
Dagstuhl seminar on Dependability of Component Based Systems, 3–8 November

2002

Based on NASA Langley 12, 13 September 2001



Modular Certification

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I Modular Certification: 1



System Certification

� Dependability, safety, and related attributes are system-level (i.e., emergent)

properties

� Hence, certification traditionally considers the full system

� E.g., in civil air transport, the smallest unit of certification is a complete airplane

or engine

� However, there is informal reuse of component-level arguments

� For avionics, this has been aided by the federated architectures employed

� Each function (autopilot, autothrottle, FMS etc.) has its own fault-tolerant platform
� Little interaction between them, limited fault propagation

Analysis and certification can focus on component-system interactions, rather than

component-component

John Rushby, SR I Modular Certification: 2



The Trend Towards Integration

� But avionics systems are now becoming integrated

� Resources shared between functions
� Stronger interactions among them

More functionality at less cost

� Integrated Modular Avionics (IMA)
� Modular Aerospace Controls (MAC)

� Similar trend in automobiles

� Integrated steering, brakes, suspension by wire

� And everything else

� New hazards from fault propagation, and unintended emergent behavior

John Rushby, SR I Modular Certification: 3



The Trend Towards Components

� Existence of standardized IMA platforms (e.g., TTA)

� And interfaces (e.g., APEX)

Encourages development of semi-standardized components (e.g., autopilot or

brake-by-wire modules)

� Integrators and customers want these components to be packaged with a

certification argument

� Or to come already “pre-certified”

� System certification then largely a composition of component-level pre-certification

arguments

� Need a notion of modular certification to support these constructs

� RTCA SC200 and its Eurocae ED60 are holding joint meetings to develop a basis for

modular certification

John Rushby, SR I Modular Certification: 4



Modular Certification: First Interpretation

� Certification argument for system Y with component/subsystem X makes use of

separately certified claims about X’s properties at its interfaces

� As opposed to opening up the design of X

� Pictorially:

X Y X Y+ vs.

� Think of X as some onboard function of airplane Y

John Rushby, SR I Modular Certification: 5



Modular Certification: The Benefits

� Assuming we have certified X and Y “in isolation”

� The incremental cost of the modular certification X+Y should be less than that of the

joint certification XY

� Especially if X is reused across many applications

� Attractive to suppliers of X

� Or if there are many X’s and the owner of Y only has to develop the integration

argument

� Attractive to developer of Y

� Requires that reasoning about properties at the interface is simpler than reasoning

about the design

John Rushby, SR I Modular Certification: 6



Modular Certification: The Difficulty

� Much of the effort in certification is not in showing that things work right when all is

going well

� But in showing that the system remains safe in the face of hazards

� In the case of X+Y, we have to consider all the hazards that X can pose to Y and

vice-versa

� Hazards include malfunction and unintended function as well as loss of function

� Difficult to anticipate all the hazards X might pose to Y without knowing quite a lot

about Y, and vice-versa

� Hazards may bypass the traditional notion of “interface”

� Think of Concorde’s tires

John Rushby, SR I Modular Certification: 7



Modular Certification: Need Another Interpretation

� May be infeasible to certify a component X separately from its environment Y

� Difficulty remains when X is software

� E.g., how can we possibly certify the software for a thrust reverser separate from

the reverser?

� This interpretation of modular certification is too ambitious to have useful solutions

(yet)

� Though there is interesting work at York and elsewhere on compositional safety

analysis

John Rushby, SR I Modular Certification: 8



Second Interpretation: Focus On Combinations

� The issue is not to certify X separately from Y

� But given that
� �

and
� �

have both separately been certified with Y

� Establish that
� �

and
� �

can be used together in Y

YY Y
X1

X2

X1

X2
vs.+

� Still difficult if
� �

and
� �

have strong interactions

(e.g., engine controller and thrust reverser)

John Rushby, SR I Modular Certification: 9



Third Interpretation: Focus On Combinations of Software

� Hazard analysis and the safety case must consider system-component and

component-component interaction at the level of the functions concerned

� E.g., engine controller and thrust reverser
� No reverse thrust when in flight (system-component)
� No movement of the reverser doors when thrust above flight idle

(component-component)

� The new problem we need to address is the possibility of additional hazards from

integration of the software in these function

� E.g., controller provides thrust data to reverser
� Both systems share the same computer system

� Want a modular cert’n method that addresses these issues

John Rushby, SR I Modular Certification: 10



Modular Certification for Combinations of Software

� Suppose
� �

and
� �

are software for separate functions in Y

� E.g.,
� �

is the software for the engine controller

and
� �

is the software for the thrust reverser

� Each is certified for its part in Y on the basis of assumptions about what the other

does

A(X2)

A(X1)
YY YX2

X1

X2
vs.+

X1

� Want to conclude that their actual combination is safe

John Rushby, SR I Modular Certification: 11



Modular Certification

By Assume-Guarantee Reasoning

� The idea of verifying properties of one component
� �

on the basis of assumptions

about another
� �

(and, in general,
� �

,
� �

. . . ), and vice-versa is called

assume-guarantee reasoning and is fairly well developed in computer science

� But there are two challenges:

� The approach looks circular, so how do we get a sound method?
� Assume-guarantee reasoning is used for verification, but we are interested in

certification

John Rushby, SR I Modular Certification: 12



Modular Certification for Combinations of Software

� Certification differs from verification in that we have to take failures and hazards into

account

� Maybe we can split the problem into normal/abnormal cases� Can we certify the normal operation of
� �

and
� �

by assume/guarantee

methods?
�

E.g., the thrust reverser does its thing assuming the engine controller supplies

some sensor readings�
Yes, this is similar to other assume/guarantee applications

� Can we do something similar for the hazards?
�

That is, provide guarantees on the behavior of
� �

when
� �

does not fulfill its

assumptions?�
This is the hard one!

John Rushby, SR I Modular Certification: 13



Assume/Guarantee Reasoning Over Hazards

How can
� �

’s failure to fulfill its guarantees disturb
� �

?

Behavioral failure:
� �

depends on data or control values from
� �

in such a way

that its computation becomes hazardous when
� �

fails to satisfy its guarantees

� E.g.,
� �

relies on sensor data from
� �

with no independent backup

Interface failure:
� �

affects
� �

through channels other than their defined interface

� E.g.,
� �

corrupts or monopolizes resources used by
� �

(memory,

communications bandwidth)

Function failure:
� �

cannot guarantee the safety of its function if
� �

allows the

system it controls to malfunction

These are the only hazards
� �

can pose to
� �

John Rushby, SR I Modular Certification: 14



Contr olling The Hazards

� We must control these three classes of hazards

� Some require that
� �

and
� �

have certain properties

� And some require architectural properties of the environment in which
� �

and
� �

operate

John Rushby, SR I Modular Certification: 15



The Envir onment Must Enforce Partitioning

� Interface failure cannot be allowed;
� �

,
� �

,. . . must operate within an environment

that enforces partitioning

� Such as the traditional federated architecture
� Or an IMA or MAC architecture such as SAFEbus or TTA

� Must ensure that no failure of
� �

can affect the basic operation or timing of
� �

, nor

its communications with nonfaulty
� �

,
� �

,. . .

� Top-level requirement specification for partitioning:

� Behavior perceived by nonfaulty components must be consistent with some

behavior of faulty components interacting with it through specified interfaces

� A partitioning architecture must be certified to satisfy this requirement

John Rushby, SR I Modular Certification: 16



Normal and Abnormal Assumptions and Guarantees

� In most concurrent programs one component cannot work without the other

� E.g., in a communications protocol, what can the sender do without a receiver?

� But the software of different aircraft functions must not be so interdependent

� In fact,
� �

must not depend on
� �

� In worst case,
� �

must provide safe operation of its function in the absence of

any guarantees from
� �

� Though may need to assume some properties of the function controlled by
� �

(e.g., thrust reverser may not depend on the software in the engine controller, but

may depend on engine remaining under control)

John Rushby, SR I Modular Certification: 17



Normal and Abnormal Assumptions and Guarantees (ctd)

� In general,
� �

should provide a graduated series of guarantees, contingent on a

similar series of assumptions about
� �

� These can be considered the normal behavior of
� �

and one or more abnormal

behaviors

� A component may be subjected to external failures of one or more of the

components with which it interacts

� Recorded in its abnormal assumptions on those components

� A component may also suffer internal failures

� Documented as its internal fault hypothesis

John Rushby, SR I Modular Certification: 18



Components Must Avoid Behavioral and Function Failure

True guarantees : under all combinations of failures consistent with its internal fault

hypothesis and abnormal assumptions, the component must be shown to satisfy one

or more of its normal or abnormal guarantees.

Safe function : under all combinations of faults consistent with its internal fault

hypothesis and abnormal assumptions, the component must be shown to perform its

function safely (e.g., if it is an engine controller, it must control the engine safely)

� Where “safely” means behavior consistent with the safety case assumption about

the function concerned

John Rushby, SR I Modular Certification: 19



Avoiding Domino Failures

� If
� �

suffers a failure that causes its behavior to revert from guarantee � 	 � ��

to

� �
	 � � 

� May expect that

� �
’s behavior will revert from � 	 � � 


to � � 	 � � 

� Do not want the lowering of

� �
’s guarantee to cause a further regression of

� �
from � � 	 � � 


to � ��� 	 � � 

and so on

Contr olled failure : there should be no domino effect.

Arrange assumptions and guarantees in a hierarchy from 0 (no failure) to � (rock

bottom). If all internal faults and all external guarantees are at level � or better,

component should deliver its guarantees at level � or better

This subsumes true guarantees

John Rushby, SR I Modular Certification: 20



Technical Aside

� What is a suitable formulation of assume-guarantee reasoning?

� ����� � ����� asserts that if
�

is part of a system that satisfies � , then the system must

also satisfy �
��� � � � � ��� � �
��� � � � � ��� � �
�������! "� � �$#%#&� � ��� �(' � � �

� Naı̈ve rules like this are unsound

John Rushby, SR I Modular Certification: 21



Sound Assume Guarantee Rules

� Consider a specific example: clock synchronization and group membership in TTA

� Each depends on the other
� But the circularity is broken by time
� Membership at time ) depends on synchronization at )(* +

� Similar time offset in dependency of
� �

in this frame on assumptions about
� �

in

previous frame

� This suggests that we could modify our previous circular rule to read as follows,

where � ,- indicates that � - holds up to time )
��� ,� � � � ��� ,�. �� �
��� ,� � � � ��� ,�. �� �
�������! "� � �$#%#&� � ��� �(' � � �

John Rushby, SR I Modular Certification: 22



A Practical Sound Circular Rule

� The idea is good, but we want a rule that supports systematic reasoning from one

time point to the next

� A formulation that has this character has been introduced by McMillan; here / is a

“helper” property, 0 is the “always” modality of Linear Temporal Logic (LTL), and� 1 � means that if � is always true up to time ) , then � holds at time )32 + (i.e., �
fails before � )

� / � � � ��� � 1 � � �
� / � � � ��� � 1 � � �
� / � � � #%#&� � � 0 	 � � ' � � 
 �

John Rushby, SR I Modular Certification: 23



Soundness and Utility

� Have formally verified this rule in PVS

(for the 2-process case)

� Notice that � 1 � can be written as the LTL formula 45	 � 6 4 � 
 , where 6 is the LTL

“until” operator, so the antecedents can be discharged by model checking in the

case of finite systems

John Rushby, SR I Modular Certification: 24



Completeness

� McMillan’s rule is sound, but Namjoshi and Trefler show that it is incomplete

� They show that the following extended version of the rule is both sound and complete

� / � � � � 	�7 � ' � � 
 1 	8	97 � : � � 
;' 7 � 
 �
� / � � � � 	�7 � ' � � 
 1 	8	97 � : � � 
;' 7 � 
 �
� / � � � #<#&� � � 0 	 � � ' � � 
 �

Here 7 �
and 7 �

are auxiliary properties; by taking both to be true, this more

complicated rule reduces to the previous one

� Probably not an issue in practice

John Rushby, SR I Modular Certification: 25



Summar y

� We have seen that modular certification depends on three properties

� Partitioning
� Safe function
� Controlled failure (which subsumes true guarantees)

� And have seen a verified rule for assume-guarantee reasoning that is suitable for

this application

� Sheds light on Kopetz recommendation of elementary over composite interfaces

� And on Perrow’s concern over interactive complexity and strong coupling

John Rushby, SR I Modular Certification: 26



Future Development

� Need to try it out in practice

� Simplified engine controller/thrust reverser
� MAC applications (subfunctions rather than functions)
� Membership and synchronization in TTA

� Need to extend the formalization of McMillan’s rule to the normal/abnormal case and

the controlled failure requirement

� Should try to derive specific partitioning requirements from the top-level specification

John Rushby, SR I Modular Certification: 27


