
Invisible Formal Methods:

Generating Efficient Test Sets

With a Model Checker

John Rushby

with Grégoire Hamon and Leonardo de Moura

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I Invisible FM and AutoTestGen: 1

Full Formal Verification is a Hard Sell: The Wall

theorem
 proving

interactive
Reward (assurance)

Effort

PVS

John Rushby, SR I Invisible FM and AutoTestGen: 2

Newer Technologies Improve the Value Proposition

theorem
 proving

interactive

m
odel

checking

Reward (assurance)

Effort

PVSICSSAL

automated

theorem proving

and abstraction

But only by a little

John Rushby, SR I Invisible FM and AutoTestGen: 3

The Unserved Area Is An Interesting Opportunity

theorem
 proving

interactive

m
odel

checking

Reward (assurance)

Effort

PVSICSSAL

automated

theorem proving

and abstraction

invisible

formal methods

Conjecture: reward/effort climbs steeply in the invisible region

John Rushby, SR I Invisible FM and AutoTestGen: 4

Invisible Formal Methods

• Use the technology of formal methods

◦ Theorem proving, constraint satisfaction, model checking,

abstraction, symbolic evaluation

• To augment traditional methods and tools

◦ Compilers, debuggers

• Or to automate traditional processes

◦ Testing, reviews, debugging

• To do this, we must unobtrusively (i.e., invisibly) extract

◦ A formal specification

◦ A collection of properties

• And deliver a useful result in a familiar form

John Rushby, SR I Invisible FM and AutoTestGen: 5

Invisible Formal System Specifications

• Traditionally, there was nothing formal (i.e., mechanically

analyzable) prior to the executable program

◦ Requirements, specifications, etc. were just natural

language words, and pictures

• So one response is to apply formal methods to programs

◦ E.g., extended static analysis

• But for embedded systems, industry has adopted model

based design (MBD) at a surprisingly rapid pace

◦ Matlab (Simulink/Stateflow): over 500,000 licenses

◦ Statecharts

◦ Scade/Esterel

• Some of these (e.g., Stateflow) have less-than-ideal

semantics, but it’s possible to cope with them

◦ E.g., our paper in FASE ’04

John Rushby, SR I Invisible FM and AutoTestGen: 6

Invisible Property Specifications

• MBD provides formal specifications of the system

• But what properties shall we apply formal analysis to?

• One approach is to analyze structural properties

◦ E.g., no reliance on 12 o’clock rule in Stateflow

◦ Similar to table checking in SCR

◦ Prove all conditions are pairwise disjoint

◦ And collectively exhaustive

• Another is to generate structural test cases

• Either for exploration

◦ E.g., “show me a sequence of inputs to get to here”

• Or for testing in support of certification and verification

John Rushby, SR I Invisible FM and AutoTestGen: 7

Simplified Vee Diagram

system
requirements test

design/code unit/integration
test

time and money

Vast resources are expended on testing embedded systems

John Rushby, SR I Invisible FM and AutoTestGen: 8

Invisible FM Example: Generating Unit Tests

• Let’s focus initially on testing individual units of a program

• Executable model provides the oracle

• Various criteria for test generation

Functional tests: tests are derived by considering intended

function or desired properties of the unit (requires

higher-level specifications, which we do not have)

Boundary tests: tests designed to explore inside, outside,

and on the boundaries of the domains of input variables

Structural tests: tests are designed to visit interesting

paths through the specification or program (e.g., each

control state, or each transition between control states)

• Let’s look at the standard method for structural test

generation using model checking

John Rushby, SR I Invisible FM and AutoTestGen: 9

Example: Stopwatch in Stateflow

Inputs: START and LAP buttons, and clock TIC event

[sec==60] {
 sec=0;
 min=min+1;
}

[cent==100] {
 cent=0;
 sec=sec+1;
}

TIC {
 cent=cent+1;
}LAP {

 cent=0; sec=0; min=0;
 disp_cent=0; disp_sec=0;
 disp_min=0;
}

Run

Running

Lap

during:
disp_cent=cent;
disp_sec=sec;
disp_min=min;

LAPLAP

Stop

Reset

Lap_stop

LAP

START

START

START

START

Example test goals: generate input sequences to exercise

Lap stop to Lap transition, or to reach junction at bottom right

John Rushby, SR I Invisible FM and AutoTestGen: 10

Generating Structural Tests

• Problem: find a path that satisfies a desired test goal

◦ E.g., reach junction at bottom right

• Symbolically execute the path, then solve the path predicate

to generate concrete input sequence that satisfies all the

branch conditions for the path

◦ If none, find another path and repeat until success or

exhaustion

• Repeat for all test goals

• Solving path predicates requires constraint satisfaction over

theories appearing in the model (typically, propositional

calculus, arithmetic, data types)

◦ E.g., ICS and its competitors

◦ For finite cases, a SAT solver will do

• Can be improved using predicate abstraction (cf. Blast)

John Rushby, SR I Invisible FM and AutoTestGen: 11

Generating Tests Using a Model Checker

• Method just described requires custom machinery

• Can also be done using off-the-shelf model checkers

◦ Path search and constraint satisfaction by brute force

• Instrument model with trap variables that latch when a test

goal is satisfied

◦ E.g., a new variable jabr that latches TRUE when

junction at bottom right is reached

• Model check for “always not jabr”

• Counterexample will be desired test case

• Trap variables add negligible overhead (’cos no interactions)

• For finite cases (e.g., numerical variables range over bounded

integers) any standard model checker will do

◦ Otherwise need infinite bounded model checker as in SAL

John Rushby, SR I Invisible FM and AutoTestGen: 12

Tests Generated Using a Model Checker

John Rushby, SR I Invisible FM and AutoTestGen: 13

Model Checking Pragmatics

Explicit state: good for complex transition relations with

small statespaces

Depth first search: test cases generally have many

irrelevant events and are too long

• E.g., 24,001 steps to reach junction at bottom right

Breadth first search: test cases are minimally short, but

cannot cope with large statespaces

• E.g., cannot reach junction at bottom right

Symbolic: test cases are minimally short, but large BDD

ordering overhead in big models

• E.g., reaches junction at bottom right in 125 seconds

Bounded: often ideal, but cannot generate tests longer than a

few tens of steps, and may not be minimally short

• E.g., cannot reach junction at bottom right

John Rushby, SR I Invisible FM and AutoTestGen: 14

Useful Optimizations

• Backward slicing (called cone of influence reduction in model

checking) simplifies model relative to a property by

eliminating irrelevant state variables and input events

◦ Allows explicit state model checker to reach junction at

bottom right in 6,001 steps in just over a second (both

depth- and breadth-first)

◦ And speeds up symbolic model checker

• Prioritized traversal is an optimization found in

industrial-scale symbolic model checkers

◦ Partitions the frontier in forward image computations and

prioritizes according to various heuristics

◦ Useful with huge statespaces when there are many targets

once you get beyond a certain depth

John Rushby, SR I Invisible FM and AutoTestGen: 15

Efficient Test Sets

• Generally we have a set of test goals (to satisfy some

coverage criterion)

• Want to discharge all the goals with

◦ Few tests (restarts have high cost)

◦ Short total length (each step in a test has a cost)

• Independent of the method of model checking, generating a

separate test for each goal produces very inefficient tests

◦ E.g., Lap to Lap stop test repeats Running to Lap test

• Can “winnow” them afterward

• Or check in generation for other goals discharged fortuitously

◦ So won’t generate separate Running to Lap test if it’s

already done as part of Lap to Lap stop test

◦ But effectiveness depends on order goals are tackled

John Rushby, SR I Invisible FM and AutoTestGen: 16

Tests Generated Using a Model Checker (again)

Lots of redundancy in the tests generated

John Rushby, SR I Invisible FM and AutoTestGen: 17

Generating Efficient Test Sets

• Minimal tour-based methods: difficulty is high cost to

compute feasibility of paths (or size of problem when

transformed, e.g., to colored tours)

• So use a greedy approach

• Instead of starting each test from the the start state, we try

to extend the test found so far

• Could get stuck if we tackle the goals in a bad order

• So, simply try to reach any outstanding goal and let the

model checker find a good order

◦ Can slice after each goal is discharged

◦ A virtuous circle: the model will get smaller as the

remaining goals get harder

• Go back to the start when unable to extend current test

John Rushby, SR I Invisible FM and AutoTestGen: 18

An Efficient Test Set

Less redundancy, and longer tests tend to find more bugs

John Rushby, SR I Invisible FM and AutoTestGen: 19

Scriptable Model Checkers

• But how do we persuade a model checker to do all this?

• Several modern model checkers are scriptable

• E.g., SAL is scriptable in Scheme

• For SAL, the method described is implemented in less than

100 lines of Scheme

◦ Extensions use bounded model checking

⋆ Parameterized incremental search depth

◦ (Re)starts use either symbolic or bounded model checking

⋆ Parameterized choice and search depth

◦ Optional slicing after each extension or each restart

◦ Optional search for non-latching trap variables

• Extending tests allows a bounded model checker to reach

deep states at low cost

◦ 5 searches to depth 4 much easier than 1 to depth 20

John Rushby, SR I Invisible FM and AutoTestGen: 20

Outer Loop Of The SAL Test Generation Script

(define (iterative-search module goal-list

scan prune slice innerslice bmcinit start step stop)

(let* ((goal (list->goal goal-list module))

(mod (if slice (sal-module/slice-for module goal) module))

(path (if bmcinit

(sal-bmc/find-path-from-initial-state

mod goal bmcinit ’ics)

(sal-smc/find-path-from-initial-state mod goal))))

(if path

(extend-search mod goal-list path scan prune

innerslice start step stop)

#f)))

John Rushby, SR I Invisible FM and AutoTestGen: 21

Core Of The SAL Test Generation Script
(define (extend-search module goal-list

path scan prune innerslice start step stop)

(let ((new-goal-list (if prune (goal-reduce scan goal-list path)

(minimal-goal-reduce scan goal-list path))))

(cond ((null? new-goal-list) (cons ’() path))

((> start stop) (cons new-goal-list path))

(else

(let* ((goal (list->goal new-goal-list module))

(mod (if innerslice

(sal-module/slice-for module goal) module))

(new-path

(let loop ((depth start))

(cond ((> depth stop) ’())

((sal-bmc/extend-path

path mod goal depth ’ics))

(else (loop (+ depth step)))))))

(if (pair? new-path)

(extend-search mod new-goal-list new-path scan

prune innerslice start step stop)

(cons new-goal-list path)))))))

John Rushby, SR I Invisible FM and AutoTestGen: 22

Some Experimental Results

• Generates full state and transition coverage for stopwatch

with three tests in a couple of minutes

◦ 12 steps for the statechart

◦ 101 steps for mid right junction (actually redundant)

◦ 6,001 steps for junction at bottom right

• Generates full state and transition coverage for shift

scheduler from a 4-speed automatic transmission in two tests

◦ Lengths 31 and 55 (total 86)

◦ Standard method used 25 tests and 229 steps

◦ Model has 23 states and 25 transitions

John Rushby, SR I Invisible FM and AutoTestGen: 23

Shift Scheduler

[gear ==3]

[gear == 3]

[V <= shift_speed_32]

[gear == 1]

[V > shift_speed_23]

[V > shift_speed_34]

[V <= shift_speed_21] [V > shift_speed_12] [V <= shift_speed_43]

[V > shift_speed_23]

[V <= shift_speed_23]

[gear == 2]

[gear == 4]

[V <= shift_speed_43]

[V > shift_speed_34]

[gear == 2][V <= shift_speed_21]

[V > shift_speed_12]

third_gear
entry: to_gear=3;first_gear

entry: to_gear = 1;

transition12

[ctr > DELAY]

shift_pending_a
entry: ctr=0;
 to_gear=1;
during: ctr=ctr+1;

shifting_a
entry: to_gear=2;

transition23

[ctr > DELAY]

shift_pending2
entry: ctr=0;
 to_gear=2;
during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

transition34

[ctr > DELAY]

shift_pending3
entry: ctr=0;
 to_gear=3;
during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

second_gear
entry: to_gear=2;

transition43

[ctr > DELAY]

shift_pending_d
entry: ctr=0;
 to_gear =4;
during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

transition32

[ctr > DELAY]

shift_pending_c
entry: ctr=0;
 to_gear=3;
during: ctr=ctr+1;

shifting_c
entry: to_gear=2;

transition21

[ctr > DELAY]

shift_pending_b
entry: ctr=0;
 to_gear=2;
during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

John Rushby, SR I Invisible FM and AutoTestGen: 24

Some Experimental Results (ctd)

• Rockwell Collins has developed a series of flight guidance

system (FGS) examples for NASA

• SAL translation of largest of these kindly provided by UMN

• Model has 490 variables, 246 states, 344 transitions

• Single test case of length 39 covers all but 3 transitions

◦ How can that be?

The three outstanding goals are genuinely unreachable

• Also working on large medical device example

◦ Exposes weaknesses in current Stateflow translator

And insertion of trap variables for MC/DC tests

John Rushby, SR I Invisible FM and AutoTestGen: 25

Optimizations (TBD)

• Symbolic model checking

◦ Precompute the reachable states (as a BDD)

◦ Tests can then be “read off”

◦ Infeasible for big systems (unless sliced)

• Bounded model checking

◦ Precompute the k-fold composition of the transition

relation

◦ May also be able to learn hints for the SAT solver

John Rushby, SR I Invisible FM and AutoTestGen: 26

Embellishments

• Method starts new test when current test cannot be extended

• Would do better to try to construct an extension from some

intermediate point of some previous test

• Can search from all of these in parallel

◦ Just initialize the search to the disjunction of all states

encountered in previously generated tests

◦ Expensive expression for bounded model checker but may

have a compact BDD for symbolic model checker

• Have the code for this but haven’t integrated it yet

• In general, can initialize the search with any states you

already know how to reach

◦ E.g., by random testing

◦ Or previous campaign of functional testing

John Rushby, SR I Invisible FM and AutoTestGen: 27

Some Commercial Tools Do Similar Things

• Ketchum (aka. FormalVera and Magellan) from Synopsys

• Reactis from Reactive Systems Inc (RSI)

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

• Related: 0-in, DART

John Rushby, SR I Invisible FM and AutoTestGen: 28

Test Coverage

• Need criteria to suggest when we have tested enough

• Vast literature on this topic

• Many criteria are based on structural coverage of the program

• E.g., DO178B Level A, MISRA require MC/DC coverage

◦ Not allowed to generate tests from the program structure

◦ But generating tests from the structure of the model is

ok and likely to achieve high coverage on the program

• Plausible methodology uses structural generation from model

to pick up the uncovered goals following normal testing

John Rushby, SR I Invisible FM and AutoTestGen: 29

So Are The Test Sets Any Good?

• Heimdahl et al. found (in a limited experiment using the

Rockwell FGS examples) that tests generated by traditional

model checking were poor at detecting seeded errors

(random testing did better)

• They conjectured this was because the tests were so short

(average length about 1.25)

• We hypothesize that long tests found by our method will be

more effective

◦ In process of checking this on UMN example

• Heimdahl also observed model checker often finds “sneaky”

ways to achieve goals

• Good coverage criteria may not be so good for generation

• An invitation to invent new criteria for generation

John Rushby, SR I Invisible FM and AutoTestGen: 30

Generating Good Test Sets

• Use different (better) structural coverage criteria

• Our method is independent of criteria chosen

◦ We target trap variables

◦ How you set them is up to you

• Require paths to satisfy some test purpose

• Derive tests from requirements and/or domain boundaries

• Possibly combined with coverage ideas

John Rushby, SR I Invisible FM and AutoTestGen: 31

Test Purposes

• Constraints on the tests to be generated—for example

◦ At least 7 steps

◦ Keep x in [−12..7] and different to y

◦ No more than two START events in succession

• Specify test purpose (TP) as a state machine—for example

◦ In Stateflow (engineers stay in familiar notation)

◦ In system language of model checker

◦ By automatic translation from property language

Raise OK variable while input sequence satisfies the purpose

• Synchronously compose SUT and TP

◦ I.e., TP is a synchronous observer

• Perform test generation as before but target conjunction of

OK with trap variables

John Rushby, SR I Invisible FM and AutoTestGen: 32

Requirement-Driven Tests

• Specify requirements by synchronous observers—for example

◦ In Stateflow (engineers stay in familiar notation)

◦ By automatic translation from property language

• Then target structural coverage in the observer

• Or cross product of observer and SUT

• Related idea in Motorola VeriState

John Rushby, SR I Invisible FM and AutoTestGen: 33

Boundary Value Tests

• Currently, we use the symbolic and bounded model checkers

of SAL

• The infinite bounded model checker would be ideal, but it

currently does not generate concrete counterexamples

(because ICS does not do full model generation)

• Next versions of ICS/SAL-inf-bmc will do counterexamples,

and it will be possible to choose maximum, minimum, middle

values for variables subject to arithmetic constraints

• Generate tests as before, but instantiate arithmetic variables

to max, min, middle values

John Rushby, SR I Invisible FM and AutoTestGen: 34

Higher Level Tests

• Higher-level tests are more challenging

• Integration tests: similar to compliance testing, well studied

in telecom area

• System tests and hardware (or simulator) in the loop tests

◦ Typically want to drive system to some interesting state

◦ But composition may be nondeterministic

◦ And we may not have control of all components

⋆ E.g., hardware network may or may not drop packets

• Test generation problem becomes one of controller synthesis

• This also can be solved by the technology of model checking

◦ Witness model checker of SAL is intended for this

John Rushby, SR I Invisible FM and AutoTestGen: 35

Still Higher Level Tests

• Can have hardware devices in the loop that are not discrete

systems

◦ E.g., engine and gearbox with their external loads

◦ More generally, the plant and its environment

• These are described by continuous variables and differential

equations (in Simulink)

◦ Sometimes combined with discrete elements

◦ I.e., hybrid systems

• Controller synthesis for hybrid systems is very hard

• Hybrid abstraction (in Hybrid SAL) reduces hybrid systems to

discrete conservative approximations

• Can then do controller synthesis via model checking as before

John Rushby, SR I Invisible FM and AutoTestGen: 36

Eventual Goal: Tightened Vee Diagram

system
requirements test

design/code unit/integration
test

time and money

John Rushby, SR I Invisible FM and AutoTestGen: 37

Summary: Automated Test Generation

• Simple ideas that significantly improves the efficiency of test

sets generated by a model checker

◦ Extend current test to new goals

◦ Search to any uncovered goal

◦ Slice model as goals are covered

◦ Further improvement: (re)start from any visited state

• Simple implementation in scriptable model checker (SAL)

• Generation is efficient also

• Independent of test criteria: just set the trap variables

• Many opportunities for further research in test generation

• The paper, SAL Scheme scripts, and examples, are available

from http://www.csl.sri.com/users/rushby/abstracts/sefm04

John Rushby, SR I Invisible FM and AutoTestGen: 38

Summary: Formal Methods

• It is now fairly routine to have model checkers as backends to

theorem provers (e.g., PVS), or proof assistants as front

ends to model checkers (e.g., Cadence SMV)

• But we envisage a larger collection of symbolic

computational procedures

◦ Decision procedures, abstractors, invariant generators,

model checkers, static analyzers, test generators, ITPs

• Interacting through a scriptable tool bus

• The bus manages symbolic and concrete artifacts

◦ Test cases, abstractions, theorems, invariants

Over which it performs evidence management

• Focus shifts from verification to symbolic analysis

◦ Iterative application of analysis to artifacts to yield new

artifacts, insight and evidence

John Rushby, SR I Invisible FM and AutoTestGen: 39

Integrated, Iterated Analysis

John Rushby, SR I Invisible FM and AutoTestGen: 40

Summary: Invisible Formal Methods

• Model-based design methods are a (once-in-a-lifetime?)

opportunity to get at formal artifacts early enough in the

lifecycle to apply useful analysis within the design loop

• And formal analysis tools are now powerful enough to do

useful things without interactive guidance

• The challenge is to find good ways to put these two together

◦ Deliver analyses of interest and value to the developers

◦ Or certifiers

◦ But must fit in their flow

So can shift from technology push to pull

• Invisible (or disappearing) formal methods is our slogan for

this approach: apply formal automation to familiar practices

John Rushby, SR I Invisible FM and AutoTestGen: 41

Summary: Technology

• The technology of automated deduction (and the speed of

commodity workstations) has reached a point where we can

solve problems of real interest and value to developers of

embedded systems

• Embodied in our systems

SAL.csl.sri.com: symbolic analysis laboratory

◦ Provides state-of-the-art model checking toolkit

(explicit, symbolic, witness, bounded, infinite-bounded)

◦ Tool bus (soon)

PVS.csl.cri.com: comprehensive interactive theorem prover

ICS.csl.sri.com: embedded decision procedures

• And in numerous papers accessible from

http://fm.csl.sri.com, including our Roadmap

John Rushby, SR I Invisible FM and AutoTestGen: 42

Vision: 21st Century Software Engineering

• Symbolic analysis could become the dominant method in

systems development and assurance

• And programming could be supplanted by construction of

logical models

• And deduction will do the hard work

John Rushby, SR I Invisible FM and AutoTestGen: 43

A Bigger Vision: 21st Century Mathematics

• The industrialization of the 19th and 20th century was based

on continuous mathematics

◦ And its automation

• That of the 21st century will be based on symbolic

mathematics

◦ Whose automation is now feasible

Allows analysis of systems too complex and numerically too

indeterminate for classical methods

• Example: symbolic systems biology

◦ Knockouts in E.Coli (SRI; Maude)

◦ Cell differentiation in C.Elegans (Weizmann; Play-in/out)

◦ Delta-Notch signaling (SRI, Stanford; Hybrid SAL)

◦ Sporolation in B.Subtilis (SRI; Hybrid SAL)

John Rushby, SR I Invisible FM and AutoTestGen: 44

