SMT, CALO PCE, and SAVH

John Rushby

Computer Science Laboratory
SRI International
Menlo Park CA USA

John Rushby, SRI SMT, PCE, and SAVH: 1

Overview
SAT and SMT solvers, and their applications

Building a faster SMT solver

Working with inconsistent knowledge
o MaxSAT and MaxSM'T
o Application to CALO PCE

Maximal assignments

o SMTmax and MaxSMT max
o Application to Al planning and diagnosis
o Application to SAVH

SMT as disruptive technology

o Paradigm shift in verification: The Evidential Tool Bus

o And opportunities in Al (and Biology and ...)

Anything a SAT solver can do, an SMT solver can do better

John Rushby, SRI SMT, PCE, and SAVH: 2

SAT Solving
Find satisfying assignment to a propositional logic formula

Formula can be represented as a set of clauses

o CNF: conjunction of disjunctions

o Find an assignment of truth values to variable that makes
at least one literal in each clause TRUE

Example: given following 4 clauses

o A,B
o C,D
o F
o A,D,E
One solution is A,C,E, D
(A, D, FE is not and cannot be extended to be one)

Do this when there are 1,000,000 variables and clauses

John Rushby, SRI SMT, PCE, and SAVH: 3

SAT Solvers

SAT solving is the quintessential NP-complete problem

But now amazingly fast in practice (most of the time)

o Breakthroughs (starting with Chaff) since 2001
o Sustained improvements, honed by competition

Has become commodity technology
o MiniSAT is 700 SLOC

Can think of it as massively efficient search

o So use it when your problem can be formulated as SAT

Used in bounded model checking and in Al planning

o Routine to handle 1039 states

John Rushby, SRI SMT, PCE, and SAVH: 4

Satisfiability Modulo Theories (SMT)

SAT can encode operations and relations on bounded
integers (bitvector representation), and other finite data
types and structures

But not unbounded or infinite types (e.g., reals), or
structures (e.g., queues, lists)

And even bounded arithmetic can be slow
There are fast decision procedures for these theories
But they work only on conjunctions

General propositional structure requires case analysis
o Should use efficient search strategies of SAT solvers
That’'s what an SMT solver does

John Rushby, SRI SMT, PCE, and SAVH: 5

SMT Solving
Individual decision procedures decide conjunctions of
formulas in their decided theories

Combinations of decision procedures (using, e.g.,
Nelson-Oppen or Shostak methods) decide conjunctions over
the combined theories (e.g., arithmetic plus arrays)

SMT allows general propositional structure

o ed., (x<yVy=5)A(z<0Vy<zx)AzFy
... possibly continued for 1000s of terms

Should exploit search strategies of modern SAT solvers

So replace the terms by propositional variables
o (AVB)AN(CVD)NE

Get a solution from a SAT solver (if none, we are done)
o ed., A DFE

John Rushby, SRI SMT, PCE, and SAVH: 6

SMT Solving by “Lemmas On Demand”

Restore the interpretation of variables and send the
conjunction to the core decision procedure

o ed,r<yNy<zAzx#y
If satisfiable, we are done

If not, ask SAT solver for a new assignment—>but isn't it
expensive to keep doing this?

Yes, so first, do a little bit of work to find fragments that
explain the unsatisfiability, and send these back to the SAT
solver as additional constraints (i.e., lemmas)

o AND DO —-F

Iterate to termination (e.g., B,D,E: y=5,y<xz: y=>5,x = 06)

This is called “lemmas on demand” (de Moura, Ruess,
Sorea) or “"DPLL(T)"; it vields effective SMT solvers

John Rushby, SRI SMT, PCE, and SAVH: 7

John

Bounded Model Checking (BMC)

Given system specified by initiality predicate I and transition
relation T on states S

Is there a counterexample to property P in k steps or less?

Find assignment to states sg,..., s, satisfying

I(so) NT(sg,51) NT(s1,82) N+ ANT(Sk—1,8K) N2 (P(s1) A+ A\ P(sk))

Given a Boolean encoding of I, T, and P (i.e., circuit), this is
a propositional satisfiability (SAT) problem

But if I, T' and P use decidable but unbounded types, then
it's an SMT problem: infinite bounded model checking

(Infinite) BMC also generates test cases (and plans)

o Counterexample to negation of property

Extends from refutation to verification via k-induction

Rushby, SRI SMT, PCE, and SAVH:

Example: Real Time

e Continuous time excludes automation by finite state methods

e [imed automata methods handle continuous time

o But are defeated by the case explosion when (discrete)
faults are considered as well

e SMT solvers can handle both dimensions
o With discrete time, can have a clock module that
advances time one tick at a time
* Each module sets a timeout, waits for the the clock to
reach that value, then does its thing, and repeats

o Better: move the timeout to the clock module and let it
advance time all the way to the next timeout

x These are Timeout Automata (Dutertre and Sorea):
and they work for continuous time

o In addition, need k-induction, disjunctive invariants

John Rushby, SRI SMT, PCE, and SAVH: 9

Example: Biphase Mark Protocol

e Biphase Mark is a protocol for asynchronous communication
Clocks at either end may be skewed and have different
rates, and jitter
So have to encode a clock in the data stream
Used in CDs, Ethernet

Verification identifies parameter values for which data is
reliably transmitted

e Verified by human-guided proof in ACL2 by J Moore (1994)

e [hree different verifications used PVS

o One by Groote and VVaandrager used PVS + UPPAAL

o Required 37 invariants, 4,000 proof steps, hours of prover
time to check

John Rushby, SRI SMT, PCE, and SAVH: 10

Biphase Mark Protocol (ctd)

e Brown and Pike recently did it with
Used timeout automata to model timed aspects
Statement of theorem discovered systematically using
disjunctive invariants (7 disjuncts)
Three lemmas proved automatically with 1-induction,
Theorem proved automatically using 5-induction
Verification takes seconds to check

Demo:

e Adapted verification to 8-N-1 protocol (used in UARTS)
o Additional lemma proved with 13-induction
o Theorem proved with 3-induction (7 disjuncts)
o Revealed a bug in published application note

John Rushby, SRI SMT, PCE, and SAVH: 11

Fast SMT Solvers

SMT solvers are being honed by competition

o Initiated by Leonardo and Harald
o Now institutionalized as part of CAV, FLoC

Various divisions (depending on the theories considered)

Equality and uninterpreted functions

Difference logic (x —y < ¢)

Full linear arithmetic
* For integers as well as reals
Arrays ... etc.

ICS won in 2004

Yices and Simplics (prototypes for next ICS) won the hard
divisions in 2005, came second in all the others

Next ICS should win in 2006

John Rushby, SRI SMT, PCE, and SAVH: 12

Building a Fast(er) SMT Solver

Individual decision procedures need to be fast

o Linear arithmetic procedure should be effective for
difference logic (don't want a discrete switch)

Need fast and effective interaction with the SAT solver

o Good, but cheap explanations
o Fast backtracking

Congruence closure integrated with SAT for fast propagation
Choices must be validated by extensive benchmarking

A topic for a future talk by Bruno and Leonardo

John Rushby, SRI SMT, PCE, and SAVH: 13

Working With Inconsistent Knowledge

In Al applications, often have inconsistent knowledge

o E.g., from different sources, ignorance of true state

Rather than UNSAT, we want a SAT assignment for some
subset of constraints

We can weight the knowledge according to ‘“credibility,” then
want a SAT assignment of maximum weight: MaxSAT

May also want to find the source of inconsistency: unsat core

CALO needs these capabilities to draw conclusions from
knowledge provided by different machine learners

o EXxtension to reason about equality is attractive

So we're building the Probabilistic Consistency Engine (PCE)

A topic for a future talk by Tomas

John Rushby, SRI SMT, PCE, and SAVH: 14

MaxSAT via SMT
This is not what we do, but gives the idea

Description is simpler if we interpret weights as penalties for
violating a constraint

Then want assignment of minimum weight

For a constraint C; of weight IV

Assert C; Vy, = W,; to SMT solver, where y, is a new
arithmetic variable

o Or, equivalently, =C; Dy, = W;

In a satisfying assignment, y; +y> + - -y, is the total weight
of violated constraints

John Rushby, SRI SMT, PCE, and SAVH: 15

Implementing MaxSAT via SMT (ctd.)

So we can check whether a solution with weight at most m
exists by asserting the constraint y; +vyo +---y, < m to SMT
solver and asking whether the resulting set of clauses is
satisfiable

SMT solver can do this because it handles linear arithmetic
We want a satisfying assignment of minimum weight

But we know that all feasible m must lie between 0 and
M=W; 4+ Wy.--W,

So do a binary search for the least m in [0... M]

This requires log M invocations of SMT solver

Can get anytime solutions (satisfiable but not necessarily
minimal) by starting with a large value for m (e.g., M)

John Rushby, SRI SMT, PCE, and SAVH: 16

MaxSMT

This is what we actually do (I think)
CALO mostly needs MaxSAT (rather than MaxSMT)
So start by making the SAT solver state of the art
o Good cache utilization is vital
Build the propagation over weights into the SAT core
o Rather than delegate to arithmetic procedure of SMT
Binary search destroys solver context

o And repeatedly encounters phase transition region

o SO creep up to max from one side
o Anytime solution is still possible

Believed to be the fastest MaxSAT solver
o And actually does MaxSMT

A topic for a future talk by Tomas and Leonardo

John Rushby, SRI SMT, PCE, and SAVH: 17

Maximal Assignments

The Simplex linear arithmetic solver decides whether a set of
constraints is satisfiable

o And can maximize any expression under those constraints
Can solve an SMT problem, then maximize target expression
under the satisfying assignment
Then seek new assignments with larger maximum

o Test the maximum periodically, and terminate branches

that do not better current maximum

Call this SMTmax, can probably extend to MaxSMT max

One use is test case generation

o SMT covers the control structure

o SMTmax allows boundary coverage

John Rushby, SRI SMT, PCE, and SAVH: 18

Spacecraft Autonomy for Vehicles and Habitats (SAVH)

e Part of Return to the Moon

o Looks like Apollo but much more automation
o Though the astronauts can meddle

Automation driven by planners (EUROPA?2)

And plan execution engines (PLEXIL)
We're part of a V&V team
Explore robustness of models, plans, executions

I suspect MaxSMT max will allow new approaches here
(see later)

A topic for a future talk by Shankar

John Rushby, SRI SMT, PCE, and SAVH: 19

SMT as Disruptive Technology: Verification

Backend verifiers

P

Integrated Endgame

Evolution of endgame verifiers

Decision Procedures SMT solver

John Rushby, SRI SMT, PCE, and SAVH: 20

SMT as Disruptive Technology: Beyond Verification

Modern formal methods tools do more than verification

They also do refutation (bug finding)

And test-case generation

And controller synthesis

And construction of abstractions and abstract interpretation
And generation of invariants

And ...

Observe that these tools can return objects other than
verification outcomes

o Counterexamples, test cases, abstractions, invariants

Hence, heterogeneous integration

John Rushby, SRI SMT, PCE, and SAVH: 21

Integration of Heterogeneous Components

Effective tools are specialized often integrate many components

For example, software model checkers generally have:
e C front end with CFG analyzer

e Predicate abstractor

o Which uses decision procedures
o And possibly a model checker

e Model checker and counterexample generator

e Counterexample concretizer and refinement generator

o Which uses Craig interpolation
o Or unsat cores

And a control loop around the whole lot

John Rushby, SRI SMT, PCE, and SAVH: 22

Another Example: LAST

LAST (Xia, DiVito, Munoz) generates MC/DC tests for
avionics code involving nonlinear arithmetic (with floating
point numbers, trigonometric functions etc.)

Applied it to Boeing autopilot simulator
o Modules with upto 1,000 lines of C
o 220 decisions

Generated tests to (almost) full MC/DC coverage in minutes

John Rushby, SRI SMT, PCE, and SAVH: 23

Structure of LAST

e It's built on Blast (Henzinger et al)

o A software model checker, itself built of components
o Including CIL and CVC(C-Lite

e But extends it to handle nonlinear arithmetic using RealPaver
(a numerical nonlinear constraint unsatisfiability checker)

o Added 1,000 lines to CIL front end for MC/DC

o Added 2,000 lines to RealPaver to integrate with
CVC-Lite (Nelson-Oppen style)

o Changed 2,000 lines in Blast to tie it all together

e Aside: note they chose CVC-Lite rather than ICS

o CVC-Lite is a very poor SMT solver
o But it's more open than ICS

o Combination is unsound, but that's ok for refutation

John Rushby, SRI SMT, PCE, and SAVH: 24

A Tool Bus

How can we construct these customized combinations and
integrations easily and rapidly?

The integrations are coarse-grained (hundreds, not millions of
interactions per analysis), so they do not need to share state

So we could take the outputs of one tool, massage it suitably
and pass it to another and so on

A combination of XML descriptions, translations, and a
scripting language could probably do it

Suitably engineered, we could call it a tool bus

John Rushby, SRI SMT, PCE, and SAVH: 25

From Backends to Bus

/
\

Backends

e Bus is a federation of equals

e [heorem prover is just another component

John Rushby, SRI SMT, PCE, and SAVH: 26

But ...

But we'd need to know the names and capabilities of the
tools out there and explicitly to script the desired interactions

o And we'd be vulnerable to change

Whereas I would like to exploit whatever is out there

o And in 15 years time there may be lots of things out there

That is, I want the bus to operate declaratively

o By implicit invocation

And I want evidence that supports the overall analysis
(i.e., the ingredients for a safety or assurance case)

That is, I want a semantic integration

John Rushby, SRI SMT, PCE, and SAVH: 27

A Formal Tool Bus
e [he data manipulated by tools on bus are formulas in logic

e In fact, they can be seen as formulas in a logic
o The Formal Tool Bus Logic
o Each tool operates on a sublogic
o Syntactic differences masked with XML wrappers
e No point in limiting the expressiveness of the tool bus logic
o Should be at least as expressive as PVS

*x Higher order, with predicate, structural, and dependent
subtypes, abstract data types, recursive and inductive
definitions, parameterized theories, interpretations

o With structured representations for important cases

*x State machines (as in SAL), counterexamples, process
algebras, temporal logics . ..

* Handled directly by some tools, can be expanded to
underlying semantics for others

John Rushby, SRI SMT, PCE, and SAVH: 28

Tool Bus Judgments

The tools on the bus evaluate and construct predicates over
expressions in the logic—we call these judgments

Parser: A is the AST for string S

Prettyprinter: S is the concrete syntax for A
Typechecker: A is a well-typed formula

Finiteness checker: A is a formula over finite types
Abstractor to PL: A is a propositional abstraction for B

Predicate abstractor: A is an abstraction for formula B wrt.
predicates ¢

GDP: A is satisfiable

GDP: C is a context (state) representing input G

SMT: pis a satisfying assignment for A

John Rushby, SRI SMT, PCE, and SAVH: 29

Tool Bus Queries

e [o0ols publish their capabilities and the bus uses these to
organize answers to queries
Query:
Response:

The response includes the exact invocation of the tool
concerned

Queries can include variables

Query:
Response:
A

The tool invocation constructs the witness, and returns its
handle A

John Rushby, SRI SMT, PCE, and SAVH: 30

Tool Bus Operation

The tool bus operates like a distributed datalog framework,
chaining on queries and responses

Similar to AIC's Open Agent Architecture
o And maybe similar to MyGrid, Linda, ...~

Can have hints, preferences etc.
Tools can be local or remote

Tools can run in parallel, in competition

The bus needs to integrate with version management

John Rushby, SRI SMT, PCE, and SAVH: 31

Scripting
T hree levels of scripting

Tools:

e [ools should be scriptable

e Better functionality, performance than wrappers

e E.g., SAL model checkers are Scheme scripts over an API
e [est generator is another script over the same API

Wrappers:

e Some functionality can be achieved by a little
programming and maybe some tool invocation

Tool Bus:

e Scripts are chains of judgments

John Rushby, SRI SMT, PCE, and SAVH: 32

Tool Bus Scripts

e Example
o If A is a finite state machine and P a safety property,
then a model checker can verify P for A

o If B is a conservative abstraction of B, then verification of
B verifies A

o If A is a state machine, and B is predicate abstraction for
A, then B is conservative for A

e How do we know this is sound?

e And that we can trust the computations performed by the
components?

John Rushby, SRI SMT, PCE, and SAVH: 33

An Evidential Tool Bus

e Each tool should deliver evidence for its judgments
Could be proof objects (independently checkable trail of
basic deductions): research topic 'cos raw objects too big
Could be reputation (“Proved by PVS")
Could be diversity (*using both ICS and CVC-Lite")
Could be declaration by user

* ‘“‘Because I say so”
* By operational experience”
* By testing”

e And the tool bus assembles these (on demand)

e And the inferences of its own scripts and operations

e To0 deliver evidence for overall analysis that can be considered
in a safety or assurance case—hence evidential tool bus

John Rushby, SRI SMT, PCE, and SAVH: 34

T he Evidential Tool Bus

There should be only one evidential tool bus
Just like only one WWW

How to do it?

o Standards committee?
o Competition and cooperation!

Probably not difficult to integrate multiple buses

o Need agreement on ontologies

o Fairly minimal glue code to link them together
I'd like to build one

o Initially to integrate PVS and SAL

o And to reconstruct Hybrid-SAL

A topic for a future talk by Sam

John Rushby, SRI SMT, PCE, and SAVH: 35

SMT as Disruptive Technology: Al

SMT solvers can do metric and temporal planning for Al

o Rather like test generation with BMC

o But a planning language and front end (e.g., STRIPS)
generates better problems for the SMT solver

o Demonstrated by Bart Peintner et al using ARIO

And MaxSMT should be good for model based diagnosis

Conjecture that SMT solvers have stronger foundation,
higher performance than heuristic planning and constraint
engines, and greater power than pure SAT solvers

o Adopt their good ideas, if any
Anything a SAT solver can do, an SMT solver can do better

Want to investigate this, and opportunities in Al

John Rushby, SRI SMT, PCE, and SAVH: 36

