note that counterexamples help debug invariant

• Can easily extend to use lemmas
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k-Induction is Powerful

Violations get harder as k grows

invariant

reachable states

all states

initial states
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Verification by k-Induction

• Looking at an inductive counterexample can help suggest

lemmas (idea is to make the initial state infeasible)
sal-bmc -v 3 -d 2 -i smallbakery safety -ice

• Here’s a simple lemma

aux: LEMMA system |- G((my_t = 0 => pc1 = idle)

AND (other_t = 0 => pc2 = idle));

• Can prove with sal-smc, or with 1-induction

sal-bmc -v 3 -d 1 -i smallbakery aux

• Can then verify safety with 2-induction using this lemma

sal-bmc -v 3 -d 2 -i smallbakery safety -l aux
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Aside: BMC Can Also Solve Sudoku
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Bounded Model Checking for Infinite State Systems

• We can discharge the BMC and k-induction efficiently for

Boolean encodings of finite state systems because SAT

solvers do efficient search

• If we could discharge these formulas over richer theories, we

could do BMC and k-induction for state machines over these

theories

• So how about if we combine a SAT solver with decision

procedures for useful theories like arithmetic?

• That’s what an SMT solver does (details later)

◦ Satisfiability Modulo Theories

• BMC using an SMT solver yields an infinite bounded model

checker

◦ i.e., a bounded model checker for infinite state systems
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SMT Solvers

• Ours is called Yices

◦ Typically does very well in the annual SMT competition

• Yices decides formulas in the combined theories of linear

arithmetic over integers and reals (including mixed forms),

fixed size bitvectors, equality with uninterpreted functions,

recursive datatypes (such as lists and trees), extensional

arrays, dependently typed tuples and records of all these,

lambda expressions, and some quantified formulas

• Decides whether formulas are unsatisfiable or satisfiable; in

the latter case it can construct an explicit satisfying instance

• For unsatisfiable formulas, it can optionally find an

assignment that maximizes the weight of satisfied clauses

(i.e., MaxSMT) or, dually, find a minimal set of unsatisfiable

clauses (the unsat core)
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Infinite Bounded Model Checking with SAL

• We’ll use sal-inf-bmc

• Can repeat the examples we did with BMC using the original

specification

• sal-inf-bmc -v 3 bakery bounded -d 3

sal-inf-bmc -v 3 bakery liveness

sal-inf-bmc -v 3 bakery liveness -it

sal-inf-bmc -v 3 bakery unbounded -d 20

sal-inf-bmc -v 3 -d 1 -i bakery aux

sal-inf-bmc -v 3 -d 2 -i bakery safety -l aux

• Infinite BMC and k-induction blur the line between model

checking and theorem proving
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Analyzing the Specification Using Theorem Proving

• We’ll use PVS

• PVS is a logic, it does not have a notion of state, nor of

concurrent programs, built in—we must specify the program

using the transition relation semantics of SAL

bakery: THEORY

BEGIN

phase : TYPE = {idle, trying, critical}

state: TYPE = [# pc1, pc2: phase, t1, t2: nat #]

s, pre, post: VAR state
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The Transitions in PVS

P1_transition(pre, post): bool =

IF pre‘pc1 = idle

THEN post = pre WITH [(t1) := pre‘t2 + 1, (pc1) := trying]

ELSIF pre‘pc1 = trying AND (pre‘t2 = 0 OR pre‘t1 < pre‘t2)

THEN post = pre WITH [(pc1) := critical]

ELSIF pre‘pc1 = critical

THEN post = pre WITH [(t1) := 0, (pc1) := idle]

ELSE post = pre

ENDIF

P2_transition(pre, post): bool = ... similar

transitions(pre, post): bool =

P1_transition(pre, post) OR P2_transition(pre, post)
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Initialization and Invariant in PVS

init(s): bool = s‘pc1 = idle AND s‘pc2 = idle

AND s‘t1 = 0 AND s‘t2 = 0

safe(s): bool = NOT(s‘pc1 = critical AND s‘pc2 = critical)

% To prove that a property P is an invariant, we prove it is *inductive*

% This is similar to Amir Pnueli’s rule for Universal Invariance

% Except we strengthen the actual property rather than have an auxiliary

indinv(inv: pred[state]): bool =

FORALL s: init(s) => inv(s)

AND FORALL pre, post:

inv(pre) AND transitions(pre, post) => inv(post)

first_try: LEMMA indinv(safe)
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First Attempted Proof: Step 1

• Starting the PVS theorem prover gives us this sequent
first_try :

|-------

{1} indinv(safe)

Rule?

• The proof commands (EXPAND "indinv") and (GROUND) open

up the definition of invariant and split it into cases

• We are then presented with the first of the two cases
This yields 2 subgoals:

first_try.1 :

|-------

{1} FORALL s: init(s) => safe(s)

• This is discharged by the proof command (GRIND), which

expands definitions and performs obvious deductions
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First Attempted Proof: Step 2

• This completes the proof of first_try.1.

first_try.2 :

|-------

{1} FORALL pre, post:

safe(pre) AND transitions(pre, post) => safe(post)

• The commands (SKOSIMP), (EXPAND "transitions"), and

(GROUND) eliminate the quantification and split transitions

into separate cases for processes 1 and 2
first_try.2.1 :

{-1} P1_transition(pre!1, post!1)

[-2] safe(pre!1)

|-------

[1] safe(post!1)

• (EXPAND "P1 transition") and (BDDSIMP) split the proof into

four cases according to the kind of step made by the process
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First Attempted Proof: Step 3

• The first one is discharged by (GRIND), but the second is not

and we are presented with the sequent
first_try.2.1.2 :

[-1] pre!1‘t2 = 0

{-2} trying?(pre!1‘pc1)

[-3] post!1 = pre!1 WITH [(pc1) := critical]

[-4] safe(pre!1)

{-5} critical?(pre!1‘pc2)

|-------

• When there are no formulas below the line, a sequent is true

if there is a contradiction among those above the line

• Here, Process 1 enters its critical section because Process 2’s

ticket is zero—but Process 2 is already in its critical section
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First Attempted Proof: Aha!

• This is a contradiction because Process 2 must have

incremented its ticket (making it nonzero) when it entered

its trying phase

• But contemplation, or experimentation with the prover,

should convince you that this fact is not provable from the

information provided

• Similarly for the other unprovable subgoals

• The problem is not that safe is untrue, but that it is not

inductive

◦ It does not provide a strong enough antecedent to

support the proof of its own invariance
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Second Attempted Proof

• The solution is to prove a stronger property than the one we

are really interested in

strong_safe(s): bool = safe(s)

AND (s‘t1 = 0 => s‘pc1 = idle)

AND (s‘t2 = 0 => s‘pc2 = idle)

second_try: LEMMA indinv(strong_safe)

John Rushby Formal Calculation: 58



Second Attempted Proof: Aha! Again

• The stronger formula deals with the case we just examined,

and the symmetric case for Process 2, but still has two

unproved subgoals; here’s one of them
second_try.2 :

{-1} trying?(pre!1‘pc1)

{-2} pre!1‘t1 < pre!1‘t2

{-3} post!1 = pre!1 WITH [(pc1) := critical]

{-4} critical?(pre!1‘pc2)

|-------

{1} (pre!1‘t1 = 0)
• The situation here is that Process 1 has a smaller ticket than

Process 2 and is entering its critical section—even though

Process 2 is already in its critical section

• But this cannot happen because Process 2 must have had

the smaller ticket when it entered (because Process 1 has a

nonzero ticket), contradicting formula -2
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Third Attempted Proof

• Again we need to strengthen the invariant to carry along this

fact

• inductive_safe(s):bool = strong_safe(s)

AND ((s‘pc1 = critical AND s‘pc2 = trying) => s‘t1 < s‘t2)

AND ((s‘pc2 = critical AND s‘pc1 = trying) => s‘t1 > s‘t2)

third_try: LEMMA indinv(inductive_safe)

• Finally, we have a invariant that is inductive—and is proved

with (GRIND)
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Inductive Invariants

• To establish an invariant or safety property S (one true of all

reachable states) by theorem proving, we invent another

property P that implies S and that is inductive (on transition

relation T , with initial states I)

◦ Includes all the initial states: I(s) ⊃ P (s)

◦ Is closed on the transitions: P (s) ∧ T (s, t) ⊃ P (t)

• The reachable states are the smallest set that is inductive, so

inductive properties are invariants

• Trouble is, naturally stated invariants are seldom inductive

◦ The second condition is violated

• Need to make them smaller (stronger) to exclude the states

that take you outside the invariant
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Noninductive Invariants In Pictures

inductive
invariant

invariant

reachable states

all states

initial states
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Strengthening Invariants To Make Them Inductive

• Postulate a new invariant that excludes the states (so far

discovered) that take you outside the desired invariant

• Show that the conjunction of the new and the desired

invariant is inductive

• Iterate until success or exasperation
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Inductive Invariants In Pictures

reachable states

all states

initial states

invariant
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Strengthening Invariants To Make Them Inductive

• Iterate until success or exasperation

• Process can be made systematic

◦ Each strengthening was suggested by a failed proof

But is always tedious

• Bounded retransmission protocol required 57 such iterations

◦ Took a couple of months to complete

(Havelund and Shankar)

• Notice that each conjunct must itself be an invariant

(the very property we are trying to establish)

• Disjunctive invariants are an alternative for some problems

(see my CAV 2000 paper)
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Pros and Cons of Theorem Proving

• Theorem proving can handle infinite state systems

• And accurate models

◦ Sometimes less says more–e.g., fault tolerance

• And general properties

(not just those expressible in temporal logic)

• But it’s hard (and not everyone finds it fun)

◦ Everything is possible but nothing is easy

◦ Especially strengthening of invariants

• Interaction focuses on proof, and idiosyncrasies of the prover,

not on the design being evaluated

◦ “Interactive theorem proving is a waste of human talent”

• It’s all or nothing

◦ No incremental return for incremental effort
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Formal Verification by Theorem Proving: The Wall

theorem
proving

Effort

verification
for system
Assurance
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Aside: Design Choices in PVS

• Aside from the need to strengthen the invariant, PVS did OK

on this example (and does so on many more)

• We only used a fraction of its linguistic resources

◦ Higher-order logic with dependent predicate subtyping

◦ Recursive abstract data types and inductive types

◦ Parameterized theories and interpretations

◦ . . . and most of it is efficiently executable

• It automatically discharged subgoals by deciding properties

over abstract data types (enumeration types are a degenerate

case), integer arithmetic, record updates, prop’nl calculus

• In larger examples, it also has to choose when to open up a

definition, and when to apply a rewrite

• What makes PVS (and other verification systems) effective is

that it has tightly integrated automation for all of these

John Rushby Formal Calculation: 68



Top-Level Design Choices in PVS

• Specification language is a higher-order logic with subtyping

◦ Typechecking is undecidable: uses theorem proving

• User supplies top-level strategic guidance to the prover

◦ Invoking appropriate proof methods (induction etc.)

◦ Identifying necessary lemmas

◦ Suggesting case-splits

◦ Recovering when automation fails

• Automation takes care of the details, through a hierarchy of

techniques

1. Decision procedures

2. Rewriting (automates application of lemmas)

3. Heuristics (guess at case-splits, instantiations)

4. User-supplied strategies (cf. tactics in HOL)
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Decision Procedures

Many important theories are decidable

• Propositional calculus

(a ∧ b) ∨ ¬a = a ⊃ b

• Equality with uninterpreted function symbols

x = y ∧ f(f(f(x))) = f(x) ⊃ f(f(f(f(f(y))))) = f(x)

• Function, record, and tuple updates

f with [(x) := y](z)
def
= if z = x then y else f(z)

• Linear Arithmetic (over integers and rationals)

x ≤ y ∧ x ≤ 1 − y ∧ 2 × x ≥ 1 ⊃ 4 × x = 2

But we need to decide combinations of theories

2 × car(x) − 3 × cdr(x) = f(cdr(x)) ⊃

f(cons(4 × car(x) − 2 × f(cdr(x)), y)) = f(cons(6 × cdr(x), y))
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Combined Decision Procedures

• Some combinations of decidable theories are not decidable

◦ E.g., quantified theory of integer arithmetic (Presburger)

and equality over uninterpreted function symbols

• Need to make pragmatic compromises

◦ E.g., stick to ground (unquantified) theories and leave

quantification to heuristics at a higher level

• Two basic methods for combining decision procedures

◦ Nelson-Oppen: fewest restrictions

◦ Shostak: faster, yields a canonizer for combined theory

• Shostak’s method is used in PVS

◦ Over 20 years from first paper to fully correct treatment

◦ Now formally verified (in PVS)

by Jonathan Ford
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Integrated Decision Procedures

• It’s not enough to have good decision procedures available to

discharge the leaves of a proof

◦ The endgame: PVS can use Yices for that

• They need to be used in simplification, which involves

recursive examination of subformulas: repeatedly adding,

subtracting, asserting, and denying subformulas

• And integrated with rewriting, where they used in matching

and (recursively) to decide conditions or top-level

if-then-else’s

• So the API to the decision procedures must be quite rich
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Disruptive Innovation

Performance

Time

Low-end disruption is when low-end technology overtakes the

performance of high-end (Christensen)
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SMT Solvers: Disruptive Innovation in Theorem Proving

• SMT stands for Satisfiability Modulo Theories

• SMT solvers extend decision procedures with the ability to

handle arbitrary propositional structure

◦ Traditionally, case analysis is handled heuristically in the

theorem prover front end

⋆ Have to be careful to avoid case explosion

◦ SMT solvers use the brute force of modern SAT solving

• Or, dually, they generalize SAT solving by adding the ability

to handle arithmetic and other decidable theories

• Application to verification

◦ Via bounded model checking and k-induction
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SAT Solving

• Find satisfying assignment to a propositional logic formula

• Formula can be represented as a set of clauses

◦ In CNF: conjunction of disjunctions

◦ Find an assignment of truth values to variable that makes

at least one literal in each clause TRUE

◦ Literal: an atomic proposition A or its negation Ā

• Example: given following 4 clauses

◦ A,B

◦ C ,D

◦ E

◦ Ā, D̄, Ē

One solution is A, C, E, D̄

(A, D, E is not and cannot be extended to be one)

• Do this when there are 1,000,000s of variables and clauses

John Rushby Formal Calculation: 75



SAT Solvers

• SAT solving is the quintessential NP-complete problem

• But now amazingly fast in practice (most of the time)

◦ Breakthroughs (starting with Chaff) since 2001

⋆ Building on earlier innovations in SATO, GRASP

◦ Sustained improvements, honed by competition

• Has become a commodity technology

◦ MiniSAT is 700 SLOC

• Can think of it as massively effective search

◦ So use it when your problem can be formulated as SAT

• Used in bounded model checking and in AI planning

◦ Routine to handle 10300 states
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SAT Plus Theories

• SAT can encode operations and relations on bounded

integers

◦ Using bitvector representation

◦ With adders etc. represented as Boolean circuits

And other finite data types and structures

• But cannot do not unbounded types (e.g., reals),

or infinite structures (e.g., queues, lists)

• And even bounded arithmetic can be slow when large

• There are fast decision procedures for these theories

• But their basic form works only on conjunctions

• General propositional structure requires case analysis

◦ Should use efficient search strategies of SAT solvers

That’s what an SMT solver does
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Decidable Theories

• Many useful theories are decidable

(at least in their unquantified forms)

◦ Equality with uninterpreted function symbols

x = y ∧ f(f(f(x))) = f(x) ⊃ f(f(f(f(f(y))))) = f(x)

◦ Function, record, and tuple updates

f with [(x) := y](z)
def
= if z = x then y else f(z)

◦ Linear arithmetic (over integers and rationals)

x ≤ y ∧ x ≤ 1 − y ∧ 2 × x ≥ 1 ⊃ 4 × x = 2

◦ Special (fast) case: difference logic

x − y < c

• Combinations of decidable theories are (usually) decidable

e.g., 2 × car(x) − 3 × cdr(x) = f(cdr(x)) ⊃

f(cons(4 × car(x) − 2 × f(cdr(x)), y)) = f(cons(6 × cdr(x), y))

Uses equality, uninterpreted functions, linear arithmetic, lists
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SMT Solving

• Individual and combined decision procedures decide

conjunctions of formulas in their decided theories

• SMT allows general propositional structure

◦ e.g., (x ≤ y ∨ y = 5) ∧ (x < 0 ∨ y ≤ x) ∧ x 6= y

. . . possibly continued for 1000s of terms

• Should exploit search strategies of modern SAT solvers

• So replace the terms by propositional variables

◦ i.e., (A ∨ B) ∧ (C ∨ D) ∧ E

• Get a solution from a SAT solver (if none, we are done)

◦ e.g., A, D, E

• Restore the interpretation of variables and send the

conjunction to the core decision procedure

◦ i.e., x ≤ y ∧ y ≤ x ∧ x 6= y
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SMT Solving by “Lemmas On Demand”

• If satisfiable, we are done

• If not, ask SAT solver for a new assignment

• But isn’t it expensive to keep doing this?

• Yes, so first, do a little bit of work to find fragments that

explain the unsatisfiability, and send these back to the SAT

solver as additional constraints (i.e., lemmas)

◦ A ∧ D ⊃ Ē (equivalently, Ā ∨ D̄ ∨ Ē)

• Iterate to termination

◦ e.g., A, C, E, D̄

◦ i.e., x ≤ y, x < 0, x 6= y, y 6≤ x (simplifies to x < y, x < 0)

◦ A satisfying assignment is x = −3, y = 1

• This is called “lemmas on demand” (de Moura, Ruess,

Sorea) or “DPLL(T)”; it yields effective SMT solvers
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Pros and Cons of Model Checking

• “Model checking saved the reputation of formal methods”

• But have to be explicit where we may prefer not to be

◦ E.g., have to specify the ALU (Arithmetic Logic Unit)

when we’re really only interested in the pipeline logic

◦ But infinite BMC allows use of uninterpreted functions

• Usually have to downscale the model—can be a lot of work

• Often good at finding bugs, but what if no bugs detected?

◦ Have we achieved verification, or just got too crude a

model or property?

• Sometimes it’s possible to prove that a small model is a

property-preserving abstraction of a large, accurate one

• Then not detecting a bug is equivalent to verification
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Model Checking: An Island

theorem
proving

checking
model

Effort

refutation

verification
Assurance
for system
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Combining Model Checking and Theorem Proving

• Model checking a downscaled instance is a useful prelude to

theorem proving the general case

• But a more interesting combination is to use model checking

as part of a proof for the general case

• One approach is to create a finite state property-preserving

abstraction of the original protocol

◦ Theorem proving shows abstraction preserves the property

◦ Model checking shows abstraction satisfies the property

Instead of proving indinv(safe), we invoke a model

checker to show abs system |- G(safe) [LTL]

Can actually do all of this within PVS, because it includes a

symbolic model checker (for CTL)

◦ Built on a decision procedure for finite µ-calculus

◦ We use it to prove init(s) => AG(safe)(s) [CTL]
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Conditions for Property-Preserving Abstraction

• Want an abstracted state type abstract state

◦ And corresponding transition relation a trans

◦ And initiality predicate a init

◦ Together with abstracted safety property a safe

• And an abstraction function abst from state to

abstract state, such that following properties hold

init_simulation: THEOREM

init(s) IMPLIES a_init(abst(s))

trans_simulation: THEOREM

transitions(pre, post) IMPLIES a_trans(abst(pre), abst(post))

safety_preserved: THEOREM

a_safe(abst(s)) IMPLIES safe(s)

abs_invariant_ctl: THEOREM % a_safe is invariant

a_init(as) IMPLIES AG(a_trans, a_safe)(as)
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Abstracted Model

• It doesn’t matter to the protocol what the actual values of

the tickets are

• All that matters is whether or not each of them is zero, and

whether one is less than the other

• We can use Booleans to represent these relations

◦ This is called predicate abstraction

• So introduce the abstracted (finite) state type
abstract_state: TYPE =

[# pc1, pc2: phase,

t1_is_0, t2_is_0, t1_lt_t2: bool #]

as, a_pre, a_post: VAR abstract_state

John Rushby Formal Calculation: 85



Abstraction Function

And Abstracted Properties in PVS

abst(s): abstract_state =

(# pc1 := s‘pc1, pc2 := s‘pc2,

t1_is_0 := s‘t1 = 0, t2_is_0 := s‘t2 = 0,

t1_lt_t2 := s‘t1 < s‘t2 #)

a_init(as): bool =

as‘pc1 = idle AND as‘pc2 = idle

AND as‘t1_is_0 AND as‘t2_is_0

a_safe(as): bool =

NOT (as‘pc1 = critical AND as‘pc2 = critical)
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More of the Abstracted Specification

a_P1_transition(a_pre, a_post): bool =

IF a_pre‘pc1 = idle

THEN a_post = a_pre WITH [(t1_is_0) := false,

(t1_lt_t2) := false,

(pc1) := trying]

ELSIF a_pre‘pc1 = trying

AND (a_pre‘t2_is_0 OR a_pre‘t1_lt_t2)

THEN a_post = a_pre WITH [(pc1) := critical]

ELSIF a_pre‘pc1 = critical

THEN a_post = a_pre WITH [(t1_is_0) := true,

(t1_lt_t2) := NOT a_pre‘t2_is_0,

(pc1) := idle]

ELSE a_post = a_pre

ENDIF
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The Rest of the Abstracted Specification

a_P2_transition(a_pre, a_post): bool =

IF a_pre‘pc2 = idle

THEN a_post = a_pre WITH [(t2_is_0) := false,

(t1_lt_t2) := true,

(pc2) := trying]

ELSIF a_pre‘pc2 = trying

AND (a_pre‘t1_is_0 OR NOT a_pre‘t1_lt_t2)

THEN a_post = a_pre WITH [(pc2) := critical]

ELSIF a_pre‘pc2 = critical

THEN a_post = a_pre WITH [(t2_is_0) := true,

(t1_lt_t2) := false,

(pc2) := idle]

ELSE a_post = a_pre

ENDIF
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Proofs to Justify The Abstraction

• The conditions init simulation and safety preserved are

proved by (GRIND)

• And abs invariant ctl is proved by (MODEL-CHECK)

◦ Or could use sal-smc on the SAL equivalent

• But trans simulation has 2 unproved cases—here’s the first
trans_simulation.2.6.1 :

[-1] post!1 = pre!1

{-2} idle?(pre!1‘pc1)

|-------

{1} critical?(pre!1‘pc2)

[2] pre!1‘t1 = 0

[3] pre!1‘t1 > pre!1‘t2

{4} idle?(pre!1‘pc2)

{5} pre!1‘t1 < pre!1‘t2
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The Problem Justifying The Abstraction

• The problem here is that when the two tickets are equal but

nonzero, the concrete protocol drops through to the ELSE

case and requires the pre and post states to be the same

• But in the abstracted protocol, this situation can satisfy the

condition for Process 2 to enter its critical section

◦ Because NOT a pre‘t1 lt t2 abstracts pre‘t1 >= pre‘t2

rather than pre‘t1 > pre‘t2

• But this situation can never arise, because each ticket is

always incremented to be strictly greater than the other

• We can prove this as an invariant
not_eq(s): bool = s‘t1 = s‘t2 => s‘t1 = 0

extra: LEMMA indinv(not_eq)

• This is proved with (GRIND)
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A Justification of the Abstraction

• A stronger version of the simulation property allows us to use

a known invariant to establish it
strong_trans_simulation: THEOREM

indinv(not_eq)

AND not_eq(pre) AND not_eq(post)

AND transitions(pre, post)

IMPLIES a_trans(abst(pre), abst(post))

• This is proved by
(SKOSIMP)

(EXPAND "transitions")

(GROUND)

(("1" (EXPAND "P1_transition")

(APPLY (THEN (GROUND) (GRIND))))

("2" (EXPAND "P2_transition")

(APPLY (THEN (GROUND) (GRIND)))))
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Pros and Cons of Manually-Constructed Abstractions

• Justifying the abstraction is usually almost as hard as proving

the property directly

• And generally requires auxiliary invariants

• Bounded retransmission protocol required 45 of the original

57 invariants to justify an abstraction

• But there’s the germ of an idea here

John Rushby Formal Calculation: 92



Abstraction Is The Bridge

Between Deductive and Algorithmic Methods

And Between Refutation and Verification

eorem Proving

straction mposition

ecking
del
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Failure-Tolerant Theorem Proving

• Model checking is based on search

• Safe to do because the search space is bounded,

and efficient because we know its structure

• Verification systems (theorem provers aimed at verification)

tend to avoid search at the top level

◦ Too big a space to search, too little known about it

◦ When they do search, they have to rely on heuristics

◦ Which often fail

• Classical verification poses correctness as one “big theorem”

◦ So failure to prove it (when true) is catastrophic

• Instead, let’s try “failure-tolerant” theorem proving

◦ Prove lots of small theorems instead of one big one

◦ In a context where some failures can be tolerated
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Contexts for Failure-Tolerant Theorem Proving

• Extended static checking (see later)

• Property preserving abstractions

◦ Instead of justifying an abstraction,

◦ Use deduction to calculate it

• Given a transition relation G on S and property P , a

property-preserving abstraction yields a transition relation Ĝ

on Ŝ and property P̂ such that

Ĝ |= P̂ ⇒ G |= P

Where Ĝ and P̂ that are simple to analyze (e.g., finite state)

• A good abstraction typically (for safety properties)

introduces nondeterminism while preserving the property

• Note that abstraction is not the inverse of refinement
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Calculating an Abstraction

• We need to figure out if we need a transition between any

pair of abstract states

• Given abstraction function φ : [S→Ŝ] we have

Ĝ(ŝ1, ŝ2) ⇔ ∃s1, s2 : ŝ1 = φ(s1) ∧ ŝ2 = φ(s2) ∧ G(s1, s2)

• We’ll use highly automated theorem proving on these

formulas: include transition iff the formula is proved

◦ There’s a chance we may fail to prove true formulas

◦ This will produce unsound abstractions

• So turn the problem around and calculate when we don’t

need a transition: omit transition iff the formula is proved

¬Ĝ(ŝ1, ŝ2) ⇔ ⊢ ∀s1, s2 : ŝ1 6= φ(s1) ∨ ŝ2 6= φ(s2) ∨ ¬G(s1, s2)

• Now theorem-proving failure affects accuracy, not soundness
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Automated Abstraction

• The method described is automated in InVeSt

◦ An adjunct to PVS developed in conjunction with Verimag

• A different method (due to Säıdi and Shankar) is

implemented in PVS

◦ Exponentially more efficient

• The abstraction is specified in the proof command by giving

the concrete function or predicate that defines the value of

each abstract state variable
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Automated Abstraction in PVS

• auto_abstract: THEOREM

init(s) IMPLIES AG(transitions, safe)(s)

• This is proved by
(abstract-and-mc "state" "abstract_state"

(("t1_is_0" "lambda (s): s‘t1=0")

("t2_is_0" "lambda (s): s‘t2=0")

("t1_lt_t2" "lambda (s): s‘t1 < s‘t2")))

• Now let’s see this work in practice
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Other Kinds of Abstraction

• We’ve seen predicate abstraction [Graf and Säıdi]

• I’ll briefly sketch data abstraction and hybrid abstraction
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Data Abstraction [Cousot & Cousot]

• Replace concrete variable x over datatype C by an abstract

variable x′ over datatype A through a mapping h : [C→A]

• Examples: Parity, mod N , zero-nonzero, intervals,

cardinalities, {0, 1, many}, {empty, nonempty}

• Syntactically replace functions f on C by abstracted

functions f̂ on A

• Given f : [C→C], construct f̂ : [A→set [A]]:

(observe how data abstraction introduces nondeterminism)

b ∈ f̂(a) ⇔ ∃x : a = h(x) ∧ b = h(f(x))

b 6∈ f̂(a) ⇔ ⊢ ∀x : a = h(x) ⇒ b 6= h(f(x))

• Theorem-proving failure affects accuracy, not soundness
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Data Abstraction Example

Replace natural numbers by {0, 1, many}

Calculate behavior of subtraction on {0, 1, many}

− 0 1 many

0 0 − −

1 1 0 −

many many {1, many} {0, 1, many}

0 /∈ (many − 1) iff ∀x ∈ {2, 3, 4, . . .} : x − 1 6= 0
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Data Abstraction for Matlab (Hybrid Systems)

Stateflow

model

Simulink model

Mixed continuous/discrete (i.e., hybrid) system
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Simulate One Trajectory at a Time

Stateflow

model

Simulink model

Just like testing: when have you done enough?
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Model Check With Nondeterministic Environment

Stateflow

model Model check this

Nondeterministic environment

Too crude to establish useful properties
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Analyze By The Methods Of Hybrid Systems

Stateflow

model

Simulink model

OK, but restricted
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Model Check With Sound Discretization Of The

Continuous Environment

discrete

approximation

model

Stateflow

Model check all of this

Just right
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Data Abstraction for Hybrid Systems

• Method developed by Ashish Tiwari

• The continuous environment is given by some collection of

(polynomial) differential equations on Rn

• Divide these into regions where the first j derivatives are

sign-invariant (m polynomials, (m × j)3 regions)

◦ I.e., data abstraction from R to {−, 0, +}

◦ For each mode l ∈ Q: if qpi, qpj abstract pi, pj and ṗi = pj

in mode l, then apply rules of the form:

⋆ if qpi = + & qpj = +, then q′pi is +

⋆ if qpi = + & qpj = 0, then q′pi is +

⋆ if qpi = + & qpj = −, then q′pi is either + or 0

⋆ . . .

John Rushby Formal Calculation: 107



Data Abstraction for Hybrid Systems

• Larger choices of j give successively finer abstractions

• Usually enough to take j = 1 or 2

• Method is complete for some (e.g., nilpotent) systems

• Parameterized also by selection of polynomials to abstract on

◦ The eigenvectors are a good start

◦ Method is then complete for linear systems

• Construction is automated using decision procedures for real

closed fields (e.g., Cylindric Algebraic Decomposition—CAD)

• Also provides a general underpinning to qualitative reasoning

as used in AI
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Example: Thermostat

Consider a simple thermostat controller with:

• Discrete modes: Two modes, q = on and q = off

• Continuous variable: The temperature x

• Initial State: q = off and x = 75

• Discrete Transitions:

q = off and x ≤ 70 −→ q′ = on

q = on and x ≥ 80 −→ q′ = off

• Continuous Flow:

q = off and x > 68 −→ ẋ = −Kx

q = on and x < 82 −→ ẋ = K(h − x)

We want to prove 68 ≤ x ≤ 82
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Abstract Thermostat System

70 < x < 80

q = off

68 < x < 70

q = on

q = off

70 < x < 80

     x = 70

q = on

q = on

    x = 80

80 < x < 82

q = off

68 < x < 70

q = on

q = onq = off

     x = 70

80 < x < 82      x = 80

q = off
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Pros and Cons of Automated Abstraction

• Good match between local theorem proving,

and global model checking

• Quality of the abstraction depends on information provided

by the user (predicates, polynomials etc.)

◦ It’s easier to guess useful predicates than invariants

◦ Can guess additional ones if inadequate

◦ Or let counterexamples suggest refinements (CEGAR)

⋆ A general approach can be discerned here: find quick

solutions and fix them up, rather than deliberate in

hope of finding good solutions

And the deductive power applied

◦ Which may increase if provided with known invariants
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Truly Integrated, Iterated Analysis!

• Recast the goal as one of calculating and accumulating

properties about a design (symbolic analysis)

• Rather than just verifying or refuting a specific property

• Properties convey information and insight, and provide

leverage to construct new abstractions

◦ And hence more properties

• Requires restructuring of verification tools

◦ So that many work together

◦ And so that they return symbolic values and properties

rather than just yes/no results of verifications

• This is what SAL is about: Symbolic Analysis Laboratory

◦ Next generation will have a tool bus
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Integrated, Iterated Analysis
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Refutation and Verification

• By allowing unsound abstractions

Ĝ |= P̂ 6⇒ G |= P

We can do refutation as well as verification

• Then, by selecting abstractions (sound/unsound) and

properties (little/big) we can fill in the space between

refutation and verification

• Refutation lowers the barrier to entry

• Provides economic incentive: discovery of high value bugs

◦ Can estimate the cost of each bug found

◦ And can directly compare with other technologies

• Yet allows smooth transition to verification
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From Refutation To Verification

checking
model

proving
theorem

& inf−BMC

Effort

Assurance
for system

refutation

verification

automated abstraction
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Filling the Remaining Gap

• Model checking for refutation and (via automated

abstraction and inf-BMC) for verification imposes a much

smaller barrier to adoption than old-style formal verification

• But the barrier is still there

• What about really low cost/low threat kinds of formal

analysis?

• Make the formal methods disappear inside traditional tools

and methods

◦ We call these invisible formal methods

◦ And it’s where a lot of the action and opportunity is

John Rushby Formal Calculation: 116



The Formal Methods Wedge

theorem
 proving

interactive

m
odel

checking

Reward (assurance)

PVSSAL

automated

theorem proving

and abstraction

invisible

formal methods

EffortYices

Evidential Tool Bus
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Examples of Invisible Formal Methods

Stronger Checking in Traditional Tools

• Various forms of extended static checking

◦ Failed proof generates a possibly spurious warning

• Static analysis: typestate, shape analysis, abstract

interpretation etc.

• PVS-like type system (predicate subtypes) for any language

◦ Traditional type systems have to be trivially decidable

◦ But can gain enormous error detection by adding a

component that requires theorem proving (lots of small

theorems, failure generates a spurious warning)

• The verifying compiler (aka. verified systems roadmap)
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Examples of Invisible Formal Methods

Better Tools for Traditional Activities

• Statechart/Stateflow property checkers

(cf. Reactis, Honeywell, SRI, Mathworks)

◦ Show me a path that activates this state

◦ Can this state and that be active simultaneously?

• Checker synthesizers (cf. IBM FOCS)

• Completeness/Consistency checkers for tabular specifications

(cf. Ontario Hydro, RSML, SCR)

• Test case generators (cf. Verimag/IRISA TGV and STG,

SAL-ATG)

There’s an entire industry in this space, with many companies

make a living from modest technology (but very good

understanding of their markets)
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Static Program Analysis
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The Bug That Stopped The Zunes

Real time clock sets days to number of days since 1 Jan 1980

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1;

} else... loops forever on last day of a leap year

} else {

days -= 365;

year += 1;

}

}

Coverage-based testing will find this
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A Hasty Fix

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 365) {

days -= 366;

year += 1;

}

} else {

days -= 365;

year += 1;

}

}

• Fixes the loop but now days can end up as zero

• Coverage-based testing might not find this

• Boundary condition testing would

• But I think the point is clear. . .
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The Problem With Testing

• Is that it only samples the set of possible behaviors

• And unlike physical systems (where many engineers gained

their experience), software systems are discontinuous

• There is no sound basis for extrapolating from tested to

untested cases

• So we need to consider all possible cases. . . how is this

possible?

• It’s possible with symbolic methods

• Cf. x2 − y2 = (x − y)(x + y) vs. 5*5-3*3 = (5-3)*(5+3)

• Static Analysis is about totally automated ways to do this
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The Zune Example Again

[days > 0]

while (days > 365) { [days > 365]

if (*)) {

if (days > 365) { [days > 365]

days -= 366; [days >= 0]

year += 1;

}

} else { [days > 365]

days -= 365; [days > 0]

year += 1;

}

}

[days >= 0 and days <= 365]
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Automated Analysis of the Zune Example

• Ashish Tiwari has an analyzer for C programs that does

abstract interpretation over the combination of linear

arithmetic and uninterpreted functions

• Primarily used to discover invariants

• But we can illustrate it on this example
abs-li zune.c

-------------------FINAL Invariants-------------------

days >= 1.000000 days <= 365.000000

loop >= 0.000000 loop <= 1.000000
Monitoring variable loop can equal 1 means program can loop

• Now the hastily fixed version
abs-li zune2.c

-------------------FINAL Invariants-------------------

days >= 0.000000 days <= 365.000000

loop = 0.000000
Now it does not loop, but days can be 0

John Rushby Formal Calculation: 125



Approximations

• We were lucky that we could do the previous example with

full symbolic arithmetic

• Usually, the formulas get bigger and bigger as we accumulate

information from loop iterations (we’ll see an example later)

• So it’s common to approximate or abstract information to

try and keep the formulas manageable

• Here, instead of the natural numbers 0, 1, 2, . . . , we could

use

◦ zero, small, big

◦ Where big abstracts everything bigger than 365, small is

everything from 1 to 365, and zero is 0

◦ Arithmetic becomes nondeterministic

⋆ e.g., small+small = small | big
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The Zune Example Abstracted

[days = small | big]

while (days = big) { [days = big]

if (*)) {

if (days = big ) { [days = big ]

days -= big; [days = big | small | zero]

year += 1;

}

} else { [days = big]

days -= small; [days = big | small]

year += 1;

}

}

[days = small | zero]
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The Zune Example Abstracted Again

Suppose we abstracted to {negative, zero, positive}

[days = positive]

while (days = positive) { [days = positive]

if (*)) {

if (days = positive ) { [days = positive ]

days -= positive; [days = negative | zero | positive]

year += 1;

}

} else { [days = positive]

days -= positive; [days = negative | zero | positive]

year += 1;

} }

[days = negative | zero]

We’ve lost too much information: have a false alarm that days

can go negative (pointer analysis is sometimes this crude)
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We Have To Approximate, But There’s A Price

• It’s no accident that we sometimes lose precision

• Rice’s Theorem says there are inherent limits on what can be

accomplished by automated analysis of programs

◦ Sound (miss no errors)

◦ Complete (no false alarms)

◦ Automatic

◦ Allow arbitrary (unbounded) memory structures

◦ Final results

Choose at most 4 of the 5
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Approximations

reachable states

approximation

Sound approximations include all the behaviors and reachable

states of the real system, but are easier to compute
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But Sound Approximations Come with a Price

reachable states

approximation

alarm

false

May flag an error that is unreachable in the real system: a false

positive, or false alarm
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Unsound Approximations Come with a Price, Too

reachable states

underapproximation

false

negative

Can miss real errors: a false negative

John Rushby Formal Calculation: 132



Predicate Abstraction

• The Zune example used data abstraction

◦ A kind of abstract interpretation

• Replaces variables of complex data types by simpler

(often finite) ones

◦ e.g., integers replaced by {negative, zero, positive}

• But sometimes this doesn’t work

◦ Just replaces individual variables

◦ Often its the relationship between variables that matters

• Predicate abstraction replaces some relationships (predicates)

by Boolean variables
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Another Example

start with r unlocked

do {

lock(r)

old = new

if (*) {

unlock(r)

new++

}

}

while old != new

want r to be locked at this point

unlock(r)
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Abstracted Example

The significant relationship seems to be old == new

Replace this by eq, throw away old and new

[!locked]

do {

lock(r) [locked]

eq = true [locked, eq]

if (*) {

unlock(r) [!locked, eq]

eq = false [!locked, !eq]

}

} [locked, eq] or [!locked, !eq]

while not eq

[locked, eq]

unlock(r)
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Yet Another Example

z := n; x := 0; y := 0;

while (z > 0) {

if (*) {

x := x+1;

z := z-1;

} else {

y := y+1;

z := z-1;

}

}

want y!= 0, given x != z, n > 0

• The invariant needed is x + y + z = n

• But neither this nor its fragments appear in the program or

the desired property
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Let’s Just Go Ahead

First time into the loop

[n > 0]

z := n; x := 0; y := 0;

while (z > 0) { [x = 0, y = 0, z = n]

if (*) {

x := x+1;

z := z-1; [x = 1, y = 0, z = n-1]

} else {

y := y+1;

z := z-1; [x = 0, y = 1, z = n-1]

} [x = 1, y = 0, z = n-1] or [x = 0, y = 1, z = n-1]

}

Next time around the loop we’ll have 4 disjuncts, then 8, then

16, and so on

This won’t get us anywhere useful
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Widening the Abstraction

• We could try eliminate disjuncts

• Look for a conjunction that is implied by each of the disjuncts

• One such is [x+y = 1, z = n-1]

• Then we’d need to do the same thing with

[x+y = 1, z = n-1] or [x = 0, y = 0, z = n]

• That gives [x + y + z = n]

• There are techniques that can do this automatically

• This is where a lot of the research action is
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Tradeoffs

• We’re trying to guarantee absence of errors in a certain class

• Equivalently, trying to verify properties of a certain class

• Terminology is in terms of finding errors

TP True Positive: found a real error

FP False Positive: false alarm

TN True Negative: no error, no alarm—OK

FN False Negative: missed error

• Then we have

Sound: no false negatives

Recall: TP/(TP+FN) measures how (un)sound

TP+FN is number of real errors

Complete: no false alarms

Precision: TP/(TP+FP) measures how (in)complete

TP+FP is number of alarms
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Tradeoff Space

• Basic tradeoff is between soundness and completeness

• For assurance, we need soundness

◦ When told there are no errors, there must be none

So have to accept false alarms

• But the main market for static analysis is bug finding in

general-purpose software, where they aim merely to reduce

the number of bugs, not to eliminate them

• Their general customers will not tolerate many false alarms,

so tool vendors give up soundness

• Will consider the implications later

• Other tradeoffs are possible

◦ Give up full automation: e.g., require user annotation
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Tradeoffs In Practice

Testing is complete but unsound

Spark Ada with its Examiner is sound but not fully

automatic

Abstract Interpretation (e.g., PolySpace) is sound but

incomplete, and may not terminate

• Astrée is pragmatically complete for its domain

Pattern matchers (e.g. Lint, Findbugs) are not based on

semantics of program execution, neither sound nor complete

• But pragmatically effective for bug finding

Commercial tools (e.g., Coverity, Code Sonar, Fortify,

KlocWork, LDRA) are neither sound nor complete

• Pragmatically effective

• Different tools use different methods, have different

capabilities, make different tradeoffs
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Properties Checked

• The properties checked are usually implicit

◦ e.g., uninitialized variables, divide by zero (and other

exceptions), null pointer dereference, buffer overrun

• Much of this is compensating for deficiencies of C and C++

◦ Some tools support Ada, Java, not much for MBD

◦ But Mathworks has Design Verifier for Simulink

• Some tools support user-specified checks, but. . .

• Some tools look at resources

◦ e.g., memory leaks, locks (not freed, freed twice, use

after free)

• Some (e.g., AbsInt) can do quantitative analysis

◦ e.g., worst case execution time, maximum stack height

John Rushby Formal Calculation: 142



Real Software

• It’s not enough to check individual programs

• Need information from calls to procedures, subroutines

◦ Analyze each in isolation, then produce a procedure

summary for use by others

• Need summaries for libraries, operating system calls

• Analyzer must integrate with the build process

• Must present the information in a useful and attractive way

• Much of the engineering in commercial tools goes here
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So How Good Are Static Analyzers?

• Some tool licences forbid benchmarking

• Hard to get representative examples

• NIST SAMATE study compared several

◦ Found all had strengths and weaknesses

◦ Needed a combination to get comprehensive bug

detection

• This was bug finding, not assurance

• Anecdotal evidence is they are very useful for general QA

• Need to be tuned to individual environment

• e.g., Astrée tuned to Airbus A380 SCADE-generated digital

filters is sound and pragmatically complete

• There are papers by Raoul Jetley and others of FDA applying

tools to medical device software
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Possible Futures: Combination With Testing

• Automated test generation is getting pretty good

• Use a constraint solver to find a witness to the path

predicate leading to a given state

◦ e.g., counterexamples from (infinite) bounded model

checking using SMT solvers

• So try to see if you can generate an explicit test case to

manifest a real bug for each positive turned up by static

analysis

• Throw away those you cannot manifest

• Aha! Next generation of tools do this
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Automated Test Generation
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Test Generation

• Observe that a counterexample to an assertion: “control

cannot reach this point” is a structural test case

• So BMC can be used for automated test generation

• Actually, a customized combination of SMC and BMC works

best

◦ Use SMC to reach first control point, then use BMC to

extend to further control points

◦ Get long tests that probe deep into the system

◦ Can add test purposes that constrain the kinds of tests

generated

⋆ e.g., Change the gear input by 1 at every step

◦ Easily built because checkers are scriptable (in Scheme)
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Core Of The SAL-ATG Test Generation Script
(define (extend-search module goal-list

path scan prune innerslice start step stop)

(let ((new-goal-list (if prune (goal-reduce scan goal-list path)

(minimal-goal-reduce scan goal-list path))))

(cond ((null? new-goal-list) (cons ’() path))

((> start stop) (cons new-goal-list path))

(else

(let* ((goal (list->goal new-goal-list module))

(mod (if innerslice

(sal-module/slice-for module goal) module))

(new-path

(let loop ((depth start))

(cond ((> depth stop) ’())

((sal-bmc/extend-path

path mod goal depth ’ics))

(else (loop (+ depth step)))))))

(if (pair? new-path)

(extend-search mod new-goal-list new-path scan

prune innerslice start step stop)

(cons new-goal-list path)))))))
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Outer Loop Of The SAL-ATG Test Generation Script

(define (iterative-search module goal-list

scan prune slice innerslice bmcinit start step stop)

(let* ((goal (list->goal goal-list module))

(mod (if slice (sal-module/slice-for module goal) module))

(path (if bmcinit

(sal-bmc/find-path-from-initial-state

mod goal bmcinit ’ics)

(sal-smc/find-path-from-initial-state mod goal))))

(if path

(extend-search mod goal-list path scan prune

innerslice start step stop)

#f)))
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Example: Shift Scheduler in StateFlow

[gear ==3]

[gear == 3]

[V <= shift_speed_32]

[gear == 1]

[V > shift_speed_23]

[V > shift_speed_34]

[V <= shift_speed_21] [V > shift_speed_12] [V <= shift_speed_43]

[V > shift_speed_23]

[V <= shift_speed_23]

[gear == 2]

[gear == 4]

[V <= shift_speed_43]

[V > shift_speed_34]

[gear == 2][V <= shift_speed_21]

[V > shift_speed_12]

third_gear
entry: to_gear=3;first_gear

entry: to_gear = 1;

transition12

[ctr > DELAY]

shift_pending_a
entry: ctr=0;
        to_gear=1;
during: ctr=ctr+1;

shifting_a
entry: to_gear=2;

transition23

[ctr > DELAY]

shift_pending2
entry: ctr=0;
         to_gear=2;
during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

transition34

[ctr > DELAY]

shift_pending3
entry: ctr=0;
         to_gear=3;
during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

second_gear
entry: to_gear=2;

transition43

[ctr > DELAY]

shift_pending_d
entry: ctr=0;
         to_gear =4;
during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

transition32

[ctr > DELAY]

shift_pending_c
entry: ctr=0;
         to_gear=3;
during: ctr=ctr+1;

shifting_c
entry: to_gear=2;

transition21

[ctr > DELAY]

shift_pending_b
entry: ctr=0;
         to_gear=2;
during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

Demo: sal-atg -v 3 trans ga monitored system

trans ga goals.scm -ed 15 –incremental –testpurpose
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Timed Systems
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Verification of Real Time Programs

• Continuous time excludes automation by finite state methods

• Timed automata methods (e.g., Uppaal)

◦ Handle continuous time

◦ But are defeated by the case explosion when (discrete)

faults are considered as well

• SMT solvers can handle both dimensions

◦ With discrete time, can have a clock module that

advances time one tick at a time

⋆ Each module sets a timeout, waits for the clock to

reach that value, then does its thing, and repeats

◦ Better: move the timeout to the clock module and let it

advance time all the way to the next timeout

⋆ These are Timeout Automata (Dutertre and Sorea):

and they work for continuous time
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Example: Biphase Mark Protocol

Biphase Mark is a protocol for asynchronous communication

receiver

lots of 1’s how many 1’s?

........

unsynchronized, independent clocks

transmitter

• Clocks at either end may be skewed and have different rates,

and jitter

• So have to encode a clock in the data stream

• Used in CDs, Ethernet

• Verification identifies parameter values for which data is

reliably transmitted
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Example: Biphase Mark Protocol (ctd)

• Flip the signal at the begining of every bit cell

• For a 1 bit, flip it in the middle, too

• For a 0 bit, leave it constant

BMP encoding

1 1 0 1 0 0 1 1 1 0 1 1

Original bitsream

Prove this works provided the sender and reciever clocks run at

similar rates
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Biphase Mark Protocol Verification

• Verified by human-guided proof in ACL2 by J Moore (1994)

• Three different verifications used PVS

◦ One by Groote and Vaandrager used PVS + UPPAAL

required 37 invariants, 4,000 proof steps, hours of prover

time to check

◦ Also done by Dand Van Hung
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Verification Systems vs. SMT-Based Model Checkers

PVS SAL

Backends SMT Solver

Actually, both kinds will coexist as part of the evidential tool

bus—another talk
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Biphase Mark Protocol Verification (ctd)

• Brown and Pike recently did it with sal-inf-bmc

◦ Used timeout automata to model timed aspects

◦ Statement of theorem discovered systematically using

disjunctive invariants (7 disjuncts)

◦ Three lemmas proved automatically with 1-induction,

◦ Theorem proved automatically using 5-induction

◦ Verification takes seconds to check

• Adapted verification to 8-N-1 protocol (used in UARTs)

◦ Automated proofs more reusable than step-by-step ones

◦ Additional lemma proved with 13-induction

◦ Theorem proved with 3-induction (7 disjuncts)

◦ Revealed a bug in published application note
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Biphase Mark Protocol Verification (demo)

Ideally, use an integrated front end; here we look at raw

model-checker input

This example

Evidential Tool Bus (ETB)

SAL PVS Yices

Integrated front−end development environment

AADL, UML2, Matlab

TOPCASED, SSIV etc.

Ideally
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Summary

• The challenge faced by formal methods analysis tools is how

to search a huge space efficiently

• Theorem proving has developed efficient methods of local

search (decision procedures etc.)

• Model checking showed that efficient global search was

possible

• Now, methods are emerging that combine insights from both

approaches in a promising way

• And there a pragmatic focus on finding methods for using

the (still limited) capabilities of formal analysis tools to

address useful, but partial issues in big, real systems

• I have never felt more optimistic about the prospects for

formal analysis tools
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To Learn More

• Check out papers and technical reports at

http://fm.csl.sri.com

• Information about PVS, and the system itself, is available

from http://pvs.csl.sri.com

◦ Version 4.0 is open source

◦ Built in Allegro and CMU Lisp for Linux, Mac

• Yices: http://yices.csl.sri.com

◦ Version 2.x is free binary

◦ Written in C

◦ Available as a library for C

• SAL: http://sal.csl.sri.com

◦ Version 2.4 is open source

◦ Written in Scheme, C++
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