
SMT, CALO PCE, and SAVH

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I SMT, PCE, and SAVH: 1



Overview

• SAT and SMT solvers, and their applications

• Building a faster SMT solver

• Working with inconsistent knowledge

◦ MaxSAT and MaxSMT

◦ Application to CALO PCE

• Maximal assignments

◦ SMTmax and MaxSMTmax

◦ Application to AI planning and diagnosis

◦ Application to SAVH

• SMT as disruptive technology

◦ Paradigm shift in verification: The Evidential Tool Bus

◦ And opportunities in AI (and Biology and . . . )

Anything a SAT solver can do, an SMT solver can do better

John Rushby, SR I SMT, PCE, and SAVH: 2



SAT Solving

• Find satisfying assignment to a propositional logic formula

• Formula can be represented as a set of clauses

◦ CNF: conjunction of disjunctions

◦ Find an assignment of truth values to variable that makes

at least one literal in each clause TRUE

• Example: given following 4 clauses

◦ A,B

◦ C ,D

◦ E

◦ Ā, D̄, Ē

One solution is A, C, E, D̄

(A, D, E is not and cannot be extended to be one)

• Do this when there are 1,000,000 variables and clauses

John Rushby, SR I SMT, PCE, and SAVH: 3



SAT Solvers

• SAT solving is the quintessential NP-complete problem

• But now amazingly fast in practice (most of the time)

◦ Breakthroughs (starting with Chaff) since 2001

◦ Sustained improvements, honed by competition

• Has become commodity technology

◦ MiniSAT is 700 SLOC

• Can think of it as massively efficient search

◦ So use it when your problem can be formulated as SAT

• Used in bounded model checking and in AI planning

◦ Routine to handle 10300 states

John Rushby, SR I SMT, PCE, and SAVH: 4



Satisfiability Modulo Theories (SMT)

• SAT can encode operations and relations on bounded

integers (bitvector representation), and other finite data

types and structures

• But not unbounded or infinite types (e.g., reals), or

structures (e.g., queues, lists)

• And even bounded arithmetic can be slow

• There are fast decision procedures for these theories

• But they work only on conjunctions

• General propositional structure requires case analysis

◦ Should use efficient search strategies of SAT solvers

That’s what an SMT solver does

John Rushby, SR I SMT, PCE, and SAVH: 5



SMT Solving

• Individual decision procedures decide conjunctions of

formulas in their decided theories

• Combinations of decision procedures (using, e.g.,

Nelson-Oppen or Shostak methods) decide conjunctions over

the combined theories (e.g., arithmetic plus arrays)

• SMT allows general propositional structure

◦ e.g., (x ≤ y ∨ y = 5) ∧ (x < 0 ∨ y ≤ x) ∧ x 6= y

. . . possibly continued for 1000s of terms

• Should exploit search strategies of modern SAT solvers

• So replace the terms by propositional variables

◦ (A ∨ B) ∧ (C ∨ D) ∧ E

• Get a solution from a SAT solver (if none, we are done)

◦ e.g., A, D, E

John Rushby, SR I SMT, PCE, and SAVH: 6



SMT Solving by “Lemmas On Demand”

• Restore the interpretation of variables and send the

conjunction to the core decision procedure

◦ e.g., x ≤ y ∧ y ≤ x ∧ x 6= y

• If satisfiable, we are done

• If not, ask SAT solver for a new assignment—but isn’t it

expensive to keep doing this?

• Yes, so first, do a little bit of work to find fragments that

explain the unsatisfiability, and send these back to the SAT

solver as additional constraints (i.e., lemmas)

◦ A ∧ D ⊃ ¬E

• Iterate to termination (e.g., B, D, E: y = 5, y < x: y = 5, x = 6)

• This is called “lemmas on demand” (de Moura, Ruess,

Sorea) or “DPLL(T)”; it yields effective SMT solvers

John Rushby, SR I SMT, PCE, and SAVH: 7



Bounded Model Checking (BMC)

• Given system specified by initiality predicate I and transition

relation T on states S

• Is there a counterexample to property P in k steps or less?

• Find assignment to states s0, . . . , sk satisfying

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Given a Boolean encoding of I, T , and P (i.e., circuit), this is

a propositional satisfiability (SAT) problem

• But if I, T and P use decidable but unbounded types, then

it’s an SMT problem: infinite bounded model checking

• (Infinite) BMC also generates test cases (and plans)

◦ Counterexample to negation of property

• Extends from refutation to verification via k-induction

John Rushby, SR I SMT, PCE, and SAVH: 8



Example: Real Time

• Continuous time excludes automation by finite state methods

• Timed automata methods handle continuous time

◦ But are defeated by the case explosion when (discrete)

faults are considered as well

• SMT solvers can handle both dimensions

◦ With discrete time, can have a clock module that

advances time one tick at a time

? Each module sets a timeout, waits for the the clock to

reach that value, then does its thing, and repeats

◦ Better: move the timeout to the clock module and let it

advance time all the way to the next timeout

? These are Timeout Automata (Dutertre and Sorea):

and they work for continuous time

◦ In addition, need k-induction, disjunctive invariants

John Rushby, SR I SMT, PCE, and SAVH: 9



Example: Biphase Mark Protocol

• Biphase Mark is a protocol for asynchronous communication

◦ Clocks at either end may be skewed and have different

rates, and jitter

◦ So have to encode a clock in the data stream

◦ Used in CDs, Ethernet

◦ Verification identifies parameter values for which data is

reliably transmitted

• Verified by human-guided proof in ACL2 by J Moore (1994)

• Three different verifications used PVS

◦ One by Groote and Vaandrager used PVS + UPPAAL

◦ Required 37 invariants, 4,000 proof steps, hours of prover

time to check

John Rushby, SR I SMT, PCE, and SAVH: 10



Biphase Mark Protocol (ctd)

• Brown and Pike recently did it with sal-inf-bmc

◦ Used timeout automata to model timed aspects

◦ Statement of theorem discovered systematically using

disjunctive invariants (7 disjuncts)

◦ Three lemmas proved automatically with 1-induction,

◦ Theorem proved automatically using 5-induction

◦ Verification takes seconds to check

◦ Demo:

sal-inf-bmc -v 3 -d 5 -i -l l0 -l l1 -l l2 biphase t0

• Adapted verification to 8-N-1 protocol (used in UARTs)

◦ Additional lemma proved with 13-induction

◦ Theorem proved with 3-induction (7 disjuncts)

◦ Revealed a bug in published application note

John Rushby, SR I SMT, PCE, and SAVH: 11



Fast SMT Solvers

• SMT solvers are being honed by competition

◦ Initiated by Leonardo and Harald

◦ Now institutionalized as part of CAV, FLoC

• Various divisions (depending on the theories considered)

◦ Equality and uninterpreted functions

◦ Difference logic (x − y < c)

◦ Full linear arithmetic

? For integers as well as reals

◦ Arrays . . . etc.

• ICS won in 2004

• Yices and Simplics (prototypes for next ICS) won the hard

divisions in 2005, came second in all the others

• Next ICS should win in 2006

John Rushby, SR I SMT, PCE, and SAVH: 12



Building a Fast(er) SMT Solver

• Individual decision procedures need to be fast

◦ Linear arithmetic procedure should be effective for

difference logic (don’t want a discrete switch)

• Need fast and effective interaction with the SAT solver

◦ Good, but cheap explanations

◦ Fast backtracking

• Congruence closure integrated with SAT for fast propagation

• Choices must be validated by extensive benchmarking

• A topic for a future talk by Bruno and Leonardo

John Rushby, SR I SMT, PCE, and SAVH: 13



Working With Inconsistent Knowledge

• In AI applications, often have inconsistent knowledge

◦ E.g., from different sources, ignorance of true state

• Rather than UNSAT, we want a SAT assignment for some

subset of constraints

• We can weight the knowledge according to “credibility,” then

want a SAT assignment of maximum weight: MaxSAT

• May also want to find the source of inconsistency: unsat core

• CALO needs these capabilities to draw conclusions from

knowledge provided by different machine learners

◦ Extension to reason about equality is attractive

• So we’re building the Probabilistic Consistency Engine (PCE)

• A topic for a future talk by Tomas

John Rushby, SR I SMT, PCE, and SAVH: 14



MaxSAT via SMT

• This is not what we do, but gives the idea

• Description is simpler if we interpret weights as penalties for

violating a constraint

• Then want assignment of minimum weight

• For a constraint Ci of weight Wi

• Assert Ci ∨ yi = Wi to SMT solver, where yi is a new

arithmetic variable

◦ Or, equivalently, ¬Ci ⊃ yi = Wi

• In a satisfying assignment, y1 + y2 + · · · yn is the total weight

of violated constraints

John Rushby, SR I SMT, PCE, and SAVH: 15



Implementing MaxSAT via SMT (ctd.)

• So we can check whether a solution with weight at most m

exists by asserting the constraint y1 + y2 + · · · yn ≤ m to SMT

solver and asking whether the resulting set of clauses is

satisfiable

• SMT solver can do this because it handles linear arithmetic

• We want a satisfying assignment of minimum weight

• But we know that all feasible m must lie between 0 and

M = W1 + W2 · · ·Wn

• So do a binary search for the least m in [0 . . .M ]

• This requires log M invocations of SMT solver

• Can get anytime solutions (satisfiable but not necessarily

minimal) by starting with a large value for m (e.g., M)

John Rushby, SR I SMT, PCE, and SAVH: 16



MaxSMT

• This is what we actually do (I think)

• CALO mostly needs MaxSAT (rather than MaxSMT)

• So start by making the SAT solver state of the art

◦ Good cache utilization is vital

• Build the propagation over weights into the SAT core

◦ Rather than delegate to arithmetic procedure of SMT

• Binary search destroys solver context

◦ And repeatedly encounters phase transition region

◦ So creep up to max from one side

◦ Anytime solution is still possible

• Believed to be the fastest MaxSAT solver

◦ And actually does MaxSMT

• A topic for a future talk by Tomas and Leonardo

John Rushby, SR I SMT, PCE, and SAVH: 17



Maximal Assignments

• The Simplex linear arithmetic solver decides whether a set of

constraints is satisfiable

◦ And can maximize any expression under those constraints

• Can solve an SMT problem, then maximize target expression

under the satisfying assignment

• Then seek new assignments with larger maximum

◦ Test the maximum periodically, and terminate branches

that do not better current maximum

• Call this SMTmax, can probably extend to MaxSMTmax

• One use is test case generation

◦ SMT covers the control structure

◦ SMTmax allows boundary coverage

John Rushby, SR I SMT, PCE, and SAVH: 18



Spacecraft Autonomy for Vehicles and Habitats (SAVH)

• Part of Return to the Moon

◦ Looks like Apollo but much more automation

◦ Though the astronauts can meddle

• Automation driven by planners (EUROPA2)

• And plan execution engines (PLEXIL)

• We’re part of a V&V team

• Explore robustness of models, plans, executions

• I suspect MaxSMTmax will allow new approaches here

(see later)

• A topic for a future talk by Shankar

John Rushby, SR I SMT, PCE, and SAVH: 19



SMT as Disruptive Technology: Verification

Backend verifiers

Integrated Endgame

Evolution of endgame verifiers

Decision Procedures SMT solver

John Rushby, SR I SMT, PCE, and SAVH: 20



SMT as Disruptive Technology: Beyond Verification

• Modern formal methods tools do more than verification

• They also do refutation (bug finding)

• And test-case generation

• And controller synthesis

• And construction of abstractions and abstract interpretation

• And generation of invariants

• And . . .

• Observe that these tools can return objects other than

verification outcomes

◦ Counterexamples, test cases, abstractions, invariants

Hence, heterogeneous integration

John Rushby, SR I SMT, PCE, and SAVH: 21



Integration of Heterogeneous Components

Effective tools are specialized often integrate many components

For example, software model checkers generally have:

• C front end with CFG analyzer

• Predicate abstractor

◦ Which uses decision procedures

◦ And possibly a model checker

• Model checker and counterexample generator

• Counterexample concretizer and refinement generator

◦ Which uses Craig interpolation

◦ Or unsat cores

And a control loop around the whole lot

John Rushby, SR I SMT, PCE, and SAVH: 22



Another Example: LAST

• LAST (Xia, DiVito, Muñoz) generates MC/DC tests for

avionics code involving nonlinear arithmetic (with floating

point numbers, trigonometric functions etc.)

• Applied it to Boeing autopilot simulator

◦ Modules with upto 1,000 lines of C

◦ 220 decisions

• Generated tests to (almost) full MC/DC coverage in minutes

John Rushby, SR I SMT, PCE, and SAVH: 23



Structure of LAST

• It’s built on Blast (Henzinger et al)

◦ A software model checker, itself built of components

◦ Including CIL and CVC-Lite

• But extends it to handle nonlinear arithmetic using RealPaver

(a numerical nonlinear constraint unsatisfiability checker)

◦ Added 1,000 lines to CIL front end for MC/DC

◦ Added 2,000 lines to RealPaver to integrate with

CVC-Lite (Nelson-Oppen style)

◦ Changed 2,000 lines in Blast to tie it all together

• Aside: note they chose CVC-Lite rather than ICS

◦ CVC-Lite is a very poor SMT solver

◦ But it’s more open than ICS

◦ Combination is unsound, but that’s ok for refutation

John Rushby, SR I SMT, PCE, and SAVH: 24



A Tool Bus

• How can we construct these customized combinations and

integrations easily and rapidly?

• The integrations are coarse-grained (hundreds, not millions of

interactions per analysis), so they do not need to share state

• So we could take the outputs of one tool, massage it suitably

and pass it to another and so on

• A combination of XML descriptions, translations, and a

scripting language could probably do it

• Suitably engineered, we could call it a tool bus

John Rushby, SR I SMT, PCE, and SAVH: 25



From Backends to Bus

Backends Bus

• Bus is a federation of equals

• Theorem prover is just another component

John Rushby, SR I SMT, PCE, and SAVH: 26



But . . .

• But we’d need to know the names and capabilities of the

tools out there and explicitly to script the desired interactions

◦ And we’d be vulnerable to change

• Whereas I would like to exploit whatever is out there

◦ And in 15 years time there may be lots of things out there

• That is, I want the bus to operate declaratively

◦ By implicit invocation

• And I want evidence that supports the overall analysis

(i.e., the ingredients for a safety or assurance case)

• That is, I want a semantic integration

John Rushby, SR I SMT, PCE, and SAVH: 27



A Formal Tool Bus
• The data manipulated by tools on bus are formulas in logic

• In fact, they can be seen as formulas in a logic

◦ The Formal Tool Bus Logic

◦ Each tool operates on a sublogic

◦ Syntactic differences masked with XML wrappers

• No point in limiting the expressiveness of the tool bus logic

◦ Should be at least as expressive as PVS

? Higher order, with predicate, structural, and dependent

subtypes, abstract data types, recursive and inductive

definitions, parameterized theories, interpretations

◦ With structured representations for important cases

? State machines (as in SAL), counterexamples, process

algebras, temporal logics . . .

? Handled directly by some tools, can be expanded to

underlying semantics for others

John Rushby, SR I SMT, PCE, and SAVH: 28



Tool Bus Judgments

The tools on the bus evaluate and construct predicates over

expressions in the logic—we call these judgments

Parser: A is the AST for string S

Prettyprinter: S is the concrete syntax for A

Typechecker: A is a well-typed formula

Finiteness checker: A is a formula over finite types

Abstractor to PL: A is a propositional abstraction for B

Predicate abstractor: A is an abstraction for formula B wrt.

predicates φ

GDP: A is satisfiable

GDP: C is a context (state) representing input G

SMT: ρ is a satisfying assignment for A

John Rushby, SR I SMT, PCE, and SAVH: 29



Tool Bus Queries

• Tools publish their capabilities and the bus uses these to

organize answers to queries

Query: well-typed?(A)

Response: PVS-typechecker(. . . ) ` well-typed?(A)

The response includes the exact invocation of the tool

concerned

• Queries can include variables

Query: predicate-abstraction?(a, B, φ)

Response:

SAL-abstractor(. . . ) ` predicate-abstraction?(A, B, φ)

The tool invocation constructs the witness, and returns its

handle A

John Rushby, SR I SMT, PCE, and SAVH: 30



Tool Bus Operation

• The tool bus operates like a distributed datalog framework,

chaining on queries and responses

• Similar to AIC’s Open Agent Architecture

◦ And maybe similar to MyGrid, Linda, . . . ?

• Can have hints, preferences etc.

• Tools can be local or remote

• Tools can run in parallel, in competition

• The bus needs to integrate with version management

John Rushby, SR I SMT, PCE, and SAVH: 31



Scripting

Three levels of scripting

Tools:

• Tools should be scriptable

• Better functionality, performance than wrappers

• E.g., SAL model checkers are Scheme scripts over an API

• Test generator is another script over the same API

Wrappers:

• Some functionality can be achieved by a little

programming and maybe some tool invocation

Tool Bus:

• Scripts are chains of judgments

John Rushby, SR I SMT, PCE, and SAVH: 32



Tool Bus Scripts

• Example

◦ If A is a finite state machine and P a safety property,

then a model checker can verify P for A

◦ If B is a conservative abstraction of B, then verification of

B verifies A

◦ If A is a state machine, and B is predicate abstraction for

A, then B is conservative for A

• How do we know this is sound?

• And that we can trust the computations performed by the

components?

John Rushby, SR I SMT, PCE, and SAVH: 33



An Evidential Tool Bus

• Each tool should deliver evidence for its judgments

◦ Could be proof objects (independently checkable trail of

basic deductions): research topic ’cos raw objects too big

◦ Could be reputation (“Proved by PVS”)

◦ Could be diversity (“using both ICS and CVC-Lite”)

◦ Could be declaration by user

? “Because I say so”

? “By operational experience”

? “By testing”

• And the tool bus assembles these (on demand)

• And the inferences of its own scripts and operations

• To deliver evidence for overall analysis that can be considered

in a safety or assurance case—hence evidential tool bus

John Rushby, SR I SMT, PCE, and SAVH: 34



The Evidential Tool Bus

• There should be only one evidential tool bus

• Just like only one WWW

• How to do it?

◦ Standards committee?

◦ Competition and cooperation!

• Probably not difficult to integrate multiple buses

◦ Need agreement on ontologies

◦ Fairly minimal glue code to link them together

• I’d like to build one

◦ Initially to integrate PVS and SAL

◦ And to reconstruct Hybrid-SAL

• A topic for a future talk by Sam

John Rushby, SR I SMT, PCE, and SAVH: 35



SMT as Disruptive Technology: AI

• SMT solvers can do metric and temporal planning for AI

◦ Rather like test generation with BMC

◦ But a planning language and front end (e.g., STRIPS)

generates better problems for the SMT solver

◦ Demonstrated by Bart Peintner et al using ARIO

• And MaxSMT should be good for model based diagnosis

• Conjecture that SMT solvers have stronger foundation,

higher performance than heuristic planning and constraint

engines, and greater power than pure SAT solvers

◦ Adopt their good ideas, if any

• Anything a SAT solver can do, an SMT solver can do better

• Want to investigate this, and opportunities in AI

John Rushby, SR I SMT, PCE, and SAVH: 36


