Invisible Formal Methods:

Generating Efficient Test Sets
With a Model Checker

John Rushby
with Grégoire Hamon and Leonardo de Moura

Computer Science Laboratory
SRI International
Menlo Park, California, USA

John Rushby, SRI Invisible FM and AutoTestGen: 1

Full Formal Verification is a Hard Sell: The Wall

' Reward (assurance)

Buinoid we 1oay)
aAI0R BIUI

John Rushby, SRI Invisible FM and AutoTestGen: 2

Newer Technologies Improve the Value Proposition

' Reward (assurance)

Buino id we oyl
aAIloR BUI

But only by a little

John Rushby, SRI Invisible FM and AutoTestGen: 3

The Unserved Area Is An Interesting Opportunity

' Reward (assurance)

invisible

Buinoad we oyl
dAI10R PIUI

formal methods

-
!

Effort

Conjecture: reward/effort climbs steeply in the invisible region

John Rushby, SRI Invisible FM and AutoTestGen: 4

Invisible Formal Methods

e Use the technology of formal methods

o T heorem proving, constraint satisfaction, model checking,
abstraction, symbolic evaluation

e [0 augment traditional methods and tools

o Compilers, debuggers

e Or to automate traditional processes

o Testing, reviews, debugging

e To do this, we must unobtrusively (i.e., invisibly) extract
o A formal specification

o A collection of properties

e And deliver a useful result in a familiar form

John Rushby, SRI Invisible FM and AutoTestGen: 5

Invisible Formal System Specifications

Traditionally, there was nothing formal (i.e., mechanically
analyzable) prior to the executable program

o Requirements, specifications, etc. were just natural
language words, and pictures

SO one response is to apply formal methods to programs
o E.g., extended static analysis

But for embedded systems, industry has adopted model
based design (MBD) at a surprisingly rapid pace

o Matlab (Simulink/Stateflow): over 500,000 licenses
o Statecharts

o Scade/Esterel

Some of these (e.g., Stateflow) have less-than-ideal
semantics, but it's possible to cope with them

o E.g., our paper in FASE '04

John Rushby, SRI Invisible FM and AutoTestGen: 6

Invisible Property Specifications
MBD provides formal specifications of the system
But what properties shall we apply formal analysis to?

One approach is to analyze structural properties
o E.g., no reliance on 12 o’'clock rule in Stateflow
o Similar to table checking in SCR
o Prove all conditions are pairwise disjoint
o And collectively exhaustive

Another is to generate structural test cases

Either for exploration

o E.g., "show me a sequence of inputs to get to here”

Or for testing in support of certification and verification

John Rushby, SRI Invisible FM and AutoTestGen: 7

Simplified Vee Diagram

time and money

system
test

desi gn/COdeY\ /ﬂ/ integration
test

Vast resources are expended on testing embedded systems

requirements

John Rushby, SRI Invisible FM and AutoTestGen: 8

Invisible FM Example: Generating Unit Tests
e Let’'s focus initially on testing individual units of a program
e EXxecutable model provides the oracle

e Various criteria for test generation

Functional tests: tests are derived by considering intended
function or desired properties of the unit (requires
higher-level specifications, which we do not have)

Boundary tests: tests designed to explore inside, outside,
and on the boundaries of the domains of input variables

Structural tests: tests are designed to visit interesting
paths through the specification or program (e.g., each
control state, or each transition between control states)

e Let's look at the standard method for structural test
generation using model checking

John Rushby, SRI Invisible FM and AutoTestGen: 9

Example: Stopwatch in Stateflow

Inputs: START and LAP buttons, and clock TIC event

(Stop A [Run TIC{
cent=cent+1;
rReset LAP{ (Runni ng :

cent=0; sec=0; min=0; during: [cent==100] {
. e - . cent==
d!sp_ce_nt:O., disp_sec=0; disp_cent=cent; cent=0:
} disp_min=0; disp_sec=sec; sec=Se<,:+1'
 disp_min=min; | }

LAPT LAPJ] LAPT
[sec==60] {

N sec=0;
J< {Lap } min=min+1:
}
J

N

-

Example test goals: generate input sequences to exercise
LLap_stop to Lap transition, or to reach junction at bottom right

John Rushby, SRI Invisible FM and AutoTestGen: 10

John

Generating Structural Tests

Problem: find a path that satisfies a desired test goal
o E.g., reach junction at bottom right

Symbolically execute the path, then solve the path predicate
to generate concrete input sequence that satisfies all the
branch conditions for the path

o If none, find another path and repeat until success or
exhaustion
Repeat for all test goals

Solving path predicates requires constraint satisfaction over
theories appearing in the model (typically, propositional
calculus, arithmetic, data types)

o E.g., ICS and its competitors

o For finite cases, a SAT solver will do

Can be improved using predicate abstraction (cf. Blast)

Rushby, SRI Invisible FM and AutoTestGen: 11

Generating Tests Using a Model Checker

Method just described requires custom machinery
Can also be done using off-the-shelf model checkers
o Path search and constraint satisfaction by brute force

Instrument model with trap variables that latch when a test
goal is satisfied

o E.g., a new variable jabr that latches TRUE when
junction at bottom right is reached

Model check for *“always not jabr”

Counterexample will be desired test case

Trap variables add negligible overhead ('cos no interactions)

For finite cases (e.g., numerical variables range over bounded
integers) any standard model checker will do

o Otherwise need infinite bounded model checker as in SAL

John Rushby, SRI Invisible FM and AutoTestGen: 12

Tests Generated Using a Model Checker

John Rushby, SRI Invisible FM and AutoTestGen: 13

Model Checking Pragmatics
Explicit state: good for complex transition relations with
small statespaces
Depth first search: test cases generally have many
irrelevant events and are too long
e E.g., 24,001 steps to reach junction at bottom right

Breadth first search: test cases are minimally short, but
cannot cope with large statespaces

e E.g., cannot reach junction at bottom right

Svymbolic: test cases are minimally short, but large BDD
ordering overhead in big models

e E.g., reaches junction at bottom right in 125 seconds

Bounded: often ideal, but cannot generate tests longer than a
few tens of steps, and may not be minimally short

e E.g., cannot reach junction at bottom right

John Rushby, SRI Invisible FM and AutoTestGen: 14

Useful Optimizations

e Backward slicing (called cone of influence reduction in model
checking) simplifies model relative to a property by
eliminating irrelevant state variables and input events

o Allows explicit state model checker to reach junction at
bottom right in 6,001 steps in just over a second (both
depth- and breadth-first)

o And speeds up symbolic model checker

e Prioritized traversal is an optimization found in
industrial-scale symbolic model checkers

o Partitions the frontier in forward image computations and
prioritizes according to various heuristics

o Useful with huge statespaces when there are many targets
once you get beyond a certain depth

John Rushby, SRI Invisible FM and AutoTestGen: 15

Efficient Test Sets

Generally we have a set of test goals (to satisfy some
coverage criterion)

Want to discharge all the goals with

o Few tests (restarts have high cost)

o Short total length (each step in a test has a cost)
Independent of the method of model checking, generating a
separate test for each goal produces very inefficient tests

o E.g., Lap to Lap_stop test repeats Running to Lap test
Can “winnow” them afterward

Or check in generation for other goals discharged fortuitously

o SO won't generate separate Running to Lap test if it’s
already done as part of Lap to Lap_stop test

o But effectiveness depends on order goals are tackled

John Rushby, SRI Invisible FM and AutoTestGen: 16

Tests Generated Using a Model Checker (again)

Lots of redundancy in the tests generated

John Rushby, SRI Invisible FM and AutoTestGen: 17

Generating Efficient Test Sets

Minimal tour-based methods: difficulty is high cost to
compute feasibility of paths (or size of problem when
transformed, e.g., to colored tours)

SO use a greedy approach

Instead of starting each test from the the start state, we try
to extend the test found so far

Could get stuck if we tackle the goals in a bad order

So, simply try to reach any outstanding goal and let the
model checker find a good order

o Can slice after each goal is discharged

o A virtuous circle: the model will get smaller as the
remaining goals get harder

Go back to the start when unable to extend current test

John Rushby, SRI Invisible FM and AutoTestGen: 18

An Efficient Test Set

Less redundancy, and longer tests tend to find more bugs

John Rushby, SRI Invisible FM and AutoTestGen: 19

Scriptable Model Checkers

But how do we persuade a model checker to do all this?
Several modern model checkers are scriptable
E.g., SAL is scriptable in Scheme
For SAL, the method described is implemented in less than
100 lines of Scheme
o Extensions use bounded model checking
* Parameterized incremental search depth
(Re)starts use either symbolic or bounded model checking
* Parameterized choice and search depth
Optional slicing after each extension or each restart
Optional search for non-latching trap variables

e EXxtending tests allows a bounded model checker to reach
deep states at low cost

o 5 searches to depth 4 much easier than 1 to depth 20

John Rushby, SRI Invisible FM and AutoTestGen: 20

Outer Loop Of The SAL Test Generation Script

(define (iterative-search module goal-list
scan prune slice innerslice bmcinit start step stop)

(let* ((goal (list->goal goal-list module))

(mod (if slice (sal-module/slice-for module goal) module))
(path (if bmcinit
(sal-bmc/find-path-from-initial-state

mod goal bmcinit ’ics)

(sal-smc/find-path-from-initial-state mod goal))))
(if path
(extend-search mod goal-list path scan prune

innerslice start step stop)

#£)))

John Rushby, SRI Invisible FM and AutoTestGen: 21

Core Of The SAL Test Generation Script

(define (extend-search module goal-list
path scan prune innerslice start step stop)
(let ((new-goal-list (if prune (goal-reduce scan goal-list path)
(minimal-goal-reduce scan goal-list path))))
(cond ((null? new-goal-list) (cons ’() path))
((> start stop) (cons new-goal-list path))
(else

(let* ((goal (list->goal new-goal-list module))

(mod (if innerslice
(sal-module/slice-for module goal) module))
(new-path
(let loop ((depth start))
(cond ((> depth stop) ()
((sal-bmc/extend-path
path mod goal depth ’ics))
(else (loop (+ depth step)))))))
(if (pair? new-path)
(extend-search mod new-goal-list new-path scan
prune innerslice start step stop)
(cons new-goal-list path)))))))

John Rushby, SRI Invisible FM and AutoTestGen: 22

Some Experimental Results

Generates full state and transition coverage for stopwatch
with three tests in a couple of minutes

o 12 steps for the statechart
o 101 steps for mid right junction (actually redundant)

o 6,001 steps for junction at bottom right

Generates full state and transition coverage for shift
scheduler from a 4-speed automatic transmission in two tests
o Lengths 31 and 55 (total 86)
o Standard method used 25 tests and 229 steps
o Model has 23 states and 25 transitions

John Rushby, SRI Invisible FM and AutoTestGen: 23

first_gear
entry: to_gear = 1;

[V <= shift_speed_21]

/transitionlz

shifting_a
entry: to_gear=2;

[gear == 1]
second_gear
entry: to_gear=2;

[V <= shift_speed_21]

/transilion21

shift_pending_b

entry: ctr=0;
to_gear=2;

during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

John Rushby, SRI

[V > shift_:

DELAY]

DELAY]

[V > shift_speed_:

Shift Scheduler

speed_12]

[V > shift_speed_23

[V <= shift_speed_23]

/transitionzs

shift_pending2

entry: ctr=0;
to_gear=2;

during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

[gear ==3

third_gear
> entry: to_gear=3;

[V <= shift_speed_43]

[V <= shift_speed_32]

/transition32

shift_pending_c

entry: ctr=0;
to_gear=3;

during: ctr=ctr+1,

shifting_c
entry: to_gear=2;

/1ransition34

shift_pending3

entry: ctr=0;
to_gear=3;

during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

[V <= shift_speed_43]

DELAY]

[V > shift_speed_23]

/transition43

shift_pending_d

entry: ctr=0;
to_gear =4;

during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

V > shift_speed_34]

DELAY]

[gear == 4]

[V > shift_speed_34]

DELAY]

[gear == 3]

Invisible FM and AutoTestGen: 24

John

Some Experimental Results (ctd)

Rockwell Collins has developed a series of flight guidance
system (FGS) examples for NASA

SAL translation of largest of these kindly provided by UMN
Model has 490 variables, 246 states, 344 transitions
Single test case of length 39 covers all but 3 transitions

o How can that be?
The three outstanding goals are genuinely unreachable
Also working on large medical device example

o Exposes weaknesses in current Stateflow translator

And insertion of trap variables for MC/DC tests

Rushby, SRI Invisible FM and AutoTestGen: 25

Optimizations (TBD)

e Symbolic model checking

o Precompute the reachable states (as a BDD)

o Tests can then be “read off”
o Infeasible for big systems (unless sliced)

e Bounded model checking

o Precompute the k-fold composition of the transition
relation

o May also be able to learn hints for the SAT solver

John Rushby, SRI Invisible FM and AutoTestGen: 26

Embellishments

Method starts new test when current test cannot be extended

Would do better to try to construct an extension from some
intermediate point of some previous test

Can search from all of these in parallel

o Just initialize the search to the disjunction of all states
encountered in previously generated tests

o EXxpensive expression for bounded model checker but may
have a compact BDD for symbolic model checker

Have the code for this but haven't integrated it yet

In general, can initialize the search with any states you
already know how to reach

o E.g., by random testing
o Or previous campaign of functional testing

John Rushby, SRI Invisible FM and AutoTestGen: 27

Some Commercial Tools Do Similar Things

e Ketchum (aka. FormalVera and Magellan) from Synopsys

e Reactis from Reactive Systems Inc (RSI)

Secesasese

/
<L A
)

aYelals!
59, %%

/
(AT A A
058 aSas

a2ntale
CHRH

N
S

(/

elelels

N
.\ ..‘

Nvanwya

e Related: 0O-in, DART

John Rushby, SRI

/

.
a2a %% 2% %
e taete¥ste vy

/

ST
OO
CHHS

5% 2e

CHOHH
segeseds

—7
S0 ese

/

A

Invisible FM and AutoTestGen: 28

/

50
.0
{)
Ly
5'
{)

/
L~
S0 e2aSe et

SN

/ /
.ﬁ\ﬂ

CHON

CHO

O
T

)

Test Coverage
Need criteria to suggest when we have tested enough
Vast literature on this topic

Many criteria are based on structural coverage of the program

E.g., DO178B Level A, MISRA require MC/DC coverage

o Not allowed to generate tests from the program structure

o But generating tests from the structure of the model is
ok and likely to achieve high coverage on the program

Plausible methodology uses structural generation from model
to pick up the uncovered goals following normal testing

John Rushby, SRI Invisible FM and AutoTestGen: 29

So Are The Test Sets Any Good~?

Heimdahl et al. found (in a limited experiment using the
Rockwell FGS examples) that tests generated by traditional
model checking were poor at detecting seeded errors
(random testing did better)

They conjectured this was because the tests were so short
(average length about 1.25)

We hypothesize that long tests found by our method will be
more effective

o In process of checking this on UMN example

Heimdahl also observed model checker often finds ‘“sneaky”
ways to achieve goals

Good coverage criteria may not be so good for generation

An invitation to invent new criteria for generation

Rushby, SRI Invisible FM and AutoTestGen: 30

Generating Good Test Sets
Use different (better) structural coverage criteria

Our method is independent of criteria chosen

o We target trap variables
o How you set them is up to you

Require paths to satisfy some test purpose

Derive tests from requirements and/or domain boundaries

Possibly combined with coverage ideas

John Rushby, SRI Invisible FM and AutoTestGen: 31

Test Purposes

Constraints on the tests to be generated—for example

o At least 7 steps

o Keep z in [—12..7] and different to y

o No more than two START events in succession

Specify test purpose (TP) as a state machine—for example

o In Stateflow (engineers stay in familiar notation)
o In system language of model checker
o By automatic translation from property language

Raise OK variable while input sequence satisfies the purpose

Synchronously compose SUT and TP

o l.e., TP is a synchronous observer

Perform test generation as before but target conjunction of
OK with trap variables

John Rushby, SRI Invisible FM and AutoTestGen: 32

Requirement-Driven Tests

Specify requirements by synchronous observers—for example

o In Stateflow (engineers stay in familiar notation)

o By automatic translation from property language
Then target structural coverage in the observer
Or cross product of observer and SUT

Related idea in Motorola VeriState

John Rushby, SRI Invisible FM and AutoTestGen: 33

Boundary Value Tests

Currently, we use the symbolic and bounded model checkers
of SAL

The infinite bounded model checker would be ideal, but it
currently does not generate concrete counterexamples
(because ICS does not do full model generation)

Next versions of ICS/SAL-inf-bmc will do counterexamples,
and it will be possible to choose maximum, minimum, middle
values for variables subject to arithmetic constraints

Generate tests as before, but instantiate arithmetic variables
to max, min, middle values

John Rushby, SRI Invisible FM and AutoTestGen: 34

Higher Level Tests
Higher-level tests are more challenging

Integration tests: similar to compliance testing, well studied
in telecom area

System tests and hardware (or simulator) in the loop tests

o Typically want to drive system to some interesting state
o But composition may be nondeterministic
o And we may not have control of all components

* E.g., hardware network may or may not drop packets

Test generation problem becomes one of controller synthesis

This also can be solved by the technology of model checking

o Withess model checker of SAL is intended for this

John Rushby, SRI Invisible FM and AutoTestGen: 35

Still Higher Level Tests
Can have hardware devices in the loop that are not discrete
systems

o E.g., engine and gearbox with their external loads
o More generally, the plant and its environment

These are described by continuous variables and differential
equations (in Simulink)

o Sometimes combined with discrete elements
o I.e., hybrid systems

Controller synthesis for hybrid systems is very hard

Hybrid abstraction (in Hybrid SAL) reduces hybrid systems to
discrete conservative approximations

Can then do controller synthesis via model checking as before

John Rushby, SRI Invisible FM and AutoTestGen: 36

Eventual Goal: Tightened Vee Diagram

time and money

— =
. /_v system
requirements ot
design/code unit/integration
test

John Rushby, SRI Invisible FM and AutoTestGen: 37

Summary: Automated Test Generation

Simple ideas that significantly improves the efficiency of test
sets generated by a model checker

o Extend current test to new goals

o Search to any uncovered goal

o Slice model as goals are covered

o Further improvement: (re)start from any visited state

Simple implementation in scriptable model checker (SAL)
Generation is efficient also

Independent of test criteria: just set the trap variables
Many opportunities for further research in test generation

The paper, SAL Scheme scripts, and examples, are available

from http://www.csl.sri.com/users/rushby/abstracts/sefm04

John Rushby, SRI Invisible FM and AutoTestGen: 38

Summary: Formal Methods
It is now fairly routine to have model checkers as backends to
theorem provers (e.g., PVS), or proof assistants as front
ends to model checkers (e.g., Cadence SMV)

But we envisage a larger collection of symbolic
computational procedures

o Decision procedures, abstractors, invariant generators,
model checkers, static analyzers, test generators, I'TPs

Interacting through a scriptable tool bus

The bus manages symbolic and concrete artifacts
o Test cases, abstractions, theorems, invariants

Over which it performs evidence management

Focus shifts from verification to symbolic analysis

o Iterative application of analysis to artifacts to yield new
artifacts, insight and evidence

John Rushby, SRI Invisible FM and AutoTestGen: 39

Integrated, Iterated Analysis

John Rushby, SRI Invisible FM and AutoTestGen: 40

Summary: Invisible Formal Methods

Model-based design methods are a (once-in-a-lifetime?)
opportunity to get at formal artifacts early enough in the
lifecycle to apply useful analysis within the design loop

And formal analysis tools are now powerful enough to do
useful things without interactive guidance

The challenge is to find good ways to put these two together
o Deliver analyses of interest and value to the developers

o Or certifiers
o But must fit in their flow

So can shift from technology push to pull

Invisible (or disappearing) formal methods is our slogan for
this approach: apply formal automation to familiar practices

John Rushby, SRI Invisible FM and AutoTestGen: 41

Summary: Technology

e The technology of automated deduction (and the speed of
commodity workstations) has reached a point where we can
solve problems of real interest and value to developers of
embedded systems

Embodied in our systems

SAL.csl.sri.com: symbolic analysis laboratory
o Provides state-of-the-art model checking toolkit
(explicit, symbolic, witness, bounded, infinite-bounded)
o Tool bus (soon)
PVS.csl.cri.com: comprehensive interactive theorem prover

ICS.csl.sri.com: embedded decision procedures

And in numerous papers accessible from
http://fm.csl.sri.com, including our Roadmap

John Rushby, SRI Invisible FM and AutoTestGen: 42

Vision: 21st Century Software Engineering

Symbolic analysis could become the dominant method in
systems development and assurance

And programming could be supplanted by construction of
logical models

And deduction will do the hard work

John Rushby, SRI Invisible FM and AutoTestGen: 43

A Bigger Vision: 21st Century Mathematics
The industrialization of the 19th and 20th century was based
on continuous mathematics
o And its automation
That of the 21st century will be based on symbolic
mathematics

o Whose automation is now feasible

Allows analysis of systems too complex and numerically too
indeterminate for classical methods

Example: symbolic systems biology

o Knockouts in E.Coli (SRI; Maude)

o Cell differentiation in C.Elegans (Weizmann; Play-in/out)
o Delta-Notch signaling (SRI, Stanford; Hybrid SAL)

o Sporolation in B.Subtilis (SRI; Hybrid SAL)

John Rushby, SRI Invisible FM and AutoTestGen: 44

