Abstract:

We deseribe, in tutoriual detail, the design of a distributed

general-purpose computing system that enforces a multilevel security
poliey. The system is composed of standard UNIX systems and small
trustworthy security mechanisms linked together in such a way as to
provide a total system which is not only demonstrably secure, but
also highly efficient and cost effective.

Each UNIX system provides services to a single security
partition and operates at full speed; security-critical tasks are
performed by separate, specialised processors. These security
processors control access to the different security partitions and
mediate information flow between them. They also provide a multilevel
secure file system and a faecility for dynamically changing the
security partition to which each UNIX system is assigned. Extensions
to support controlled downgrading and multilevel objeects are
deseribed as well.

Despite the sophistication of the overall aystem, individual
security processors employ only very simple, straightforward
mechanisms; their construction and verification requires no more than
already established technology. And despite the heterogeneity of its
compoents, the system as a whole appears to be a single multilevel
secure UNIX system, since the fact that it is actually a diastributed
system is completely hidden from its users and their programs. This
is achieved through the use of th "Newecastle Connection", a software
subsystem that links together multiple UNIX or UNIX-look-alike
systems, without requiring any changes to the source code of either
the operating system or any user programs.

A first prototype system, providing multiple security
partitions, and a multilevel secure file aystem, has already been
successfully demonstrated - construction of a much more complete
prototype is now planned.

A Distributed Secure System
By '...I‘-.:.u.-.-.ih‘l'-v'-:d'
J.M. Rushby and B. Randell T T PEsey

TECHNICAL REPORT SERIES

Editor: Mr. M.J. Elphick Number 182
May, 1983

(® 1982 University of Newcastle upon Tyne.

Printed and published by the University of Newcastle upon Tyne,
Computing Laboratory, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 TRU, England.

ta,

bibliographical details

RUSHBY, John Martin

A distributed secure system [Bﬂ J.M. Rushby and
BE. Randell

Newcastle upon Tyne: University of Newcastle upon Tyne,
Computing Laboratory, 1983,

(University of Newcastle upon Tyne, Computing Laboratory,
Technical Report Series, no. 182.)

Added entries RANDELL, B.
UNIVERSITY OF NEWCASTLE UPON TYNE.

Computing Laboratory. Technical Report Series. 182,

Suggested classmarks (primary classmark underlined)
Dewey (18th): 001.64404 658,47
ub.c. 519,687 519.718

Suggested keywords ;TSTRTBUTED SYSTEMS

MULTILEVEL SECURE FILE SYSTEM

NEWCASTLE CONNECTION

SECURITY PARTITIONS

UNIX
Abstract

We describe, in tutorial detail, the design of a distributed

general-purpose computing system that enforces a multilevel security policy.
The system is composed of standard UNIX systems and small trustworthy security
mechanisms linked together in such a way as to provide a total system which is
not only demonstrably secure, but also highly efficient and cost effective.

Each UNIX system provides services to a single security partition and
operates at full speed; security-critical tasks are performed by separate,
specialised processors., These security processors control access to the
different security partitions and mediate information flow between them. They
also provide a multilevel secure file system and a facility for dynamically
changing the security partition to which each UNIX system is assigned.
Extensions to support controlled downgrading and multilevel objects are
described as well.

Despite the sophistication of the overall system, individual security
processora employ only very simple, straightforward mechanisms; their
construction and verification requires no more than already established
technology. And despite the heterogeneity of its components, the system as a
whole appears to be a single multilevel secure UNIX system, since the fact that

Continued.
About the author
Dr. Rushby was a Research Associate in the Computing Laboratory from 1979-1982.
He is now a Computer Secientist with SRI International, Menlo Park, California.

Professor Randell has been professor of Computing Science in the C t
Laboratory since 1969. p g e omputing

it is actually a distributed system is completely hidden from its users and
their programs. This is achieved through the use of th "Newecastle Connection®,
a software subsystem that links together multiple UNIX or UNIX-look-alike
systems, without requiring any changes to the source code of either the

operating system or any user programs.

A first prototype system, providing multiple security partitions, and a
multilevel secure file system, has already been succesafully demonstrated -
construction of a much more complete prototype is now planned.

- f -

TABLE OF CONTENTS

l- Iﬂtrﬂdﬂctiﬂn ------------------------------------ R R R R R BB E R R R RS 1

2. Principles and Mechanisms for Secure and Distributed Systems 3

2|1| Secure srﬂte‘ﬂ BE R R R R R E B RS E R B R R R EE R SRR e 4
?rinﬂiplﬂﬂ BE R R R R R W E AR R W R R R NS EE N R R EEEEE RN EE R sssneenns &
Mechanisms .ccccssscssssssasssas R R N A -

2.2. Distributed SYyStemscccecessssssrsvsnsnsnsnsnns T -
PrincipleB .vsvvesnsonsvonvsnsvsnsnsorsannsnnnnnss sesssssannas B
MechanismB ..siesvesessassnsreasscssssassssossssssssasnns ssssas 9

3. A Securely Partitioned Distributed Systemccccsssssssssssnsss 12
Eey DIstribution ..ssvesssensrsarassssnsssnnsnsns sasssssusnnsnsnns 18
SUMBATLY sosssssssssssssssssassssnanssnnssanssrassssnsnnss sassnens 19

4., A Multilevel Secure File StOTe ...vsvevsssvssnscncanss sssascansss 20
SUBBETY sot0esesesstastsstsessssessssssssenases R A SRR

5. The Accessing and Allocation of Security Partitions:00::.. 30

5.1. Accessing Different Security Partitionsccevuvienen sses 30

5.2. Changing Security Partitions Dynamically ...cocvscaues sesvsns 31

SUMBATY sosessssansssassasssansssssssasassassssssnsssssssssssasnns 34

6: Purther TOpPICS corvevsvrssarssvvonssnssrmussnbuibisbossssis sassse 34
SUDMATY svosvssvsosnasnsransssssssssssssssnsassssnssasnsnsansssnss 39

7o Concluslons csssssssssnssssssstscnssisassossss e

Acknowledgements sosvssrevvsssssssssssrssssssssssarsnsnssnnsnas iasnssase &0

R-‘Efﬂrmeﬂ R EE AR AR R R R E R AR AR e (R R R R RS al

- &

A Distributed Secure System

J.M. Rushby
B. Randell

Computing Laboratory
University of Newcastle upon Tyne
Newcastle upon Tyne NE1l 7RU
England

Tel.: Newcastle (0632) 329233
Arpanet mail: NUMAC at SRI-CSL

l. Introduction

Attempts to construct secure general-purpose computing systems have
not, so far, been notably successful. A study conducted by IBM to exam-
ine the state and prospects of current technology reported [LometB82,
p32]: .

"As a result of our study, we are forced to conclude that the
‘secure’ operating systems extant or nearing completion all
appear to have fallen short of their intended goals. None
appear to meet even the minimum performance goals that have
been specified, none have successfully been wverified to the
extent desired or originally intended, and whether these sys-
tems satisfy their original security goals is an open ques-
tion.

"eeo It 18 our belief that the causes of the difficulty lie in
inadequate tools, methods, processor hardware, and design
ideas; inadequate to the extent of precluding a fully success-
ful effort to produce a provably secure, adequately performing
operating system in the near future."

In this paper we propose a system design which we hope will refute
the pessimistic conclusion of this IBM study. Our technique is to
finesse the problems that have caused difficulty in the past by aiming
to build, not a secure operating system, but a distributed secure sys-—
tem.

A sound principle for structuring secure systems is to keep enti-
ties of different security classifications completely separate from one
another - except when performing operations that require access to enti-
ties from more than one level. These latter operations must be per-
formed by, or under the control of, trustworthy ‘reference monitors’
which ensure compliance with some externally imposed security policy.

By ‘separation’ we mean absence of information flow, and it seems
clear that the fewer the resources that are shared across security lev-
els, the simpler it should be to achieve separation between those lev-
els. Unfortunately, the structure of conventional, centralised systems
is antithetical to this very natural requirement: they comprise a single
resource which must be shared between a number of users and functions.
For secure operation, trustworthy components within their operating sys-
tems must synthesise separate ‘virtual’ resources from the shared
resources actually available. The mechanisms that perform this ‘syn-
thetic separation’ are not only inimical to the efficiency of the sys-
tem, but are generally complex — making it difficult to guarantee their
own correctness.

In contrast to traditional, centralised systems, modern distributed
systems seem rather well matched to at least one of the requirements for
secure operation: they necessarily comprise a number of physically
separated components, each of which can, potentially, be dedicated to a
single security level or to a single function. In order to achieve
security, it 1is then only necessary to control communications between
the distributed components and to provide trustworthy reference monitors
for security-critical operations. The real challenge here is to struc-
ture the system so that the separation naturally provided by physical
distribution is fully exploited to simplify the mechanisms of security
enforcement without destroying the coherence of the overall system.

Our proposal for a Distributed Secure System involves connecting
some small, specialised, provably trustworthy systems and a number of
larger, untrusted ‘host’ machines in such a way as to provide a total
system which is not only demonstrably secure, but also highly efficient,
cost-effective, and convenient to use. The untrusted host machines will
each provide services to a single security partition and will continue
to run at their full speed. The trusted components will mediate commun=
jcations between the untrusted hosts and will also provide specialised
services such as multilevel secure file storage.

Any mention of security in the context of distributed systems
immediately invites proposals based on cryptographic techniques and a
number of such designs have already appeared [Berson82, Davida8la,
DavidaBlb, GasserB82]. Our approach also makes use of cryptography, but
differs from others in two important respects.

Firstly, whereas most other proposals largely eschew the wuse of
trusted software (indeed, this is the primary motivation for some
[Davida8lb]), we embrace its use wherever it is the most appropriate
mechanism. It 1is dimportant to stress here that when we speak of
‘trusted software’, we mean software that is provably trustworthy; it is
trusted by virtue of properties it has been shown to possess, not by
virtue of the use to which it is put. Use of trusted software enables
us to provide far greater functionality than systems based solely on
encryption, but despite the great functionality provided in our total
system, its trusted components individually provide only single and
relatively simple functions; none of our trusted software demands more,
either by way of efficiency or of verification, than has already been
achieved in stand-alone applications o¢f a similar nature. Indeed,
several of the trusted mechanisms that we propose to use are directly
derived from, or are (we belatedly find) re-inventions of, those already
incorporated in such applications.

Secondly, and unlike, for example, those of [Berson82, Gasser82],
our proposal confronts its users not with a network of systems, but with
a system: all issues of networking and distributed processing are tran-
sparent to the user, who is given the impression of using a single mul-
tilevel secure system. This is achieved by placing our mechanisms
within the environment provided by the ‘Newcastle Connection’ [Brown-
bridge82]. This scheme enables a number of inter-linked, standard UNIX
systems to be composed into a coherent, distributed system which is
functionally indistinguishable from a single UNIX. Within the present
paper, we will refer to this distributed system as UNIX UNITED. Of
course, neither UNIX UNITED nor even UNIX are necessary to the security
enforcement mechanisms described in the following sections, but we con-
sider them to provide a uniquely attractive environment in which to
implement and use these mechanisms.

The remainder of this report is organised as follows. Section 2
describes the structuring principles for secure and distributed systems
that underlie our work, and the basic mechanisms which we employ. Sound
design principles and careful structuring are crucial to the success of
any complex system design - and especially to those that claim such an
elusive property as security. Section 3 describes the cryptographic
techniques we propose for controlling communications between the com-—
ponents of our distributed system. The ability to control and protect
these communications is crucial, not only in order to provide separation
between security levels, but also in order to provide secure access to
the special, trustworthy mechanisms that perform the movement of infor-
mation across those levels. Section 4 outlines the design of one such
special mechanism: a Secure File System that provides for the multilevel
secure storage and accessing of files across different security levels.
The construction of this system, which has the appearance of a mul-
tilevel secure UNIX file system, is achieved with a surprisingly small
quantity of trusted mechanism. Section 5 proposes mechanisms for pro-
viding convenient terminal access to different security levels, and for
rapidly and automatically changing the security level at which component
computer systems (including personal workstations) operate. Once again,
very little additional trusted mechanism is needed in order to provide
these functions, especially the latter one. Section 6 explains how sys-
tems providing highly specialised secure services, such as downgrading
and support for multilevel objects, can be smoothly integrated into the
overall system, and also touches upon the problem of inter-networking.
Finally, in Section 7, we present our conclusions and describe the
current status of the projeet and our plans for the future. Readers who
wish to skim should note that each of sections 3 to 6 ends with a brief
SUMMATrY .

2. Principles and Mechanisms for Secure and Distributed Systems

We have based our work on two orthogonal design prineciples. Our
principle for designing secure systems 1is summed up in the phrase
*separate and mediate’, while that for distributed systems 1Is called,
rather grandly, the ‘recursive structuring principle’. These are
described in the following sub-sections, together with mechanisms for
realising them.

*[INIX is a Trademark of Bell Laboratories.

2.1. Secure Systems

We wish to to develop a system capable of processing information of
many different sensitivity levels, while enforcing a mandatory security
policy concerning disclosure of information to users of different clear-
ances. Precise details of the security policy to be enforced are unim-
portant, but it is the military ‘multilevel’ scheme with levels and com-
partments that we have generally held in mind [Landwehr8l]. (Karger
[Karger78] and Lipner [Lipner82] discuss interpretations of this poliey
which may be suitable for civilian environments.) We are concerned only
with the threat of simple disclosure and do not address problems of
aggregation and inference, nor of integrity and denial of service. We
assume that the environment provides adequate physical security to pro-
tect the system from direct external attack and that measures for pro-
cedural and persomnnel security safeguard the handling of information
outside, and at the interfaces to, the system.

Our primary concern is with threats internal to the system. In
particular, we assume, unless it has been proved otherwise, that each of
its own components, whether hardware or software, may be a ‘Trojan
Horse’: that is, a component supplied by an adversary with the intent of
subverting any security provided by the rest of the system. We assume
that such Trojan Horses may exploit subtle techniques involving the use
of clandestine communication channels [Lampson73] if such are present.
Readers unfamiliar with these topics may wish to consult the previously
cited references, and also the excellent book by D.E. Denning [Den-
ning82].

Principles

In order that its users may be assured that a system is able to
maintain security in the face of threats such as those described above,
it is necessary to structure that system very carefully - so that all
the factors affecting its security may be exposed to scrutiny. All
mechanisms critical to security must be readily identifiable and their
precise role, and consequently the properties required of them, ascer-
tained. Furthermore, the internal structure of those mechanisms must be
sufficiently simple that it is possible to adduce compelling evidence
that they do, indeed, possess the properties required of them.

The structure of all secure systems constructed or designed
recently has been influenced by the idea of a reference monitor - a con-
cept first described in the Report of the Anderson Panel [Andersoni2,
vol. 2, p. 22]:

", .. the reference monitor mediates each reference made by a
program in execution by checking the proposed access against a
list of accesses authorised for that user."

In other words, whenever a program requires access to data or, more gen-
erally, whenever it wishes to communicate outside its own ‘domain’, the
proposed access or communication must be mediated and checked by a
trustworthy reference monitor in order to ensure that it complies with
the appropriate security policy.

It is implicit in this idea, but utterly fundamental to its appre-
ciation and application, that information and users (and the programs

operating on behalf of users) belonging to different security classifi-
cations should be kept totally separate from one another. That is to
say, there must be no channels for the flow of information between, or
among, users and data of different security classifications, except
those mediated by reference monitors.

Our approach to the design of secure systems is based on the twin
key notions identified above - separation and mediation:

It is necessary to separate entities of different security
classification, and to mediate and control the communication
channels between entities of different classifications.

The nature of the security policy that can be enforced will depend on
the granularity of the separation and on the reference monitors that are
provided to mediate the movement of informatiom.

There is another form of “separation” that has influenced our work:
it 1is the software engineering principle of ‘separation of logical con-
cerns’. Separation and mediation reflect separate logical concerns and,
in the interests of intellectual manageability, not to mention ease of
development and werification, the mechanisms which realise them are best
kept separate also. Such separation of concerns also accords well with
with the principles of ‘least privilege’ and ‘least common mechanism’
which Saltzer and Schroeder [Saltzer75] have identified as useful guide-
lines for the design of security and protection mechanisms.

Mechanisms

Examination of several exisiting secure systems reveals that they
fail to distinguish between the concerns of separation and mediation -
indeed they fail to recognise separation as an explicit i1ssue at all.
Despite making obeisance to the reference monitor concept, the most
obvious aspect of the structure of UCLA Data Secure UNIX (DSU)
[Popek79], KVM/370 [Gold79], and K505 [McCauley79] is that they are ker-
nelized systems: in each case, their operating system is built around a
(not so) small nucleus (called a ‘security kernel’) inte which all
security-relevant operations are concentrated. Or not quite all - for
these systems contain “trusted processes’ which also perform security-
critical operations, but which are outside the kernel. Furthermore, the
role and the security properties required of trusted processes are dif-
ferent from those of the kermel and the basis for their verification has
not been clearly established. Accordingly, the structure of these sys-
tems has been criticised by ourselves and others [Ames81, Rushby8l] -
principally on the grounds that it does not match that of the models
which serve as the basis for their wverification [Bell76, Feiertag77,
Landwehrfl, Popek78] and because the division into kernel and trusted
processes is not a reflection of separate logical concerns.

That the security mechanisms of these systems are not structured as
simply as one would like is probably due to the fact that they are big
systems: they each aim to provide a secure version of a full, general-
purpose, multi-user operating system. (UNIX in the case of UCLA DSU and
KS0S, and VM/370 in the case of KVM/370.) The problems of supporting
such powerful systems fetter the pursuit of a simple security structure
= for the need to achieve acceptable performance causes certain operat-
ing system functions to be brought inside the kernel interface when pure

security considerations would dictate that they should remain outside.
Despite this compromise, the efficiency of these systems is not high.
KSO0S8 and UCLA DSU seem at least an order of magnitude slower than stan-
dard UNIX, while KVM/370, in many ways the most successful of these pro-
jects, is currently reported to be three to four times slower than
VM/370 (and seven to eight times slower for I/0 operations) [Hinke82].
Big kernelized systems suffer from other disadvantages as well as poor
performance. Because their internal structure differs considerably from
the ‘base’ system from which they are derived, and because even small
changes to a kernel may invalidate its entire verification, these sys-
tems tend to lag many ‘releases’ behind the current version of their
base operating system. KVM/370, for example, is based on a much earlier
version of VM/370 than that currently available.

It is possible, however, despite the examples cited above, to con-
struct kernelized systems which support certain limited applicatioms
with acceptable efficiency, and in which the distinction between kernel
and trusted processes does correspond to a separation of logical con-
cerns. The SUE kernel [Barnes80, Barnes81], for example, has no other
function but separation: it synthesises a number of isolated ‘regimes’
within a shared PDP-11/34. The trusted processes of this system are
reference monitors which run in certain regimes in order to mediate and
control the communications between other, untrusted regimes. We have
dubbed this type of kernel a separation kernel [Rushby81] and have
argued that it admits a more complete and convincing verificationm tech-
nique [Rushby82] than other types of kernel. We have also argued that
by leading to a clean separation of concerns, this approach allows a
secure system to be decomposed into smaller components, with a more
transparent structure, than found in a monolith such as KSOS. It is
encouraging to see that the designers of certain other recent systems
have arrived, independently, at a broadly similar approach [Golber8l,
Grossman82].

These relatively ‘pure’ separation kernels have proved acceptably
efficient in supporting the specialised applications for which they were
intended. In each case, the application has been sufficiently well
matched to the functionality of its separation kernel that it can be
supported on the kernel interface directly, without the interposition of
an operating system layer.

Experience therefore indicates that security kernels can provide a
sound and efficient separation mechanism for certain limited applica-
tions but they have proved, and are likely to remain, inadequate to the
task of supporting general-purpose applications.

Fortunately, a kernel is not the only mechanism available for
enforcing the separation required in a secure system. In fact, it
exploits just one of the four different ways by which this end can be
achieved. The four methods depend, respectively, upon physical, tem-
poral, cryptographical, and logical mechanisms.

As its name suggests, the first of these approaches keeps material
of different security partitions apart physically. Thus CONFIDENTIAL
and SECRET items will use dedicated, physically separate memory boards,
disks - even (depending on the granularity of the separation) separate
machines. The advantage of this approach is that its separation is
utterly manifest; 1its disadvantages are cost (physical devices must be

replicated) and inflexibility (new security partitions are not easily
introduced).

The temporal approach does allow common hardware to be used for
different security classifications, but not simultaneously. System com-
ponents are time-shared between different security partitions and are
required to be memoryless: none of their system state may persist across
activations at different security levels. This approach is the basis of
‘periods processing’, which is the current practice in many classified
environments. In this form, separation is achieved through exchange of
all demountable storage and initialisation of all other storage to fixed
values. As exemplified by periods processing, the temporal approach is
usually applied manually, and to entire systems. However, it is also
applicable to individual system components and may be automated. As we
will show, it then has interesting applications in the context of dis-
tributed systems.

The cryptographical approach achieves separation by encrypting
information of different security partitions under different crypto-
graphic keys. The quality of the separation achieved depends upon the
cryptographic strength of the encryption technique employed, the care
with which the encryption is managed, and the protection of its keys.
There are few operations that can be performed on encrypted information
(basically, it can be moved from one place to another or it can be
stored for later retrieval) and, in consequence, the cryptographical
approach is restricted in its applications. However, it is generally
the only approach that is available for those applications.

The final approach, the logical one, is not really a distinct tech-
nique in the sense that the others are. Rather, we use the term to
deseribe the approach in which a higher-level mechanism, usually imple-
mented in software, manages simpler mechanisms of the more basic types =
elther in order to control their behaviour, or in order to synthesise
separate logical entities out of more basic resources. A separation
kernel, for example, may synthesise separate ‘virtual machines’ by con-
trolling a hardware memory management unit in order to provide separate
storage areas, and by using temporal separation to provide the appear-
ance of multiple CPUs. The advantages of the logical approach are that
it is very flexible (new security partitions can be created and des-
troyed dynamically), 1t can provide separation at a very fine level of
granularity, and it can be economical: it is sometimes possible to share
common hardware quite efficiently in this way. On the other hand, this
is very definitely a high-technology approach: guaranteeing the separa-
tion provided by a logical mechanism requires application of the tech-
niques of formal program specification and verification.

We do not claim that our taxonomy of separation mechanisms is at
all profound, but we have found it helpful to recognise that there are
several mechanisms available, and that each of them has its own particu-
lar advantages and disadvantages. Existing secure system designs tend
to exploit only one of the four methods and must therefore accept the
disadvantages of the particular approach chosen. In contrast, we will
propose a system structure which (potentially) incorporates all four
approaches and which uses each wherever it is the most approprilate.

The introduction of systems composed of individual computers con-
nected by a local-area network (LAN) now makes such a ‘combined’

approach attractive, if not inevitable. By the very nature of such a
distributed system, its component computers are physically isolated from
one another, and cryptography provides a natural method for securing
communications over the network. The logical (kernel-based) approach to
separation is appropriate to the internal organisation of the components
that manage cryptographic and other specialised functions.

The most attractive feature of this approach to the provision of
secure computing is that it enables the mechanisms of security enforce-
ment to be isolated, single-purpose, and simple. Another benefit is
that allows its (untrusted) component computer systems to provide their
full functionality and performance. We therefore believe that with this
approach it possible to construct secure systems whose verification is
more compelling, and whose performance, cost, and functionality are more
attractive, than is the case at present.

To be truly useful, such a heterogeneous network (comprising both
untrusted general-purpose systems and trusted specialised components)
must be made to operate as a single coherent system. We do not, there-
fore, consider the following discussion of principles and mechanisms for
constructing distributed systems to be in any way a digression from our
main concern.

2.2. Distributed Systems
Principles

Some designers of distributed computing systems have taken as their
main structuring principle the identification of functions that can be
allocated to separate computers and implemented as so-called ‘servers’ =
name servers, file servers, boot servers, and so on [Needham82]. 1In
this case, the fact that the system is actually constructed out of a
number of autonomous computers, interacting via some sort of communica-
tions network, may be clearly evident. How a program accesses a file,
for example, may depend on whether or not the program and the file are
held in the same computer. Other distributed systems have been designed
to provide what is sometimes called ‘network transparency’, so that this
difference is hidden [Popek8&l]. Both approaches have their merits: the
first enables physical resources to be used efficiently and optimised
for certain functions, while the second is clearly a more attractive
interface to present to the users of the system. We would like to
retain the advantages of both.

Network transparency is most easily achieved i1f all system com-
ponents have a common interface. We therefore propose that all those
components of a distributed system which contain wuser-visible state
information should appear to all the other components with which they
interact to be complete and functionally equivalent computing systems.
In fact, because it is desirable to admit the possibility that system
components may, themselves, be distributed systems, we should demand
more than this, and require that:

Each component of a distributed system should be functionally
equivalent to the entire system of which it is a part.

This is our ‘recursive structuring principle’ for the design of distri-
buted systems. It may seem to preclude systems composed of heterogene-
ous components (such as servers), but this is not so. Any system inter-
face must contain provisions for ‘exception conditions’ to be returned
when a requested operation cannot be carried out. Just as the operating
system of a host machine may return an exception condition when asked to
operate on a non-existent file, so a specialised server that provides no
file storage may return exceptions when asked to perform any file opera-
tions whatsoever.

The value of the recursive structuring principle is that, by defin-
ition, a distributed system that is structured in this way is indefin-
itely extensible. Moreover, users interact with the system in the same
way, and run their programs unchanged, independently of whether the sys-
tem is actually supported by a single processor, or by a homogeneocus or
heterogeneous distributed system.

Mechanisms

The Recursive Structuring Principle requires that the component
computer systems possess external characteristics that are appropriate
for the distributed system as a whole. As discussed in [Randell82] they
must possess at least the appearance of providing parallel processing
facilities, and all the objects within a system (computers, data items,
devices, programs, etc.) must be accessible by means which are indepen-
dent of whether the system is in fact a complete one, or merely a com-
ponent of a larger one.

The design of a single system interface that is equally appropriate
to a distributed system as a whole and to its components, whether com-
plete individual systems or specialised servers, would seem to be a task
requiring exceptional care, Jjudgement, and good taste. And so it
proved! It was performed in the early 70°s by the designers of UNIX
[Ritchie74].

We have found the UNIX kernel interface almost perfectly suited to
serve as the basis for the distributed system which we call UNIX UNITED.
A UNIX UNITED system is composed of a (possibly large) set of inter-
linked standard UNIX systems (or systems that can masquerade as UNIX at
the kernel interface level), each with its own storage and peripheral
devices, accredited set of users, system administrator, etc. The naming
structures (for files, devices, commands and directories) of each com-
ponent UNIX system are joined together intec a single naming structure,
in which each UNIX system is, to all intents and purposes, just a direc-
tory. The result is that, subjeet to proper accreditation and appropri-
ate access control, each user, on each UNIX system, can read or write
any file, use any device, execute any command, or inspect any directory,
regardless of which system it belongs to. The simplest possible case of
such a structure, incorporating just two UNIX systems, named as ‘unixl’
and ‘unix2’, is shown below.

o 10 e

/I \
/A
/ \
/ \
/ \
root /' == unixl . unix? .
A F\
[\ I\
kY Y
user . user .
I\ I
I\ Y
/ \
current ‘' ==> brian . brian .
working directory !\ /\
!\ FooX
/ /
a quicksort

From unixl, with the root (‘/‘) and current working directory ('.”)
as shown, one could copy the file ‘a’ into the corresponding directory
on the other machine with the shell command

cp a [../unix2/user/brian/a

(For those unfamiliar with UNIX, the initfal */’ symbol indicates that a
path name starts at the root directory, rather than the current working
directory, and the “..” symbol is used to indicate a parent directory.)

This command is in fact a perfectly conventional use of the stan-
dard ‘shell’ command interpreter, and would have exactly the same effect
if the naming structure shown had been set up on a single machine, with
‘unixl’ and ‘unix2’ actually being conventional directories.

411 the various standard UNIX facilities (whether invoked via shell
commands, or by system calls within user programs) concerned with the
naming structure carry over unchanged in form and meaning to UNIX
UNITED, causing inter-machine communication to take place as necessary.
It is therefore possible for a user to specify a directory on a remote
machine as being his current working directory, to request execution of
a program held in a file on a remote machine, to redirect input and/or
output, and to use files and peripheral devices on a remote machine.

The convention in UNIX UNITED is that a program is executed on the
machine where 1its code is held. Thus, using the same naming structure
as before, the further commands

ed /../unix2/user/brian

quicksort < a » [/../unixl/user/brian/b
have the effect of changing the current working directory, applying the
quicksort program on unix2 to the file ‘a’ which was previously copied

across to it, and sending the resulting sorted file back to a newly
created file ‘b’ on unixl. Alternatively, the command line

=11 -

feo/unix2/user/brian/quicksort < /../unix2/user/brian/a > b

would have had the same effect, without changing the current working
directory. If the user had set the shell variable ‘other’ as follows:

other = /../unix2/user/brian

then the previous command could have been abbreviated, using the shell’s
‘4" convention, as

Sother/quicksort < Sotherfa > b

The standard UNIX mechanisms for constructing process ‘pipelines’
also carry over unchanged to UNIX UNITED. Thus, with a more extended
directory tree than that shown above (and with the shell wvariables ul,
u2, etc. set to name the directories containing utility programs in
machines unixl, unix2, ... , respectively), a command line such as

$u2/meqn /../unixl/user/brian/paper | $u3/tbl | 3Sud/nroff

could be entered at a terminal logged in to unix5, say. This would
cause the preprocessor for mathematical text, ‘neqgn’, to be run on
machine unix2, with its data being fetched from unixl and the results
being piped to the table preprocessor ‘tbl’ and the text formatter
‘nroff’ running in parallel on machines unix3 and unix4, respectively.
If wunixl, unix2, etc. had merely been directories on a single UNIX
machine, then the same command would have caused ‘neqn’, ‘tbl’, and
‘nroff’ to be run in an interleaved fashion.

It is worth reiterating that these are completely standard UNIX
facilities, and so can be used without conscious concern for the fact
that several machines are involved. Furthermore, the directory naming
structure of a UNIX UNITED system is set up to reflect the desired logi-
cal relationships between its various machines; it is quite independent
of the routing of their physical interconnections [Black82].

UNIX UNITED has been implemented without changing the standard UNIX
software in any way; we have not reprogrammed the UNIX kernel, nor any
of its utility programs - not even the shell command interpreter. This
has been achieved by incorporating an additional layer of software = the
Newcastle Connection = in each of the component UNIX systems. This
layer of software sits on top of the resident UNIX kernel; from above,
it is functionally indistinguishable from the kernel, while from below,
2t appears to be a normal user process. Its role is to filter out sys-
tem calls that have to be re-directed to another UNIX system, and to
accept system calls that have been directed to it from other systems.
Communication between the Connection lavers on the warious systems is
based on the use of a remote procedure call protocol [Panzieri82,
ShrivastavaB2], and is shown schematically below.

All requests for system-supported objects (such as files) wulti-
mately result in procedure calls on the UNIX Kernel interface. If the
service or object required is remote, rather than local, then the local
procedure call 1is simply intercepted by the Newcastle Connection and
replaced with a remote one. The substitution of remote for 1local pro-
cedure calls is completely invisible at the user or program level. This
provides a powerful, yet simple way of putting systems together - but,

& F

e e o i e S

|User preograms, | |User programs, |
Inon-resident | |non-resident |
|UNIX software | |UNIX software |
== ke | remote procedure | e |
|Newcastle Connection|{=======—————— > |Newcastle Connection|
e | calls | -]
|UNIX Kernel | |UMIX Kernel |
UNIX1 UNIX2

equally, it provides a means of partitioning a single system into a
number of distributed components.

This is the crucial property of UNIX UNITED from our perspective,
since it enables a large insecure system to be broken into a number of
physically separate components with no visible change at the user level.
In the following sections we will explain how we exploit this physical
separation in order to construct a secure system. We will begin with a
very simple system that merely isolates different security classifica-
tions from one another.

3. A Securely Partitionmed Distributed System

We assume the environment of a UNIX UNITED system composed of stan-
dard UNIX systems (and possibly some specialised servers that can
masquerade as UNIX) inter-connected by a local area network (LAN). We
will use the terms ‘host’, ‘machine’, and even ‘system’ to refer ambigu-
ously to both the (apparently) complete UNIX systems with which users
interact directly, and to specialised servers which are always accessed
remotely.

We start from the premiss that all these component systems are
untrustworthy and that the security of the overall system may make no
assumptions about their behaviour = except that the LAN provides their
only means of inter-communication. The consequence of not trusting the
individual systems is that the unit of protection must be these systems
themselves: we will dedicate each one to a fixed security classifica-
tion. Thus, we could allocate three systems to the SECRET level, two
more to the CONFIDENTIAL level, and the rest to UNCLASSIFIED use.
Need-to-know controls can be provided by dedicating individual machines
to different compartments within a single security level: thus one of
the SECRET systems could be dedicated to the ATOMIC compartment and
another to NATO. In a commercial environment, some systems could be
dedicated to FINANCE and others to FPERSONNEL and to MANAGEMENT. Users
are assigned to hosts with due regard to*the fact that no security is
guaranteed within those individual systems. Notice that since the hosts

* Although we cannot guarantee the security of individual UNIX systems,
penetration audits do show this system to be quite resistant to attack,
provided it is set up and administered carefully [Bruce82, Ritchie79].
Also, its file protection facilities, while they cannot handle the
hierarchical aspects of multilevel security, can provide compartmented
access controls through use of the ‘group’ permissions. Thus it may be
reasonable to allocate separate machines to each ‘major’ compartment

13

are not trusted, they cannot be relied upon to authenticate their wusers
correctly. Thus, access to each system must be controlled by physical
or other external mechanisms.

Although there is no security within an individual system, the key
to our proposal is to enforce security on the communication of informa-
tion between systems. To this end, we place a trustworthy mediation
device between each system and its network connection. We will ecall
these devices ‘Trustworthy Network Interface Units’, or ‘TNIUs’ for
short. They are the ‘reference monitors” din this design and must
satisfy the usual requirements for such monitors:

« It must be impossible to bypass them. This must be guaranteed by the
physical interconnections of each host, TNIU, and LAN station.

» They must be tamper-proof. This requires, as a minimum, that TNIUs
and their inter-connections be physically protected.

« They must be correct.

The initial purpose of TNIUs is wvery restrictive: it is to permit
communication only between machines belonging to the same security par-
tition (machines are in the same partition if they have the same secu-
rity level and belong to the same compartment). The single UNIX UNITED
system is therefore divided into a number of disjoint subsystems. of
course, this could be achieved more easily with physically separate sys-
tems, each dedicated to a single partition. However, we will describe
later how our system can be extended to move information across parti-
tions securely - thereby providing true multilevel security. Before
thizs can be done, though, it is necessary to establish the mechanisms
whereby TNIUs can securely separate communications across the LAN.

We expect our Distributed Secure System to be used in a variety of
threat environments. Some installations may need to counter the most
extreme and recondite forms of attack, others may face less determined
adversaries. Wherever possible, therefore, we describe a spectrum of
possible implementations for each of our security mechanisms. All are
intended to be secure in the face of direct attack but differ in the
extent to which they inhibit clandestine communications channels and, in
the present case of TNIUs, in their wulnerability to wire-tapping
threats.

The simplest form of TNIU merely monitors the source and/or desti-
nation fields of each incoming or cutgoing LAN packet, passing only
those which came from, or are going to, systems in the same security
partition as their own. Monitoring both the source and destination
fields is redundant if all machines are equipped with a TNIU - but it
does permit the economical option of interfacing machines of one secu-
rity partition (presumably UNCLASSIFIED) to the LAN directly.

Simple TNIUs of this type could be built directly in discrete logic
and would be small, cheap, and fast - and their correctness could be
established by informal design review and exhaustive testing. Each such

while relying on UNIX's internal mechanisms to provide discretionary ac-
cess control on ‘minor’ sub-compartments.

I

v - B g o

| SECRET | | TOP SECRET | |UNCLASSIFIED]|

| UNIX 1 UNIX [UNIX |
| | |
| TNIU | | TNIU | ITNIU|
| I | LAN
S s s N e S OoEEEsEse=SSaEOEESESET
I |
|TNIU| |TNIU|
| I
|UNCLASSIFIED| | SECRET |
| UNIX [UNIX [

(TNIU = Trustworthy Network Interface Unit)

A Securely Partitioned Distributed System

TNIU must contain a list of the LAN station numbers of the machines in
its own security partition. This information could be built into the
TNIUs when they are constructed, determined by a plug-in ROM, or
inserted manually on switches or thumb-wheels.

Even such simple TNIUs do prevent machines belonging to different
security partitions from communicating directly across the LAN and they
ensure that the security of this partitioning can only be breached
through attacks against the LAN itself (such as a wire-tap or subversion
of a LAN station). If such attacks are mounted against the LAN, how-
ever, then these simple TNIUs provide no defence at all - additional or
alternative mechanisms will be necessary.

Wire-tapping threats can be neutralised by locating the LAN in a
physically secure environment or, for certain LAN technologies, by the
use of link encryption or of pressurised or fibre-optic cables. These
techniques are impracticable in many circumstances, however, and (with
the possible exception of fibre-optics) are very expensive. Also, none
of them gives any protection against subverted LAN stations. Where the
possibility of attacks against the LAN is considered significant (and in
many environments it 1is not), the use of enhanced TNIUs which perform
end-to-end encryption offers an economical and attractive countermeas-=
ure. All data leaving a host machine will be encrypted by its attached
TNIU, will travel the LAN in encrypted form, and will only be decrypted
in the TNIU attached to its intended recipient.

The simplest method of encryption uses a single key for all commun-
ications within each security partition and operates at the LAN packet
level. In this case, the TNIUs merely encrypt the data portions of

o e

outgoing packets and decrypt those of incoming ones. (Control bits and
the source and destination fields must, of course, be left in the clear
so that the LAN hardware can interpret them correctly.) The advantage of
this encryption scheme is that it is transparent to the host machines
and can be managed by very simple TNIUs. Its disadvantages are that
without an additiomal TNIU to TNIU protocol layer it may not be possible
to prevent packets being delivered to a machine in a different security
partition than their sender, and only very simple modes of encryption of
the ‘Electronic Code Book’ (ECB) variety [Denning82, PriceBl] are likely
to be feasible. Even very strong cryptographic algorithms such as the
Data Encryption Standard (DES) [NBS77] may not prevent information leak-
ing from a corrupt machine under these circumstances.

To see this, suppose malicious software in a SECRET machine desires
to send the bit pattern 01101 to a machine at the UNCLASSIFIED lewvel.
The SECRET machine constructs a message XYYXY where X and Y are arbi-
trary but distinet bit patterns of the same size as the unit of block
encryption (presumably, 64 bits) and then sends this message to its
UNCLASSIFIED ecollaborater. {If TNIUs check the source and destination
fields then the network must have been subverted for this to be possible
- but the main reason for using encrypting TNIUs in the first place is
to overcome network subversion.) The SECRET TNIU will encrypt the outgo-
ing message with the SECRET key to yield, say, PQQPQ and this will be
transmitted to the receiving UNCLASSIFIED TNIU which will ‘decrypt’ it
with the UNCLASSIFIED key to vyield, say, RSSRS. The UNCLASSIFIED
machine now has a message which is quite different from the one origi-
nally transmitted, but in which the SECRET bit-pattern 01101 is plainly
visible. Similarly, a wire-tapper would be able to see the same pattern
in the encrypted message PQQPQ.

It should be realised that the threat here is not due to any weak-
ness in the encryption algorithm employed, but to the way in which it is
used: it is not necessary to be able to decrypt messages in order to
extract information planted by a corrupt machine. The situation faced
here is rather' different to those in which encryption is ordinarily
employed - where the end parties are assumed to be in legitimate commun-
ication and to have an interest in preserving the secrecy of their com-
munication.

Clandestine communications channels based on cleartext patterns
which persist into the ciphertext can be thwarted by the use of more
elaborate modes of encryption such as ‘Cipher Block Chaining” (CBC)
which mask such patterns by causing the encrypted value of each block to
be a complex function of all previous blocks [Denning82, Price8l].
Encryption of this type is best performed over larger units than indivi-
dual LAN packets and therefore needs to be invoked higher up the proto-
col layering hierarchy than the LAN packet level.* Measures to defeat
active wire—-tapping threats such as the modification of data in transit
and ‘spoofing’ (the recording and replaying of genuine traffic) are also

The LAN with which we are most familiar, and which was used for the
original UNIX UNITED implementation, is the Cambridge Ring. This em~-
ploys a "minipacket’ containing only 16 bits of user information. Some
of the details, though not the general issues, concerning encryption
management will differ in the case of LANs which provide larger packet
sizes.

- 16 =

best applied at a fairly high level. Kent [Kent77] provides a good dis-
cussion of these issues.

Contemplation of the threats to which they are exposed, and of the
necessary countermeasures, has convinced us that encrypting TNIUs really
do need to be rather sophisticated and cannot operate at the very bottom
of the protocol layering hierarchy. In fact, we propose that they
should take over all but the highest level protocol functions and intend
to use the Remote Procedure Call (RPC) protocol of the Newcastle Connec-
tion as the interface between host machines and their TNIUs. This
approach has the additional benefit that the TNIUs act as “network
front-ends’, relieving their hosts of the 1low-level network load and
thereby boosting overall performance. We accept that TNIUs of this com-
plexity present a considerable challenge in both construction and verif-
ication, but we argue that they are very similar in concept and function
to the cryptographic front-ends of wide-area networks, examples of which
have already been built and, in some cases, verified [Barnes80,
Barnes8l, Golber8l, Grossman82].

The issue of assigning functions to layers in a protocol hierarchy
can become quite complex in the presence of encryption. Fortunately,
the protocol layering hierarchy used in UNIX UNITED is relatively simple
and the integration of an encryption function poses few difficulties.
The RPC protocol of the Newcastle Comnection merely requires a ‘“fairly
reliable’ datagram service from the lower protocol layers [PanzieriB2,
ShrivastavaB82] and most RPCs and their results are encoded intc a single
datagram. Those concerned with file reads and writes, however, (which
may transfer arbitrarily large amounts of data) are broken into as many
separate datagrams as necessary by a sub-protocol of the RPC mechanism.

Individual datagrams will form the message units that are encrypted
and protected by the TNIUs. Each datagram will be encrypted or
decrypted in CBC mode using a key determined by the security partition
to which the TNIU belongs. In order to prevent datagrams with a common
prefix from yielding similar ciphertext, the TNIUs must prepend some
unique material to the front of each one prior to encryption. This
material would most usefully be a time-stamp or sequence number — since
these are needed anyway in order to defeat spoofs (by enabling ‘old’
datagrams to be detected and discarded). Synchronising the sequence
numbers or time-stamps used between each pair of TNIUs requires a spe-
cial TNIU to TNIU protocol. This protocol must be resistant to spoofs,
but obviously cannot itself use sequence numbers or time-stamps for this
purpose. A challenge-response technique first proposed by Needham and
Schroeder [Needham78] can be used instead.

We regard the sequencing or time-stamping of datagrams by TNIUs to
be solely a countermeasure against spoofing. It is not the responsibil-
ity of TNIUs to associate RPCs with their replies, nor to ensure that
the individual datagrams constituting long (file reading and writing)
RPCs are correctly ordered. These issues are properly the responsibil-
ity of the RPC protocol managed by the hosts themselves. Notice, how=-
ever, that the encryption performed within TNIUs will protect any
sequencing information required and supplied by the RPC protocol layer.

In order to defeat an active wire-tapper who modifies encrypted
datagrams, or who splices parts of different datagrams together, a
checksum should be appended to each datagram prior to encryption. TNIUs

m 1T o=

will then be able to detect receipt of damaged datagrams and will dis-
card them. Since LANs are not error—free and can damage datagrams inno-
cently as well as malieiously, it may alsoc be desirable for cleartext
checksums to be appended to encrypted datagrams at a lower level of the
protocol hierarchy. Errors detected at this level may be assumed to be
‘innocent’, while those that pass through and are detected by the
encrypted checksum must be assumed to be the work of an intelligent
wire-tapper and should raise a security alarm.

Through the careful use of encryption, time-stamps, and checksums,
we have made it impossible for machines in different security partitions
to communicate with each other (even if the LAN is subverted) and have
prevented wire-tappers from extracting information from message contents
and from modifying or re-using genuine messages or constructing counter=
feits. Significant channels for information disclosure still remain,
however. They are ‘pattern of use’ channels whereby a malicious host
modulates the wisible parameters of legitimate messages in a way that
can be decoded by a wire—tapping accomplice. The properties that can be
modulated are the lengths of individual datagrams, their time and fre-
quency of transmission, and their destination (presumably the source 1is
fixed at the location of the malicious host). These properties, of
which length and destination are much the most important, can be modu-
lated to vield clandestine communication channels of surprisingly high
bandwidth [Padlipsky78]. Since each datagram must, inescapably, have a
length and a destination that can be observed by wire-tappers, it is not
possible to sever these channels completely; the best that can be done
is* to reduce their bandwidth to a tolerable level, either directly, or
through the introduction of noise.

We have already reduced the bandwidth of these channels consider-
ably by using the high level remote procedure call protocol as the
interface between machines and their TNIUs. Malicious machines cannot
modulate the destinations of individual packets (a very high bandwidth
channel = up to half that of the ‘official’ channel in the case of the
Cambridge Ring) but only those of complete datagrams. Similarly their
control over the length of datagrams 1s imprecise because protocol
material is added by the TNIUs. We propose to lower the bandwidth of
these channels still further.

The length channel is the easiest to deal with. We propose to use
datagrams of a fairly larpe, fixed size - say 1024 bytes. Long RPCs and
replies will be broken into a number of separate datagrams by the host
and short ones (and the residue of long ones) will be padded by the TNIU
in order to fill a whole datagram. (If this technique causes great
numbers of largely empty datagrams to be generated, then some of the
legitimate bandwidth of the LAN will be wasted - but this is not usually
a scarce resource, and some tuning of the choice of datagram size is
possible in any case.) A wire-tapper will not then be able to observe
the exact 1length of an RPC or its reply, only the number of datagrams
that it requires. Even this information will be difficult to extract
and the corrupt host will also have to modulate some other parameter
(e.g+ destination) in order for the wire—-tapper to didentify the
datagrams belonging to each RPC.

The bandwidth of the channel that modulates message destinations
can only be reduced by introducing ‘noise’ - complicating traffic pat-
terns so that the wire-tapper finds it hard to detect and extract any

- 18 -

deliberate modulation. The obvious way to do this is for each TNIU to
generate a steady stream of spurious datagrams to all the other TNIUs in
its own security partition. Spurious datagrams are marked as such
(under encryption, of course) and are discarded by TNIUs which receive
them. More refined strategies (such as routing datagrams indirectly
through a number of intermediate TNIUs before delivering them to their
final destination) are clearly possible, but all techniques for intro-
ducing noise inevitably reduce the bandwidth available for legitimate
communications (and may increase the latency of message delivery). Each
installation will have to decide its priorities in the trade-off.

With TNIUs which employ all the countermeasures we have described,
the channels available for the disclosure of information have, we
believe, all been either closed down or made to yield only a low
bandwidth while requiring penetration at multiple points. (A distri-
buted Trojan Horse!) The remaining threats are those of ‘denial of ser-
vice’ caused by the destruction of genuine LAN traffic, or the injection
of large quantities of garbage. Although they can do nothing to prevent
or defeat such attacks, it is a correctness requirement of TNIUs that
they should continue to provide a reliable (though necessarily degraded)
service in their presence. It is also a correctness requirement that
they should be immune to attacks on their 1/0 interfaces and that they
should recover from crashes safely. (0f course, verified software does
not crash, but we must allow for the possibility of a power failure.)

Trustworthy Network Interface Units not only need to be correct and
secure but, in order to be practical, they also need to be small, cheap
and fast. This can be achieved by basing them on modern 16-bit
microprocessors, and by using DES encryption. Single-chip implementa-
tions of the DES algorithm capable of operating in CBC mode at LAN
speeds are already available. We intend to use a separation kernel to
enforce cleartext/ciphertext (so-called ‘red/black’) separation, with
the basic physical protection provided by the memory management (MMU)
chips appropriate to the chosen processor. Since no disks are needed
(the software can be held on ROM), the complete unit should fit on a
single board and cost only a few hundred pounds.

Fey Distribution

Any system which uses encryption must contain mechanisms for gen-
erating and distributing keys securely. These mechanisms are the
Achilles heel of many proposals that depend on cryptographic techniques.
However, and unlike connection-oriented (virtual circuit) schemes in
which it is necessary to manufacture and distribute a unique key every
time a new circuit is opened up, our system imposes no requirement for
frequent or rapid key distribution: the key allocated to a TNIU is a
function of the security partition to which its host belongs and this is
assumed to be relatively static. This infrequency of security level
change, combined with the fact that a LAN-based system is presumed to be
geographically compact, makes manual key distribution perfectly viable.

As a logical minimum, it is only necessary to to distribute encryp-
tion keys when the system is first installed and whenever a host changes
level, or a new one is introduced (both actions involving manual inter-
vention in any case). Note that since TNIUs guarantee the integrity and
legitimacy of all communications on the LAN, knowledge of the encryption
key used by a security partition confers both the right and the

o e

immediate ability to communicate with all other machines in that parti-
tion: there is not (and in the interests of simplicity and survivability
there should not be) a requirement to ‘register’ the level of a TNIU
with any central mechanism, nor with other TNIUs. Membership of a secu-
rity partition is identified with possession of its encryption key.
This means that only one piece of information - the key - needs to be
distributed to each TNIU; there are no distributed partition-membership
tables that need to kept consistent with each other.

Because cryptosystems can be broken or their keys revealed (either
through capture of system components, or through compromise ocutside the
computer system), it may not be considered desirable to use the same set
of encryption keys over the entire lifetime of the system. Encryption
keys are generally considered to have a finite life and to be in need of
replacement once they have encrypted a certain volume of traffic (since
the threat of a successful ecryptanalytic attack increases with the
amount of traffic available for analysis, as does the amount of informa-
tion that would be compromised) or have been in use for a certain length
of time (since the threat of betrayal outside the system increases with
time). We therefore propose that a ‘travelling key man’ [Price8l]
should periodically install new keys into the TNIUs. Techniques for the
generation and installation of cryptographic keys have been described by
Matyas and Meyer [Matyas78].

If the fear of cryptanalysis causes key changes to be desired more
frequently than it is convenient for the key man to call, then either he
should deposit a set of keys at each visit, or else a single master key.
from which the TNIU ecan manufacture a whole set of keys [Ersham78].
When encryption keys change, it is important that all the TNIUs within
each security partition perform the change at the same time. This poses
an interesting problem in distributed algorithm design which we leave as
a challenge to the reader.

Summary

In this first stage of our design for a Distributed Secure System,
resources are partitioned by security level: information may not flow
from one partition to another. This is achieved by alloecating physi-
cally separate computer systems to each security partition. These
untrusted component systems are connected to a local-area network wvia
Trustworthy MNetwork Interface Units (TNIUs) which ensure that only sys-
tems belonging to the same security partition are able to communicate.

THIUs use encryption to enforce this separation: each security par-
tition has its own, unique encryption key which is manually distributed
to all and only the TNIUs belonging to that partition. The interface
between the untrusted host machines and their TNIUs is the remote pro-
cedure call protocol of the WNewcastle Connection. This high-level
interface permits the use of encryption-based countermeasures to defeat
the threats of message disclosure, modification, replay, and misrouting
that may be posed by any combination of tapped or subverted network com-
ponents and corrupted host machines. Also included are countermeasures
which reduce the bandwidth available for clandestine communications
based on modulated traffic patterns.

TNIUs of this sophistication are not simple, but their design and
verification may be based on established techniques employed for the

- 20 =

‘secure front-ends’ of wide-area networks. Modern 16-bit microprocessors
and DES encryption chips provide suitable hardware for the construction
of TNIUs and should enable them to be manufactured quite cheaply.

4. A Multilevel Secure File Store

The design introduced so far imposes a very restrictive security
policy: the security partitions are isolated from one another with no
flow of information possible across different levels or compartments.
We now show how to extend this design to permit information to cross
security partitions in a controlled ‘multilevel secure’ (MLS) manner.
This will allow, for example, information to flow from the SECRET to the
TOP SECRET levels, but not vice-versa.

It might seem that multilevel secure information flow can be pro-
vided by simply modifying the policy enforced at the TNIUs so that, for
example, TOP SECRET machines are able to receive communications from
SECRET machines as well as TOP SECRET ones. TOP SECRET TNIUs would be
provided with the SECRET as well as the TOP SECRET encryption keys and
would permit incoming but not outgoing communications with SECRET level
machines. The flaw in this scheme is that the communication cannot be
truly one-way: a SECRET machine cannot reliably send information to a
TOP SECRET one without first obtaining confirmation that the TOP SECRET
machine is able to accept it and, 1later, that it has received it
correctly. Thus the SECRET machine must be able to receive information
from the TOP SECRET machine as well as send to it - and this conflicts
with the multilevel security policy.

Certainly the trustworthy TNIUs in the system could be enhanced to
undertake reliable delivery of data across security partitions, but this
misses the point: it is end-to-end acknowledgement of the receipt and
processing of information that is required, not the reliable delivery of
uninterpreted bitstrings [Saltzer8l]. Only the receiving host will
understand the semantics of the communication and it alone will be able
to confirm whether it has been able to process it correctly. If TNIUs
are able to provide the acknowledgements, then they must be capable of
processing the information concerned - in which case they are no longer
simple communications processors but are taking on the character of
secure hosts. Since the whole motivation for our design is the convic-
tion that secure hosts are beyond the state of the art, we discard this
approach. Notice, too, that it would only provide for unsolicited com-
munications in any case: a SECRET machine could send information to a
TOP SECRET machine of its own volition, but the TOP SECRET machine could
not request that the information be sent - since the mere fact of its
request would constitute an insecure flow.

The only secure way for information to flow across security boun-
daries is via a trustworthy intermediary that acts as a staging post.
The complexity of such an intermediary will depend on the generality of
the services which it provides. For simplicity, combined with the most
useful functionality, we select files as the only objects that will be
allowed to cross security boundaries and we choose the multilevel secure
storage and retrieval of files as the service to be provided by the
trustworthy intermediary. We do this by adding a (Multilevel) Secure
File Store to the system with the ability to communicate with machines
of all security classifications. The idea is that when a SECRET level
machine wishes to make one of its files available to higher levels, it

=21 =

*publishes” it by sending it to the Secure File Store. A TOP SECRET
machine may then subsequently request a copy of this file from the
Secure File Store.

Before describing the mechanism of the Secure File Store, we need
to outline its logical position and role within the overall UNIX UNITED
system. Conceptually, the Secure File Store is just an ordinary UNIX
system that returns exceptions to all system calls except those con-
cerned with files. As with any other component, it will be associated
with a directory, say ‘S5F5°, in the UNIX UNITED directory structure.
The SFS directory will contain sub-directories for each security parti-
tion in the overall system and these will in turn contain further sub-
directories of arbitrary structure (created by ordinary users). A sim-
ple UNIX UNITED directory structure containing just the Secure File
Store and two ordinary hosts is shown below.

|
|
|
|
|
TSUNIX . SUNIX . « SFS
/I \ /\ !/ \
E) F X / \
\ \ / Y
USeTr . user . J Y
A I / \
f\ !\ TOPSECRET . SECRET
/ b /A X
brian . john . / \ / \
/\ /\ \ \
/A VA brian . john .
/ kY / I\ PR
a b paper !\ X
/ \
galaries o

The ordinary hosts are associated with the directories ‘TSUNIX’ and
‘SUNIX’ and are allocated to the TOP SECRET and SECRET security parti-
tions respectively. Of course, from within SUNIX, the TSUNIX branch of
the directory tree is invisible (and vice-versa). Even if the Newcastle
Connections within TSUNIX and SUNIX are aware of each others’ existence,
any attempted inter-communication will be stopped by their TNIUs.

If the SECRET level user "john’ of SUNIX wishes to make his ‘paper’
file available to the TOP SECRET user ‘brian’, he does so by simply
copying it into a directory which is subordinate to the SFS directory.
For example:

cp paper [../SFS/SECRET/ john/paper
This will cause the Secure File Store machine to receive a series of

remote procedure calls from SUNIX, requesting it to create and write a
file called ‘paper’ located as a sibling of the file ‘c¢’. The Secure

-2 -

File Store will be assured by its TNIU that these requests do indeed
come from a machine in the SECRET security partition and it can then
consult 1its record of the security policy in order to determine whether
such a machine is allowed to create SECRET level files. Since we may
assume that it 1is, the requested file operations will be allowed to
proceed and the copy of the file will be created. S5imilarly, when the
TOP SECRET user ‘brian’ attempts to typeset the paper by issuing the
command

nroff /../SFS/SECRET/ john/paper

the Secure File Store will receive a series of read requests from the
machine TSUNIX. Once again, it can apply the security policy and see
that these requests may be allowed to proceed. The Secure File Store
would, however, refuse requests from TSUNIX to write into this ‘paper’
file, or to delete it, since these contravene one of the requirements of
multilevel security [Bell76]. Similarly, ‘john’ would not be allowed to
read the ‘salaries’ file held under the TOP SECRET directory.

Notice how naturally these services are integrated into UNIX
UNITED. They are invoked by ordinary UNIX commands and system calls, and
differ from those that could be provided within a single standard UNIX
only in that the hierarchical nature of the multilevel security policy
is incorporated into the file access controls, and in the fact that
those access controls are enforced with total rigour. In passing, it
should be mentioned that the standard discretionary file access controls
of UNIX apply to files in the Secure File Store just as they do normally
- so that if he had chosen to do so, john could deny access to the file
/++/SFS/SECRET/ john/paper to all except himself, or those in his
‘group’. Unlike the non-discretionary controls of the multilevel secu-
rity policy, however, the operation of these discretionary controls is
not guaranteed.

Having described the services which the Secure File Store 1is to
provide, we must now explain how it will be constructed. The services
required are those of a multilevel secure UNIX file system and may seem
to demand a substantial quantity of provably trustworthy mechanism -
virtually a secure UNIX. With careful design, however, we can reduce the
amount of trusted mechanism quite considerably. We begin by partition-
ing the Secure File Store into two components housed in physically
separate machines. The first, called the ‘Secure File Manager’ (5FM),
will be a small, trustworthy component concerned with enforcement of the
security policy, while the second, called the ‘Isolated File System”
(IFS), will be a much larger, untrusted component whose task is to pro-
vide the actual file system. The SFS directory in the UNIX UNITED name
structure will be identified with the machine that houses the SFM, but
the entire UNIX file subsystem subordinate to the SFS directory will be
held separately in the IFS. The IFS must therefore be a machine capable
of maintaining a UNIX file system. The simple way to achieve this is to
use a perfectly standard UNIX system for the IFS - and this is what we
propose to do.

Because the IFS will contain files of all security classifications,
and because it is untrusted, and possibly untrustworthy, it must obvi-
ously have no direct communications with the outside world; all its com-
munications must be mediated by the SFM. Consequently, the IFS must
either be connected directly to the SFM, or it must be attached to the

- 27 =

LAN wia a Trustworthy Network Interface Unit which is provided with a
special encryption key known only to itself and the TNIU of the G5FM.
The TNIU of the SFM must be a specially enhanced one which contains the
encryption keys of all security partitions (and also the special key
used for communications with the IFS if this is connected to the LAN).
This is necessary so that machines in all security partitions can com=
municate with the SFM. (An alternative is for a second encryption key
to be provided to all TNIUs for use when communicating with the 5FM.)
The internal structure of a TNIU with multiple encryption keys will be
slightly more complex than one with just a single key, particularly if
communications using different keys can be in progress simultaneously.
Cleartext belonging to logically separate channels should be managed by
separate regimes, and temporal separation must be provided for different
uses of its single DES chip. These are not significant complications,
however, and the responsibility for correctly managing more than one
encryption key is a small additional burden to place on the trusted
mechanism of a TNIU.

An over-simplified outline of the operation of the SFM/IFS combina-
tion 1is the following. Remote procedure calls requesting operations on
‘secure’ files will arrive at the SFM, where they will be checked
against the security policy. If they are acceptable, they will simply
be passed to the IFS - which will perform the action requested and pass
the results back to the SFM for return to the original caller. The
over-simplification in this account is that it has ignored the fact that
the IFS ecannot be trusted: the SFM must contain mechanisms for guaran-
teeing its ‘good behaviour’.

The IFS has access to files of all security classifications and
therefore has enormous opportunities for compromising security.
Although its isclation prevents it from revealing the contents of files
directly, it can easily do so indirectly by copying the contents of a
TOP SECRET file, say, into an UNCLASSIFIED one - which c¢an later be
retrieved by UNCLASSIFIED users. Superficially, encryption might appear
to offer a solution to this problem. If the SFM encrypted files before
consigning them to the IFS, using different keys for each security
level, then the previous threat would seem to have been thwarted: though
the TOP SECRET file might still be copied into an UNCLASSIFIED one, its
contents would be incomprehensible to the UNCLASSIFIED user who eventu-
ally acquired it, since they would have been encrypted using the TOP
SECRET key and ‘decrypted’ using the UNCLASSIFIED key. Obviously, for
the reasons explained in the previous section, the encryption technique
used must be one, such as CBC, which masks cleartext patterns. This
scheme is easily defeated, however.

Suppose it is the CBC mode of encryption that is employed. This
mode of encryption has the useful property that it is ‘self-healing’: if
a ciphertext block is corrupted, only the text corresponding to that
block and the one following will decrypt incorrectly [Denning8l,
Konheim8l, Price8l]. The IFS can therefore communicate information to
an UNCLASSIFIED user by selectively modifying one of his encrypted
files. The mechanism is as follows. The IFS chooses to corrupt or mnot
corrupt every fourth (say) block of an UNCLASSIFIED file. The decision
whether to corrupt a particular bleck or not is determined by the TOP
SECRET bit pattern to be communicated: 1 = corrupt, 0 = do not corrupt.
The UNCLASSIFIED user who eventually recovers this file then simply
examines every fourth block to see whether it has been changed during

- D

its sojourn in the IFS - and can thereby extract the TOP SECRET bit pat-
tern. The bandwidth of this channel can be increased by exploiting a
further property of the CBC mode of encryption: although a corrupted
ciphertext block decrypts unpredictably, the following block decrypts in
a way that yields considerable information about the exact form of the
corruption [Price8l]. Even if the stream or block cipher used does not
have the self-healing property (as when cleartext feedback 1is wused in
addition to ciphertext), it is still possible to encode several bits per
file in the position where corruption starts.

This scenario naturally invites the question, "how did the IFS
obtain TOP SECRET information in the first place if all files are
encrypted?". This is easily answered. Suppose, for example, that a
corrupt TOP SECRET host has 26 files, all of different lengths, stored
in the IFS. 1If it then retrieves the 6 files whose 1lengths are the
18th, 2l1st, 19th, 8th, 2nd, and 25th shortest, in that order, the TOP
SECRET string RUSHBY will have been communicated to the IFS. It is very
important to appreciate that this channel for clandestine information
flow would still be present even if there were a separate IFS for each
security classification: if the 26 files were UNCLASSIFIED ones, held in
an IFS dedicated to the UNCLASSIFIED security partition, then ‘read’
requests from a TOP SECRET machine would be perfectly legal and could
still be modulated to convey TOP SECRET information inte the UNCLASSI-
FIED IFS.

Since encryption and single level IFSs, and even a combination of
the two, are unable to prevent clandestine information flow through the
IFS mechanism, we appear to be in a difficult position. Perhaps the IFS
has to be trustworthy after all.

In fact it does not and the analysis of the issue is quite instruc-
tive. In order for there to be a path for clandestine information to
flow through the IFS, there must be a path into the IFS and another back
out again. By virtue of the very function of the IFS, incoming informa-
tion flow cannot be prevented: it is an essential property of the IFS
that it operates on files of one security classification in response to
requests from another, and there is no way to prevent a corrupt host
from encoding information in the pattern of its requests. (This is an
example of what Lampson [Lampson73] calls a ‘legitimate channel” for
information leakage.)

I1f we cannot prevent information coming into the IFS, perhaps we
can prevent it escaping back out again. Since the only objects which
leave the IFS are the files which it retrieves in response to external
requests, any clandestine information which 1is to reach the outside
world must be encoded into those files by the IFS. But all movement of
files into and out of the IFS is mediated by the SFM - so security will
be maintained if the SFM can prevent the IFS from encoding information
inte (i.e. modifying) outgoing files. In other words, and as first
noted by Gligor and Lindsay [Gligor79], security depends wupon the SFM
being able to guarantee the integrity of files stored in the IFS.

This can be achieved by the use of a checksum added to each file by
the SFM before it is stored in the IFS. Any attempt by the IFS.to
modify a file will be detected on its subsequent retrieval by the SFM
when the recomputed checksum fails to match the one stored with the
file. Of course, this only works so long as the IFS is unable to forge

- 25 =

the checksums. There are two ways for making sure of this (other than
by keeping the checksums in the SFM). The first is to wuse a conven-
tional checksum (i.e. one computed by an algorithm that may be known to
the IFS) but to protect it by encrypting the file and the checksum as a
single wunit. The second technique is to use a ‘crypto—checksum’. This
is one that depends upon a secret encryption key for its computatien; an
example is the final block of ciphertext produced at the end of CBC mode
encryption. The advantage of crypto-checksums is that they are unforge-
able by anyone who does not possess the encryption key and can therefore
be used with information that is stored in the clear. This can be use-
ful when information is retrieved by wvalue, as it is in database appli-
cations, but is irrelevant in the case of a file system where retrieval
is by name. Consequently, we propose to use conventional checksums pro-
tected by encryption. The use of encryption has the additional benefit
that it renders most of the information stored in the IFS ‘black’, and
may therefore simplify the task of handling and protecting its physical
storage media. (Note, however, that the auxiliary information which
UNIX associates with each file - e.g. file length, owner, date of crea-
tion, etc. - will be stored in the clear.)

The SFM as now described is required to perform two security-
critical tasks and is therefore split into two logically separate com-
ponents: the ‘File Access Reference Monitor’ (FARM) and the ‘File
Integrity Guarantor’ (FIG). The task of the FARM is to ensure that all
file access requests comply with the security policy; the FIG is respon-
sible for computing the checksums and performing the encryption and
decryption of files sent to, or received from, the IFS.

When a file is to be sent to the IFS, the FIG prepends some ‘house-
keeping” information to the front of the file, a checksum to the rear,
and encrypts the whole lot using the DES algorithm in CBC mode. Inter-
mediate checksums may be included at intervals within the file if the
FIG has only limited buffer space. Should part of a file have already
been delivered to a host when corruption of a later part is detected by
the FIG, then some clandestine information may have been conveyed to
that host through the position at which the corruption began and file
transfer was aborted by the FIG. This channel has very limited bandwidth
and, provided all checksum failures raise a security alarm and are
logged by the SFM, it is not considered to constitute a sericus security
flaw.

Despite its attractive simplicity, there is a glaring difficulty
with the FIG mechanism: it only allows files to be read and written in
their entirety — whereas the UNIX file interface, which the Secure File
Store is required te support, provides for incremental reading and writ-
ing and the repositioning of the file ‘pointer’. It appears that
although ‘passive’ files can be held in the IFS, ‘active’ files (those
which are the target of current operations) must be held in the
trustworthy SFM. This would probably require the SFM to have 1ts own
disks and to contain all the trusted mechanism necessary to manage them
and to perform UNIX file operations securely. This complexity of
trusted mechanism is precisely what we have been seeking to avoid. For-
tunately, we can do without it.

All that is required is a real UNIX system in the 7right security
partition to hold and manipulate each active file on behalf of the SFM.
And it is easy to find such a system: the one which requested the file

- D

A e - - - A . B i e —— — —— —

| SFM IF3

l e o e e e s e e e e o e

| FARM I FIG ItioltoI

|
[
| (.
| | I
11 TNIU | | UNTRUSTED | 1
S — | UNIX ||
I I [(I
I I | |
| | I
| | [|
| | e
| | | TNIU I
| | |
| | | |
I I I |
. 1 _____ ‘I —_—

I I
| | LAN

Eesss=sss—mmoEmEoEESESSS S SS S SESsanEsSS=SSSSEEanEaEES=S=

8FM = Secure File Manager

IFS = Isolated Flle System

FARM = File Access Reference Monitor

FIG = File Integrity Guarantor

«++ = Logical channel between FIG and IFS
(physical channel is via TNIUs and LAN)

A Multilevel Secure File System

operations in the first place must, if it is allowed to have them per-
formed at all, also be in the right partition to perform them itself.

The procedure for performing ‘read” operations on a secure file
then becomes the following (writing is similar). When a remote pro-
cedure call to ‘open’ the file for reading arrives at the SFM, its TFiRM
will first check that the request complies with the security policy. If
it does, the FIG will recover the file, in its entirety, from the IFS
and, while checking it for dintegrity, write it into a file in the
requesting host machine. (A special directory may be reserved in each
host for this purpose.) All subsequent ‘read” and ‘seek’ remote pro-
cedure calls can then simply be modified by the SFM so that they refer
to the copy of the file already held by the host and then be passed
straight back to the Newcastle Connection in that host. Obviously,
optimisation is desirable, and this can be accomplished by extending the
Newcastle Connection software so that it can be made aware the presence
of a ‘cached’ copy of a remote file within its own machine. This exten-
sion is, in fact, already planned to occur so that file systems main-
tained by distinctly non-UNIX hosts can be accommodated within UNIX
UNITED.

It should be admitted that there are some unattractive aspects to
this ‘caching’ technique. Most importantly, two users operating om what
is, ostensibly, the same file will, in fact, be operating on their own
private copiles. Neither will see changes made by the other and there

-7 -

will be a consistency problem to resolve when the copies are written
back into the IFS. In most environments, it is unlikely that users will
be inconvenienced by (or even be aware of) this problem, but it cannet
be considered a desirable feature. Unfortunately, it admits no easy
solutions. The obvious technique of disallowing multiple ‘open’s on
files in the Secure File System provides a direct signaling channel: a
TOP SECRET host can deny an UNCLASSIFIED host access to an UNCLASSIFIED
file (and thereby convey one bit of information) by opening the file
itself.

If the consistency problem caused by the implicit ‘caching’
approach is considered unacceptable, then one alternative is make the
‘caching’ process explicit and manifest to wusers. This invelves a
retreat from our original desire to present a uniform interface and
requires that ‘secure’ files should only be accessed through special
system calls which copy an entire file in or out of the Secure File Sys-
tem.

As well as a consistency problem at its interface, the mechanism
described so far contains security weaknesses. Most obviously, the IFS
can substitute one complete file body for another. We propose to
counter this - threat by using different encryption keys for each file.
In order to avoid the need to store large numbers of encryption keys for
long periods of time, the key for each file can be generated by a eryp-
tographic transformation of its security level and name. (Note that
this excludes the possibility of ‘links’ from one file to another.)
Using this technique, the SFM need only maintain a single master key.
Its method of operation is as follows.

Whenever a file operation is requested from the SFM, it will
encrypt the name and security level of the file in CBC mode using the
master key and will generate the file encryption key from the final
(checksum) block of the ciphertext. It is possible to prevent files of
the same name and security level from using the same key if the full
pathname of the file is used in the key generation process - but this
will require either a restricted interface to secure files (the current
working directory cannot be in the Secure File System), or more complex-
ity in the SFM.

The IFS still has the ability to save old copies of legitimate
files and can therefore signal a few bits of information to an outside
collaborator by choosing which version of a file it will return. If
this channel is to be blocked (and it may not be worth it), then the SFM
must record a sequence number in a ‘houskeeping’ section of each file
and must maintain a master file containing the sequence numbers of the
most recent copies of all files. This master file can be stored on the
IFS and protected by just the same mechanism as an ordinary file. The
IFS could still attempt a ‘master spoof’ by retaining an old copy of the
master file and this attack can be blocked if the SFM keeps a record, in
trusted stable storage, of the sequence number of the current master
file.

A more significant channel for information leakage out of the IFS
uses the contents of the ‘i-nodes’. These contain supplementary informa-
tion about a file (e.g. its owner, discretionary access permission bits,
date of creation, etc.) and UNIX provides a system call (‘stat”) for
reading this information and others for altering 1it. The initial

wOf -

contents of an i-node are not all determined by information explicitly
provided in the system call that creates the file, but are manufactured
by the file system itself from information in the system tables. It is
therefore not possible for the SFM to check on the authenticity of
information returned by the IFS in response to a ‘stat’ call, and this
provides the IFS with the opportunity to convey a couple of dozen bytes
of unchecked information back to the caller. There are a number of pos—
sible measures that can be taken to counter this threat, though none of
them is entirely satisfactory.

One possibility is for the SFM to refuse to respond to ‘stat’
calls. Though secure, this is a rather strong response Lo the threat
and it means that a number of standard UNIX programs will fail to work
on files held in the Secure File System. A better response would be for
the SFM itself to construct replies to ‘stat’ calls wusing accurate
information wherever this is known to the SFM (e.g. file length, time of
creation) and arbitrary or fixed values wherever it is not (e.g. actual
i-numbers). The amount of accurate i-node information maintained by the
SFM will influence the quantity of trusted mechanism that it must con-
tain: in order to maintain everything it would almost have to become a
trusted UNIX file system and maintain a full system table. A compromise
would be to allow the IFS to manufacture the initial i-node for each
file (since this is the operation that requires a full UNIX), but for
the SFM to monitor its contents thereafter. This could be done in the
following way. As soon as a file is created in the IFS, the SFM would
perform a ‘stat’ on it and save the result (in encrypted, checksummed
form) back in the IFS. The SFM would interpret all subsequent system
calls to change i-node information and would simulate their operation on
its own copy of the i-node and check its result against that produced by
the IFS.

Directories pose a similar threat to i-nodes since they also con-
tain system—generated information {i-numbers) and can be read like ordi-
nary files. We suggest that this danger can be countered using similar
techniques to those proposed for i-nodes. Observe that it is not neces-
sary to keep separate encrypted and checksummed copies of directories in
order to detect modifications, since the SFM can keep a special file in
each directory whose name is a crypto-checksum for the directory con-
tents.

Because 1-nodes and directories provide limited channels for infor-
mation disclosure if they are made directly visible to outside callers,
it is prudent that the channels for information leakage into the IFS
should be reduced as much as possible. Accordingly, we recommend that
file names, as well as file contents, should be encrypted before they
are consigned to the IFS, and that file lengths should be padded to a
multiple of some fairly large value (say 1024 bytes).

Because we have discussed the difficulties posed by our method for
providing a Secure File System at some length, we may have obscured its
basic merits. Essentially, the mechanisms we have proposed allow a
trade—off between uniformity of interface, security, and quantity of
trusted mechanism. If a special interface is constructed for the manipu-
lation of secure files, then complete security can be provided with very
little trusted mechanism. Alternatively, if the full UNIX file system
interface is desired, then the trade-off reduces to one between security
and the quantity of trusted mechanism. The SFM is a reference monitor

- 20 -

for an untrusted UNIX file system and the security which it provides is
a function of the completeness of its mediation of that file system.
Complete security requires complete mediation - which in turn requires
that the trusted software in the 5FM must simulate many of the charac-
teristics of a full UNIX file system. We believe, however, that the
techniques we have proposed make it possible for a relatively simple SFM
to provide a partial mediation of the behaviour of the IFS which is of
sufficient power that the channels for clandestine information flow
through the IFS will yield only low bandwidth while requiring a massive
Trojan Horse within the IFS.

The mechanisms proposed here protect against the threat of disclo-
sure, but they are obviously vulnerable to denial of service attacks:
the IFS can simply deny that it holds a certain file, or even claim to
be completely broken. Though potentially serious, this threat is far
less insidious than that of disclosure since it is always obvious when
it 1is happening. Assuming that a standard UNIX of known pedigree is
used for the IFS and that sensible back-up precautions are taken, we do
not expect that malicious denial of service will be considered a serious
threat in. many environments. However, to guard against accidental
failures, and perhaps reduce the threat of malicious ones, we suggest
that it would be straightforward to employ multiple IFSs - either to
replicate or to distribute vital records.

Summary

We have described how the sophisticated functions of a multilevel
secure UNIX file system can be provided by trusted mechanisms that are
relatively small and uncomplicated. The file system is malntained by a
perfectly standard, untrusted UNIX system whose potential for betrayal
is thwarted by the fact that all its communications are mediated by a
trustworthy Secure File Manager (SFM) housed in a separate machine. The
SFM itself comprises two trusted sub—components: the TFile Integrity
Guarantor (FIG) and the File Access Reference Monitor (FARM). The
responsibility of the FIG is to prevent any undetected modification to
files or other (‘i-node’) information held by the Isclated File System,
while the FARM is responsible for enforcing the security policy concern-
ing the reading and writing of files.

The FIG achieves its purpose by employing encryption and checksum
techniques which are very similar to those used, for LAN messages, by
the Trustworthy Network Interface Units. We therefore suggest that the
FIG can be constructed by minor modifications and extensions to an ordi-
nary TNIU. The FARM function of the SFM 1is also straightforward,
requiring only the imposition of simple access control rules determined
by a security policy. This funection could be performed inside a
separate regime provided by the separation kernel of the machine which
supports the TNIU/SFM functions.

As they are separate Logical Concerns, UNIX UNITED keeps issues con-
cerning tolerance to hardware and software failure quite separate from
those of distribution - as we have tried to keep both these issues
separate from security. A prototype extension to UNIX UNITED which pro-
vides for the user-transparent replication of files and processors in
order to mask hardware faults has already been demonstrated [LiuB2], and
could usefully be incorporated into the Secure File Store mechanism.

B -

We therefore conclude that all the funetions of a complete SFM can
easily be integrated into the TNIU which connects it to the LAN. The
development and verification costs of an integrated TNIU/SFM should be
little more than those for a TNIU alone, and production costs should be
about the same - just a few hundred pounds.

Because it is integrated into a UNIX UNITED environment, the spe-
cial nature and construction of the Secure File System need not obtrude
into the user’s view of the system. In its most general (though also
its most complex) form, the Secure File System can appear to users and
their programs just like any other directory in the name structure of
the UNIX UNITED file system. The single difference is that whereas
files belonging to ordinary directories are only available within their
own security partition, those held by the Secure File System are, sub-
ject to the security policy enforced by the FARM, available to many dif-
ferent partitions.

5. The Accessing and Allocation of Security Partitions

A system such as the present ome in which terminals are attached to
machines of fixed security level can be somewhat inconvenient to use. A
SECRET level user can send mall to a TOP SECRET one via the Secure File
System, but the recipient can only reply by leaving his TOP SECRET
machine and logging in to one at the SECRET level or lower. We can
avoid this inconvenience, and also make possible the provision of addi-
tional services, by connecting terminals to ‘Trustworthy Terminal Inter-
face Units’ rather than to hosts directly. Moreover, we can then
include provisions for dynamically changing the allocation of machines
to security partitions.

5.1« Accessing Different Security Partitionms

What we term a Trustworthy Terminal Interface Unit (TTIU) is basi-
cally a Trustworthy Network Interface Unit (TNIU) enhanced with some
additional trusted functions. These comprise a terminal driver, some
very limited Newcastle Connection software, and an authentication
mechanism. These are all logically separate mechanisms and will each
run in individual regimes provided by the separation kernel which sup-
ports the TTIU.

A TTIU in the ‘idle’ state simply ignores all characters reaching
it from the LAN or from its terminal =~ until a special character
sequence is typed at the keyboard. This will cause the TTIU te connect
the terminal to its authentication mechanism, which will then interro-
gate the user in order to determine his identity. Once the user has
been authenticated, he can be asked for the security partition to which
he wishes to be connected. If the requested partition is within his
clearance and all other requirements of the security policy are satis-
fied (for example, a terminal located in a public place may not be

*# Alternatively, badge readers or other recognition devices could be em-
ployed. Also, although we speak of the authenticator being located in
the TTIU, it may be preferable for authentication and clearance checks
to be centralised. In this case, the authenticator in the TTIU will
merely act as a liaison between the user and a central authenticatien
mechanism accessed over the LAN.

- 31 =

permitted a TOP SECRET connection, even if its user 1is authorised to
that level), then the TTIU will load the encryption key of the partition
concerned into its DES chip. The Newcastle Connection software in the
TTIU will then be able to establish contact with its counterpart in a
host machine belonging to the appropriate security partition and the
user will thereafter interact with that remote machine exactly as if he
were connected to it directly.

The Newcastle Connection component in the TTIU must be able to
respond to remote procedure calls directed to it by the Newcastle Con-
nection of the remcote machine. The only calls that require a non-error
response are those appropriate to terminals, namely ‘read from the key-
board’, ‘write to the screen’, and a couple more concerned with status
information. Thus only a fraction of the full Newcastle Connection
software is required for a TTIU and, just like the similar software in a
conventional host, it need not be trusted.

The minimum special function required of the terminal driver com-
penent of a TTIU 4is the ability to recognise the character sequence
which users type to indicate that they wish to communicate with the
authenticator. If the terminal is an ‘intelligent’ one, then it may
also be desirable for the driver to filter the character sequences sent
to it for any invocation of ‘dangerous’ functions. (Even quite modest
terminals possess capabilities that allow apparently innocuous messages
to have serious side effects.) More ambitious services that could be
provided by the terminal driver include a local serolling buffer and the
ability to drive a printer. (Hard copy must be marked with the security
classification of the session in progress at the time it was produced.)
Any information buffered within the TTIU or i1its terminal must, of
course, be erased when the session terminates, at which point alse the
encryption key in the DES chip should be unloaded.

None of the additional trusted mechanisms which are required to
upgrade a TNIU into a TTIU should present an undue challenge in either
construction or verification. Nor, given that TNIUs are constructed on
top of a separation kernel, should the presence of these additiomal
mechanisms affeect the construection or wverification of the TNIU com-
ponents themselves. In fact, the presence of a separation kernel makes
it perfectly feasible to support multiple terminals, each with a
separate set of TTIU and TNIU components, on a single processor. It
should even be possible, without great complexity, te permit a single
terminal to. maintain simultaneous connections with two or more remote
machines in different security partitions, each using a separate window
on the screen.

5.2. Changing Security Partitions Dynamically

Trustworthy Terminal Interface Units enable wusers to connect to
machines in different security partitions and therefore allow them to
perform each of their activities at the most appropriate level within
their c¢learance. However, if a security policy with a fine granularity
of need-to—know compartmentation is supported, then the number of dif-
ferent security classifications may well exceed the number of physical
hosts available. Even when the number of distinct security classifica-
tions 1s small, the demand for resources within each classification may
vary with time. Furthermore, some users may possess personal worksta-
tions which they wish to use for all their activities at many different

gy -

security levels. 1In all these cases, some provision for reallocating
host machines to different security partitions is needed.

With untrusted hosts, this can only be accomplished by ‘temporal
separation’ which, in its simplest form, is ‘periods processing’. This
requires manual intervention to perform the exchange of all demountable
storage and the re-initialisation of all fixed storage in order to
remove every trace of information from the old security partition before
the machine can be brought up again at its new level - either ‘clean’ or
reloaded with the suspended state of some previous activation at that
level.

Manual periods processing requires very rigid administrative con-
trols and is slow and expensive to perform. We will therefore propose a
mechanism for automating the process so that it becomes both rapid and
SECuUre. Readers Ffamiliar with the history of secure systems proposals
will recognise ours as a reincarnation of the ‘encapsulation’ approach
proposed nearly ten years ago [Bisbey74, Lipner74]. The idea was not
put into practice at that time, although considerable design work was
done by the System Development Corporation for an implementation called
the ‘Job Stream Separator’ which was intended to control a Cray-l1 sys-
tem. We will refer to our implementation of the idea as an ‘Automatic
Partition Changer’. It will comprise a number of sub-mechanisms.

The first requirement is for a separation mechanism to ensure that,
at all times, the host machine only has access to permanent storage
(i.e. disks) in the same security partition as its own current activa=
tion. The simplest such mechanism would merely be a switch between
separate banks of disks. This has the advantage of being manifestly
secure and requires no change to the host operating system. Its disad-
vantage is cost: the switch might be cheap, but providing multiple banks
of disks would certainly not be.

The next most direct realisation of the mechanism would be one
which synthesised logically separate ‘mini-disks’ on shared physical
disks, as in KVM/370 [Gold79]. Unlike that in KVM/370, however, this
synthesis would have to be performed in a physically separate processor
since the host machine is completely untrusted. These ‘disk interface
processors’ would be rather complex and difficult to verify, since they
would contain trustworthy disk drivers and would need to operate
extremely rapidly.

A more attractive arrangement in the context of a distributed sys-
tem 1is for host machines to be physically remote from their permanent
storage, and to obtain it as a service over the LAN - mediated by their
Trustworthy Network Interface Units in the usual way. There are several
operational benefits to this approach. Most obviously, the small,
expensive (in terms of cost per bit), and slow disks that are generally
attached to personal and other small machines can be replaced by large,
cheap and fast disks held at a central site under good environmental
conditions. Maintenance and back-up procedures are also simpler to
arrange and control with a centralised storage facility. Some distri-
buted systems already provide the basic mechanisms needed to support
this approach: the Cambridge System does so at a low level [Birrell80,
NeedhamB2], while UNIX UNITED can do so at the level of files. However,
while it dis perfectly feasible for a UNIX UNITED system to run with no
local files, the disk storage needed by the UNIX kernel for swap space

= 33 =

presents difficulty - since swapping is an activity which occurs below
the level of the Newcastle Connection interface.

Qur proposal for a mechanism that is appropriate the present system
is a modification of the 1last approach. Hosts will be configured
without a local file system and all references to apparently local files
will be intercepted by a ‘Local File Relocation Process’ in the Newcas-
tle Connection. This will redirect them as remote procedure calls to a
file system held in a remote machine that is permanently assigned as a
file server to the security partition which the host currently occupies.
For example, if the host is known as ‘PW5’ (Personal Workstation number
5) and is currently operating in the (SECRET, NATO) partition, then the
remote procedure call sent out in response to a request for the local
file /bin/shell might actually name the file /../SNSERVER/PW5/bin/shell,
where ‘SNSERVER’ is the name of the machine that maintains the (SECRET,
NATO) file system. This transformation is perfectly straightforward and
does not need to be trusted - since an attempt to name a machine in the
wrong security partition will be caught by the standard TNIU mechanisms
(the local and remote machines will have incompatible encryption keys).

We conclude that this aspect of the Automatic Partition Changer’s
function is easily provided and now turn to the control of the swap dev-
ice. The key to this problem is to recognise that although the swap
device may be a disk, it is only used for transient, rather than per=
manent, data. Hosts may therefore be provided with a local disk for use
as a swap device in a perfectly standard way, except that the contents
of this disk must be erased whenever the host changes security parti-
tions. The host processor’s local memory and registers must also be
erased at this time.

The simplest way to accomplish this erasure, and the one which we
propose to employ, is to cause the host processor to boot-load a trusted
stand-alone ‘purge’ program from ROM. This program will systematically
clear all storage available to the processor. If the number of distinet
security partitions exceeds the number of physically dedicated file
servers that can reasonably be provided, then the Secure File System may
be used to provide logically separate file systems for each combination
of workstation and security partition. In this case, the local disk of
each workstation must contain a small file system for holding ‘cached’
copies of open files. Since this file system is only used for transient
information, it may (and must) be purged and re-initialised during a
security level change, just like all the other information on the local
disk.

In outline, the complete scenario for automatically changing the
security partition in which a host operates is the following. A user at
a terminal attached to a TTIU is authenticated and asked for the secu-
rity partition in which he wishes to work. If this partition is within
his clearance, a signal will be sent to the TNIU of a wvacant host

* Security procedures in certain high-threat environments forbid the
re-use of magnetic recording media for information of different security
levels, even after erasure. (It is held that magnetic media cannot be
completely erased.) It may be possible to avoid these objections by us-
ing ‘*silicon disks” (i.e. semiconductor bulk BAM) or by placing an en-
cryption device in the disk access channel.

- 34 -

machine instructing it to switch to the indicated security partition.
This signal will be protected against forgery or spoofing by the stan-
dard encryption techniques employed between TNIUs. On receipt of the
signal, the host’s TNIU will load the encryption key appropriate to the
new security partition, inform its Local File Relocation Process of the
identity of that partition, and initiate the purging of its host
machine. At this point UNIX can be re-booted on the host. The neces-—
sary copy of the operating system could either be obtained locally from
a read-only floppy disk, say, or from a remote ‘boot-server’ accessed
over the LAN [NeedhamB82].

Summary

We have described two additional mechanisms which increase the
flexibility and convenience of our Distributed Secure System. The first
is a Trustworthy Terminal Interface Unit (TTIU) which enables wusers to
connect to the security partition of their choice (subject to their
clearance) without having to be physically present at the site of a host
machine operating in that partition. The second mechanism 1s an
Automatic Partition Changer which enables host machines to be assigned,
rapidly and securely, to different security partitions. These facili-
ties require new trusted mechanisms of a very modest character. A TTIU
is basically no more than a TNIU enhanced with additional trustworthy
software for performing user authentication, key loading, and terminal
support.

For automatically changing the security partition in which a host
machine operates, its TNIU must be able to purge all of the host’s
storage, and to change its own encryption key. One implementation of
the purging mechanism simply requires the host to be caused to boot-load
a trusted program from ROM. All the host’s files must be held remotely
and accessed through an untrusted redirection process in its TNIU.

These generalisations of the original, very inflexible, but highly
secure, system based on static allocation of terminals, local file
stores, and processors to individual security partitions are, we would
claim, all well within the state of the art. They require the addition
of a number of specialised mechanisms to the system, but all are rela-
tively simple, and have established antecedents. Moreover, they all fit
easily into the overall architecture we have described, without disturb-
ing the security mechanisms provided earlier, and without intruding inte
the ugser’s view of the system.

6. Further Topics

In this section we discuss some extensions to the Distributed
Secure System presented so far. We begin by considering the integration
into our Distributed Secure System of specialised components which have
the ability to change or override the security policy enforced by the
rest of the system. The most important and necessary of such components
are those which provide for ‘downgrading’ the classification of informa-
tion.

A true downgrade occurs when information is reassigned to a secu-
rity classification lower than that which it had originally - either
because it is found to have been over-classified in the first place
(this may be the consequence of it coming from an insecure computer

L

system which operates ‘system high’) or because, due to the passage of
time and events, it is no longer as sensitive as it once was. A second
form of downgrading is ‘sanitisation’. This is the deletion or modifi-
cation of the most sensitive parts of a body of information in order to
produce a new version which may be classified at a lower level than the
original. In the world of security administration, sanitisation is
quite distinet from downgrading since no information is actually lowered
in e¢lassification but, in a computer system such as ours, sanitisation
will require the same mechanism as downgrading. This 1is because
preparation of the sanitised information must occur in a machine that
has access to the highly classified original; the sanitised wversion of
the information will therefore be locked into the security partition
occupied by that machine and the downgrading mechanism must be invoked
in order to allow it to escape to a lower level.

A number of computer systems have been designed and built to
mechanise or assist the processes of sanitisation and downgrading.
Examples include the ACCAT and LSI GUARDS [Ames80, Woodward7 9,
Craigen82, Hathaway80, Stahl81], and the University of Texas ‘Message
Flow Modulator’ [GoodB8l1]. Some of these systems are able to operate in
an automatic mode in whieh information arriving at one security level is
automatically sanitised and sent out again at a lower level, but in most
cases they require a 'man in the loop’. This means that a trusted human
operator is required to review all material passing through and, after
optionally sanitising it, to decide whether or not it may be released at
a lower level.

It is not the construction of these ‘downgrader’ systems that con-
cerns us here, but their integration into our own system. Their physi-
cal integration seems a straightforward engineering problem: they need
to be provided with a front end process (or processor) that couples them
to the remote procedure call interface of a TNIU. The TNIU must be
slightly modified so that it will change its encryption key (and, in
effect, therefore, the security partition to which it belongs) at the
behest of the trusted downgrader machine. This will make it possible
for the downgrader to draw a file in from one security partition, pro-
cess it in some way, and send it back out again in a different parti-
tion.

Our real concern, however, is not with these details of physical
integration, but with how a user of the system can obtain the services
of a downgrader from his own terminal. A crude approach would be to
require him to explicitly indicate to his Trustworthy Terminal Interface
Unit that he wishes to be connected to a downgrader, rather than to an
ordinary host. Subject to authentication and his possession of the
appropriate clearances, a secure path could then be set up between the
user’'s terminal and the downgrader machine using the standard enmecryptiom
techniques. This would enable him to invoke the funetions of the down-
grader as if he were connected to it directly.

Our objection to this approach is that it is contrary to our desire
to present a completely uniform interface to our total system. We would
like the user to be able to invoke the downgrade mechanism quite natur-
ally while in normal communication with an untrusted host. Invoking the
downgrader should be no different than invoking any other service.
Thus, we would like the user to be able to type a “shell’ command such
as

R

SGUARD/downgrade < $SFS/TOPSECRET/brian/salaries
» 4SFS/SECRET/brian/salaries

directly to an ordinary, untrusted host machine {where GUARD and SFS are
shell wariables that name the machines providing the downgrade and
secure file storage facilities).

The solution to this problem of providing a uniform interface to
special functions 1is to realise that there is no problem! An untrusted
host confronted with a command such as that above can do one of two
things: it can attempt to masquerade as a downgrader, or it can call the
real one. The attempted masquerade only presents a denial of service
threat - since the standard security mechanisms prevent downgrades by
untrusted hosts.

If the host does invoke the real downgrader (by a remote procedure
call) then the first task of the downgrader will be to ensure that the
call is genuine. It will ask the untrusted host which issued the call
for the didentity and location of the user who is claimed to have ini-
tiated it. The downgrader will then enquire the true identity and
clearance of that user from the authenticator in the TTIU to which his
host claims he is attached. If the user is found to have the appropri-
ate clearances, the downgrader will request the user’s TTIU to provide
it with a secure path to the user’s terminal. Then the downgrader can
ask him "did vyou really invoke this downgrade?" and, assuming that he
confirms that he did, further dialogue may take place to establish the
propriety of the operation before it is carried out. To the user, the
fact that this dialogue is with a machine different in identity, func-
tion, and construction, (and of superior trustworthiness) than that
which he used to invoke the service, will be completely transparent;
from his terminal he has the (correct!) impression that he is using a
single multilevel secure system.

Provided the path used for communication between the downgrader and
the user 1is a secure one, it does not matter that it is set up in
response to a request from an untrusted host. The path will only con-
nect trustworthy entities which have authenticated each others’ identi-
ties and which may be trusted not abuse their special privileges. A
host whicn 1initiates spurious requests for such paths to be set up, or
which fails to initiate genuine ones, is merely a nuisance; 1t cannot
bring about a security compromise.

The mechanisms needed to establish a secure path are little more
than a combination of those already present: our encryption mechanisms
can establish a secure path from the downgrader’s TNIU to the wuser’s
TTIU and the internal channels of the TTIU may be trusted to extend that
path to the user’s terminal. The downgrader and the authenticator of
the user’s TTIU must be able to authenticate each other before they set
up the path between them and this, coupled with the fact that a unique
encryption key may be desired for every such path, prompts us to suggest
that this is the stage in the evolution of our system at which it is
appropriate to add a component to each TNIU and TTIU for managing a
cryptographic authentication and key distribution protocol [Denning3l,
Denning82, Ersham78, Needham78].

Once it becomes possible to access special security mechanisms,
such as downgraders, conveniently and safely, it is natural to enquire

- 4T -

what further special mechanisms are both desirable and practicable. The
most wuseful extension to the basiec system which it seems feasible to
provide with present technology would be the ability to manage ‘mul-
tilevel objects’. The notion of a multilevel object has been proposed
in order to formalise the procedures governing certain types of military
messages and documents [Landwehr82]. Intuitively, the concern is to
manage documents which not only carry an overall security classifica-
tion, but whose individual paragraphs bear their own, local classifica-
tions. Although it derives from military practice, the idea of a mul-
tilevel object 1is of quite general utility. A mall message to a
manager, for example, may have UNCLASSIFIED address and subject fields
which may be read by his secretary for filing purposes, but a MANAGEMENT
level message field which he alone should see.

In our Distributed Secure System, multilevel objects are most
naturally represented by files: a multilevel file will have internal
markings indicating the security levels of its constituent parts. A
trustworthy 'Multilevel File Manager’ will be responsible for assembling
and marking the constituent parts of a multilevel file and for extract-
ing the parts that may be seen by users who are not cleared to the level
of its overall classification. Outside the multilevel file manager,
however, a multilevel file will be treated as an ordinary file belonging
to the security partition determined by its overall classification.

The simplest way of constructing the constituent parts of a mul-
tilevel file 1s for them to be prepared as separate files, each belong-
ing to the security partition appropriate to its own contents, using the
standard facilities of the system. A multilevel file can then simply
comprise a list of the names of the files that contain its constituent
parts. It is necessary that the preparation of this list should be per-
formed in a completely trustworthy environment - since it must be per-
formed from within a security partition that has access to the most
highly classified information in the file (or to the overall classifica-
tion of the file 1if that is higher), but will yield an object whose
parts may eventually be seen by less highly cleared users. Although the
standard security mechanisms ensure that none of the constituent files
will ever be seen by users who are not cleared to view their contents,
the selection and ordering of low-level constituents could, if performed
in untrustworthy environments, be modulated to convey high-level infor-
mation.

The identification of the files that censtitute the parts of a mul-
tilevel file must therefore be performed by a suitably cleared user in
secure communication with the trustworthy multilevel file manager. This
will require the same mechanism as that described above for establishing
secure communications between a user and a downgrader.

Once the multilevel file manager has obtained the 1list of file
names that constitute a multilevel file, it can append a crypto-checksum
to the list as a digital signature, and release the list and its signa-
ture as an ordinary file belonging to the security partition of its
overall classification. Users cleared to see the whole file can recover
the information which it represents by reading and assembling the files
named within it, using the standard mechanisms for reading files from
other (lower) security partitions.

-3f -

Less highly cleared users require assistance from the multilevel
file manager before they can access the parts of a multilevel file that
are within their clearance. The multilevel file manager must recover
the file of file names that represents the multilevel file and check,
using the digital signature which it appended to the file when it was
manufactured, that it has not been modified by untrustworthy software in
the security partition that has been storing it. If all is well, the
multilevel file manager can then prepare a modified list of file names,
containing just those whieh the requesting user 1s cleared to view.
{Although the standard security mechanisms ensure that users cannot read
the contents of files which they are not cleared to view, it is probably
desirable to suppress information about what information it is that is
being suppressed, and in which parts of the file it occurs.) The modi-
fied file of file names can then be released to the user, who can then
assemble the files named within it.

Numerous modifications and extensions are possible to this scheme
for supporting multilevel objects. For example, the multilevel file
manager need not sign the lists of file names used to represent mul-
tilevel files 41if these are Lkept in the Secure File Store and never
directly released to untrusted components. Also, a trustworthy ‘view’
program could be provided by the multilevel file manager if it is
desired to exclude the possibility that untrusted machines might attempt
to mislead their users by incorrectly displaying the security markings
of the constituent parts of multilevel files.

" We have chosen only to sketch our proposal for the management of
multilevel objects since we hope that the reader will be able to com-
plete it for himself = or to design an alternative mechanism. And this
is the main point that we hope to have conveyed here: our system pro-
vides a series of simple, easily understood building blocks, which can
be combined, modified, and extended in order to provide additional capa-
bilities. It is therefore perfectly reasonable for ourselves, and oth-
ers, to incorporate additional specialised security mechanisms into the
system without destroying its overall coherence, or the simplicity of
its basic security mechanisms.

Independent of mechanisms which modify or extend the security pro-
perties of the system are those which extend its operational charac-
teristies - most obviously by the provision of inter-networking. In
fact, since our architecture depends on physical separation to provide
the foundation for its security mechanisms, we have tackled the problems
of distributed processing and, by logical extension, inter-networking
right from the start: the principles underlying UNIX UNITED extend
smoothly to the case where 1its constituent components are inter-
connected by a variety and multiplicity of both local and wide-area net-
works. The mnaming structure of the a UNIX UNITED system reflects the
desired logical relationships among its constituents, and need have no
correspondence to their physical inter-connections: close neighbours in
the name tree may be situated on different sides of the Atlantic. All
the unpleasant details of routing and inter-networking are taken care of
by the Newcastle Connection [Black82].

Since inter-networking in UNIX UNITED is logically no different to
the case where all communications are provided by a single LAN, the
security mechanisms of the basie system apply to a larger, inter-
networked one as well; provided each component is connected to its

N

communications medium by a Trustworthy Network Interface Unit (and is
otherwise isolated), all will be well. The single difference caused by
wide geographical distribution will be in the area of key handling:
while it is convenient for all the machines belonging to one securlty
classification and attached to the same LAN to use a single encryption
key, the same is not true when the machines may be widely dispersed.
Mechanisms for automatic authentication and key distribution between
remote TNIUs become necessary in this case.

Summary

We have sketched the means whereby specialised security mechanisms,
such as a ‘downgrader’ and support for ‘multilevel objects’, can be
incorporated into our system, and have indicated how it can be extended
to encompass networks of systems.

There are two points which we wish to stress here. Firstly, that
specialised mechanisms can be incorporated in a way that does not dis-
turb the overall coherence of the system as perceived by its users, and
secondly, that such specialised mechanisms can be added to the basic
system as technology and resources permit, without disturbing or compli-
cating the mechanisms already provided.

7. Conclusions

To reiterate, our approach to the design of a secure computing sys-
tem involves the interconnection of various trustworthy and specialised
security mechanisms together with a number of larger wuntrusted general
purpose computers in such a way that users and theilr programs can treat
the resulting somewhat heterogeneous system as a secure, but otherwise
conventional, multiprogramming system. Our account has illustrated how
each of four distinct methods for achieving separation (physical, tem-
poral, cryptographical and logical) can be used appropriately within
such a system, and has described in reasonable detail the funections of
several specialised security mechanisms.

It might be thought that we are postulating a rather large number
of security-critical mechanisms. However, we believe that in each case
the particular mechanism is very simple and within the current state of
the art. Indeed, a number of them have previously been proposed (and
some implemented) by others - though usually as stand-alone systems.
Moreover, any secure system design must surely contain mechanisms for
secure communications, terminal access and authentication, file storage
and so on. If the system appears to contain only a single security-
critical mechanism (such as a security kernel), then that single mechan-
ism must perform all these different tasks and the appearance of simpli-
city will be illusory. One of the significant benefits of the overall
architecture that we have developed is that it separates its security
mechanisms, minimises their interaction, and allows them to be used and
combined 1in very straightforward ways. Many additionmal such mechanisms
(e.g. for monitored downgrading, processing of documents containing
sections of differing security levels, automatic key distribution, etc.)
could be constructed and incorporated into our Distributed Secure System
in an equally straightforward and effective manner. This extensibility
is another advantage of our approach: installations can provide them-—
selves with just the amount of secure functionality that they require -
and can later add more without disrupting what they have already.

= &0 -

In essence, our approach retrofits security mechanisms onto a
well-accepted and widely used operating system in a way which should not
compromise its overall performance: the computing resources of each
gecurity partition are provided by standard, untrusted UNIX systems run-—
ning at full speed. Moreover this is done in a way that is orthogonal
to the mechanisms for achieving reliability and availability that are
likely to be called for in any system that is vresponsible for holding
and protecting extremely valuable information. The simplicity of our
approach is illustrated by the fact that it took literally Jjust a few
days to construct a prototype (which provides multiple gecurity parti-
tions and a multilevel secure file store) by adding crude software simu-
lations of Trustworthy WNetwork Interface Units and of a Secure File
Manager to the original UNIX UNITED system running on a set of PDP-11
computers Interconnected by a Cambridge Ring.

The construction and certification of a fully realistic implementa-
tion of our Distributed Secure System will of course take considerable
effort, particularly to develop the detailed designs for the various
trustworthy mechanisms to the point where they are of sufficient sim-
plicity for their correctness to be either manifest, or formally proven.
Nevertheless it already seems clear that the costs involved will be mod-
est compared to many past attempts at building highly secure systems,
and the prospects for achieving satisfactory performance are much
greater.

The present report is in fact derived from an earlier ome which is
serving as the basis for a cooperative development effort aimed at con-
structing a fully practical, general purpose, distributed multilevel
secure system. This project is being sponsored by the Royal Signals and
Radar Establishment (RSRE) of the UK Ministry of Defence, and is being
carried out by System Designers Ltd. of Camberley, in conjunction with
the Microelectronics Applications Research Institute and the Computing
Laboratory of the University of Newcastle upon Tyne. The first stage of
this project calls for the delivery of a prototype in the Spring of
1983. The security mechanisms of the prototype will be provided by
ordinary user processes in a standard UNIX UNITED system. This will
not, of course, be secure, but it will allow the operation of the vari-
ous mechanisms to be studied in practice, it will enable the overall
performance of the system to be evaluated, and, most importantly, it
will permit the impact of a mechanically enforced security policy to be
observed in a realistic environment. If this stage is judged a success,
it will be followed by a prototype implementation of the real system.
We hope that it will not be long before it is possible to report on the
progress of this project and, in due course, on how well it has achieved
its security, useability and performance goals.

Acknowledgements

We would not have pursued this work so vigorously without the
enthusiastic encouragement of Derek Barnes of RSRE and the stimulation
of our many colleagues at Newcastle, particularly those involved with
UNIX UNITED. The Newcastle Connection (which is fully operational and
presently undergoing commercial evaluation) is the creation of Lindsay
Marshall and Dave Brownbridge, while the Remote Procedure Call mechanism
is the work of Fabio Panzieri and Santosh Shrivastava. Jay Black pro-
vided wvery helpful criticism of early drafts of this report and an
anonymous referee drew our attention to a number of technical problems.

e

References

[Ames80] S.R. Ames Jr. and J.G. Keeton-Williams, "Demonstrating Security
for Trusted Applications on a Security Kernel Base", Proc. 1980
Symposium on Security and Privacy, Oakland, CA., pp.l145-156, IEEE
Computer Society (April 1980).

[Ames81] 5.R. Ames Jr., "Security Kernels: a Solution or a Problem?",
Proc. 1981 Symposium on Security and Privacy, Oakland, CA.,
pp.141-150, IEEE Computer Society (April 1981).

[Anderson72] J.P. Anderson, "Computer Security Technology Planning
Study", ESD-TR-73-51 (October 1972). (Two volumes).

[Barnes80] D.H. Barnes, "Computer Security in the RSRE PPSN", Networks
‘80, pp.605-620, Online Conferences (June 1980).

[Barnes81] D.H. Barnes, "The Provision of End To End Security for User
Data on an Experimental Packet Switched Network", Proc. 4th Inter-
national Conference on Software Engineering for Telecommunications
Switching Systems, Warwick, England, pp.l44-148, IEE (July 1981).

[Bell76] D.E. Bell and L.J. La Padula, "Secure Computer System: Unified
Exposition and Multics Interpretation", ESD-TR-75-306, MITRE Cor-
poration, Bedford, MA. (March 1976).

[Berson82] T.A. Berson and R.K. Bauer, '"Local MNetwork Cryptosystem
Architecture", Proc. COMPCON, pp.138-143, IEEE Computer Society
(Spring 1982).

[Birrel180] A.D. Birrell and R.M. Needham, "A Universal File Server",
IEEE Transactions on Software Engineering Vol. SE-6(5), pp.450-453
(September 1980).

[Bisbey74] R.L. Bisbey II and G.J. Popek, "Encapsulation: an Approach to
Operating System Security", Proc. ACM National Conference, pp.666-
675 (1974).

[Black82] J.P. Black and F. Panzieri, "Unix United, Stage II: Internet-
working", Internal Report, Computing Laboratory, University of
Newcastle upon Tyne, England (November 1982).

[Brownbridge82] D.R. Brownbridge, L.F. Marshall, and B. Randell, "The
Newcastle Connection, or UNIXes of the World Unite!", Software -
Practice and Experience (To appear, 1982).

[Bruce82] S. Bruce, "Penetration Audit of the UNIX Operating System",
M.Sc. Dissertation, Computing Laboratory, University of Newcastle
upon Tyne, England (October 1982).

[Craigen82] D. Craigen, "A Formal Specification of the LSI Guard", TR-
5031-82-2, I.P. Sharp Associates, Ottawa (August 1982).

[DavidaBla) G.I. Davida and J. Livesey, "The Design of Secure CPU-
Multiplexed Computer Systems: The Master/Slave Architecture", Proc.
1981 Symposium on Security and Privacy, Oakland, CA., pp.133-140,

- §2 -

IEEE Computer Society (April 1981).

[Davida8lb] G.I. Davida, R.A. DeMillo, and R.J. Lipton, '"Multilevel
Secure Distributed Systems'", Proc. 2nd International Conference on
Distributed Computing Systems, Paris, pp.8-10, IEEE Computer
Society (April 1981).

[Denning8&l] D.E. Denning and G.M. Sacco, "Timestamps in Key Distribution
Protocols", CACM Vol. 24(8), pp.533-536 (August 1981).

[Denning82] D.E. Denning, Cryptography and Data Security, Addison-Wesley
(1982).

[Ersham78] W.F. Ersham et al., "A Cryptographic Key Management Scheme
for Implementing the Data Encryption Standard", IBM Systems Journal
Vol. 17(2), pp.106-125 (1978).

[Feiertag77] R.J. Feiertag, K.N. Levitt, and L. Robinson, "Proving Mul-
tilevel Security of a System Design'", Proc. 6th ACM Symposium on
Operating System Principles, pp.537-65 (1977).

[Gasser82] M. Gasser and D.P. Sidhu, "A Multilevel Secure Local Area
Network", Proc. 1982 Symposium on Security and Privacy, Oakland,
CA., pp.137-143, IEEE Computer Society (April 1982).

[Gligor79] V.D. Gligor and B.G. Lindsay, "Object Migration and Authenti-
cation", IEEE Transactions on Software Engineering Vol. SE-5(6),
pp.607-611 (November 1979).

[Golber8l] D.L. Golber, "The SDC Communications Kernel", Presented at

Dol Computer Security Industry Seminar, Washington, D.C. (August
1981).

[Go1d79] B.D. Gold et al., "A Security Retrofit of VM/370", AFIPS
Conference Proc. Vol. 48, pp.335-344 (1979).

[Good81] D.I. Good, "The Message Flow Modulator", Internal Report,
Institute for Computing Science & Computer Applications, University
of Texas, Austin, TX. (August 1981).

[Grossman82)] G. Grossman, "A Practical Executive for Secure Communica-
tions", Proc. 1982 Symposium on Security and Privacy, Oakland, CA.,
pp.l44-155, IEEE Computer Society (April 1982).

[Hathaway80] A. Hathaway, "LSI Guard System Specification (type A)",
Draft, MITRE Corporation, Bedford, MA. (July 1980).

[Hinke82] T. Hinke, Private Communication (1982).
[Karger78] P.A. Karger, "The Lattice Model in a Public Computing Net-

work", Proc. ACM National Conference, Vol. 1, pp.453-459 (December
1978).

[Kent77] S.T. EKent, "Encryption-Based Protection for Interactive
User/Computer Communication", 5th Data Communications Symposium,
Snowbird, UT., pp.5-7 through 5-13, ACM and IEEE Computer Society
(September 1977).

o B e

[Konheim81] A.G. Konheim, Cryptography — A Primer, Wiley (1981).

[Lampson73] B.W. Lampson, "A Note on the Confinement Problem", CACM Vol.
16{10), pp.613-615 (October 1973).

[Landwehr8l] C.E. Landwehr, "A Survey of Formal Models for Computer
Security", Computing Surveys Vol. 13(3), pp.247-278 (September
1981).

[Landwehr82] C.E. Landwehr and C.L. Heitmeyer, '"Military Message Sys-
tems: Requirements and Security Model", NRL Memorandum Report 4925,
Naval Research Laboratory, Washington, D.C. (September 1982).

[Lipner74] S.B. Lipner, "A Minicomputer Security Control System", Proc.
COMPCON, IEEE Computer Society (February 1974).

[Lipner82] S.B. Lipner, "Non-discretionary Controls for Commercial
Applications", Proc. 1982 Symposium on Security and Privacy, Oak-
land, CA., pp.2-10, IEEE Computer Society (April 1982).

[LiuB82] L.Y. Liu and B. Randell, "A UNIX Based Triple Modular Hardware
Redundancy Scheme', Internal Report, Computing Laboratory, Univer-
sity of Newcastle upon Tyne, England (October 1982},

[Lomet82] D. Lomet et al., "A Study of Provably Secure Operating Sys-
tems", RC9239, IBM T.J. Watson Research Center, Yorktown Heights,
NY. {February 1982).

[Matyas78] S.M. Matyas and C.H. Meyer, "Generation, Distributiom, and
Installation of Cryptographic Keys", IBM Systems Journal Vel.
17(2), pp.126-137 (1978).

[McCauley79] E.J. McCauley and P.J. Drongowski, "KSO0S5 - The Design of a
Secure Operating System", AFIPS Conference Proc. Vol. 48, pp.345-
353 (1979).

[NBS77] "Data Encryption Standard", FIPS PUB 46, Nationmal Bureau of
Standards, Washington, D.C. (January 1977).

[Needham78] R.M. Needham and M. Schroeder, "Using Encryption for Authen-
tication in Large WNetworks of Computers', CACM Vol. 21(12)},
pPps993-999 (December 1978).

[Needham82] R.M. Needham and A.J. Herbert, The Cambridge Distributed
Computing System, Addison-Wesley (1982).

[Padlipsky78] M.A. Padlipsky, D.W. Snow, and P.A. Karger, "Limitatioms
of End-to-End Encryption in Secure Computer Networks", MTR-3592,
MITRE Corporation, Bedford, MA. (August 1978).

[Panzieri82] F. Panzieri and S.K. Shrivastava, "Reliable Remote Calls
for Distributed UNIX: an Implementation'", Proc. 2nd Symposium on
Reliability in Distributed Software and Database Systems, Pitts-
burgh, PA., IEEE Computer Society (July 1982).

o R i

[Popek78] G.J. Popek and D.A. Farber, "5 Model for Verification of Data
Security in Operating Systems", CACM Vol. 21(9), pp.737-749 (Sep-
tember 1978).

[Popek79) G.J. Popek et al., "UCLA Secure UNIX", AFIPS Conference Proc.
Vol. 48, pp.355-364 (1979).

[Popek8l] G.J. Popek et al., "LOCUS: A Network Transparent, High Relia-
bilty Distributed System", Proc. 8th ACM Symposium on Operating
System Principles, Asilomar, CA., pp.169-177 (December 1981). (ACM
Operating Systems Review, Vol. 15, No. 5).

[Price81] W.L. Price, "The Data Encryption Standard and its Modes of
Use", pp. 293-310 in New Advances in Distribute Computing, ed. K.G.
Beauchamp, D. Reidel Publ. Co. {1981). (Proc. Nato Advanced Study
Institute, Bonas, France, June 15-26, 1981).

[Randel182] B. Randell, "The Structuring of Distributed Computing Sys-
tems", Internal Report, Computing Laboratory, University of New-
castle upon Tyne, England (November 1982).

[Ritchie74] D.M. Ritchie and K. Thompson, "The UNIX Time-Sharing Sys-—
tem", CACM Vol. 17(7), pp.365-375 (1974).

[Ritchie79] D.M. Ritechie, "On the Security of UNIX", in UNIX
Programmer’s Manual, Volume 2 - Supplementary Documents (Seventh

Edition), Bell Laboratories (January 1979).

[Rushby81] J.M. Rushby, "The Design and Verification of Secure Systems",
Proc. 8th ACM Symposium on QOperating System Principles, Asilomar,
CA., pp.12-21 (December 1981). (ACM Operating Systems Review, Vol.
15, No. 5).

[Rushby82] J.M. Rushby, "Proof of Separability - a Verification Tech-
nique for a Class of Security Kernels", Proc. 5th International
Symposium on Programming, Turin, Italy, pp.352-367, Springer-Verlag
Lecture Notes in Computer Science, Vol. 137 (April 1982).

[Saltzer75] J.H. Saltzer and M.D. Schroeder, "The Protection of Informa-
tion in Computer Systems", Proc. IEEE Vol. 63(9), pp.1278-1308
(September 1975).

[Ssaltzer81] J.H. Saltzer, D.P. Reed, and D.D. Clark, "End-To-End Argu-
ments in System Design'", Proc. 2nd International Conference on Dis-
tributed Computing Systems, Paris, pp.309-512, IEEE Computer
Society (April 1981).

[Shrivastava82] S.K. Shrivastava and F. Panzieri, "The Design of a Reli-
able Remote Procedure Call Mechanism'", IEEE Transactions on Comput-
ers Vol. C=-31(7), pp.692-697 (July 1982).

[Stahl81] S. Stahl, "LSI Guard Security Specification'", MTR 8451, MITRE
Corporation, Bedford, MA. (September 1981).

[Woodward79] J.P.L. Woodward, '"Applications for Multilevel Secure
Operating Systems", AFIPS Conference Proc. Vol. 48, pp.319-328
(1979).

