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Abstract:

This paper surveys techniques for verifying security kernels. It
begins with a tutorial description of two established methods for
performing this task: these are 'access control verification' and
'verification by information flow analysis'. Both of these techniques
are shown to be inadequate, on their own, to the task of verifying
the security of a toy kernel which enforces a policy of isolation. A
new method of verification by 'proof of separability' is proposed
which deals with this problem quite simply and naturally: the basic
idea is to prove that, to each of its users, the behaviour of the
shared system is indistinguishable from that of an idealised (and
manifestly secure) system which supports that user alone.

The application of this idea is then extended to more complex
security policies and systems and is shown to lead to a clearer
understanding of the role of a security kernel and of its
relationship to 'trusted processes' and other security critical
software within the system.

It is argued that the advantages of the verification and
structuring techniques introduced here are such that they should
substantially replace those used in current practice.
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Abstract

This paper surveys techniques for verifying security kernels. It begins
with a tutorial description of two established methods for performing this
task: these are 'access control verification' and 'verification by information
flow analysis'. Both of these techniques are shown to be inadequate, on their
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1. INTRODUCTION

In this paper I shall describe, 1illustrate, and discuss some
methods for proving that certain types of computer system are ~secure”.

In the limited sense in which the term will be used here, a secure
system is one which enforces certain specified restrictions on the ways
in which the information it contains may be accessed, or may ~flow”
within the system. Secure systems are of special interest and signifi-
cance, not only because concern for security is growing in many areas of
application, but also because they are among the first examples of
real-world systems to which the techniques of formal specification and
verification are being applied in earnest. They therefore provide both
a stimulus to the development of these techniques and a test-bed for
their evaluation.

Depending on the application, the leakage of personal or confiden-
tial information from a supposedly secure system could cause individual
distress, financial loss, or the erosion of commercial, political or
military advantage. In certain situations it could even endanger the
national security itself. Systems of guaranteed security are required
for those applications where such unauthorised disclosure of information
cannot be countenanced. (At present, these applications are predom-
inately military ones.)

If the cost of information leakage is great to those adversely
affected by it, so its rewards are correspondingly high to those indivi-
duals, organisations, or governments who may benefit from the other”s
loss. It follows that the “enemy”, as this adversary is generally
known, will consider it worthwhile to devote considerable resources
towards bringing that 1loss about. Any system responsible for the
management of confidential information should be assumed, therefore, to
be threatened by determined and skilled attempts to penetrate its
defences - both by direct external attack and by infiltration or subver-
sion of its own components.



A secure system is required to withstand such attacks and to
preserve the confidentiality of information consigned to its care under
all circumstances. This is a strong requirement; a system can only be
trusted to this extent if its security is attested by utterly compelling
evidence. A formal mathematical proof that the system conforms to an
appropriate and precise specification of “secure behaviour” could pro-
vide a sound basis for the provision of such assurances. This survey is
concerned with the problems of constructing suitable proofs for the
class of systems based on the “security kernel” concept. (A different
approach, requiring the verification of a complete operating system, is
exemplified by PSOS [DELA79, NEUM77].)

Previous treatments of this topic have mostly proposed or expounded
techniques in the context of their application to some particular, real
system. Consequently, their descriptions have tended to be at a very
general level [BERS79, POPE78b, SCHA77] and worked examples have been
based upon a component of the system rather than the system as a whole
[FEIE77, MILL76]. Consequently, it has not been easy for the reader to
form a complete understanding of all the issues involved. Accordingly,
my strategy here will be to examine a toy system (adapted from one due
to Millen [MILL79]) which is sufficiently simple that it permits a
comprehensive discussion and examination of its security properties. It
was only by working through some analyses of this toy system that I
began to understand the problems of security kernel verification for
myself; I hope the reader will find the exercise similarly enlightening.

When I first performed these exercises, I came to the disturbing
conclusion that existing approaches to the design and verification of
secure systems were neither complete, nor altogether well founded. Con-
sequently, I developed a new technique which is, I believe, more satis-
factory than previous methods. A secondary purpose of this paper,
therefore, 1is to point out what I see as the inadequacies of previous
methods and to introduce my new approach and argue in its favour. As a
consequence, this paper contains elements of both a tutorial and a
polemic. Although I have tried to present the tutorial material as
fairly as possible, I have not attempted to suppress my own point of
view.

In order to make this paper accessible to those who have not
encountered these topics before, the next sub-section provides a brief
introduction to the notion of “security” in its application to computer
systems. This introduction is largely extracted from [RUSH8lec] where
the same material is covered at greater length. Other papers which sur-
vey similar material are [DENN79, LIND76] and [SHAN77]. An overview of
the remaining sections of the paper follows this presentation of back-
ground material.

1.1. Background to Computer Security

Security is concerned with controlling access to information and
with enforcing restrictions on its movement. The particular set of
rules and restrictions to be enforced by a given system constitute its
security policy. In the “pen and paper” world, the best known security
policies are those based on the military multilevel scheme. Here, in
its simplest form, each document is given a classification chosen from
the five hierarchically ordered levels: UNCLASSIFIED, RESTRICTED, CONFI-
DENTIAL, SECRET and TOP SECRET. (These are the levels used in Britain;
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Americans omit the RESTRICTED level.) Individuals are given a clearance
chosen from the same five levels and the policy requires that an indivi-
dual may have access to a document only if his clearance equals or
exceeds the 'classification of the document concerned. Thus, CONFIDEN-
TIAL clearance allows access to UNCLASSIFIED, RESTRICTED and CONFIDEN-
TIAL documents, but not to those classified SECRET or TOP SECRET.

The full multilevel scheme is actually more complex than this;
indeed, some of its details are themselves classified. The main refine-
ment to the basic scheme is the use of categories or compartments in
order to provide more selective control of access to information on a
“need to know” basis. Thus, a person may be allowed access to SECRET
level documents in the NATO and CRYPTO categories, but not to those in
the ESPIONAGE category. In this extended form, the combination of a
classification or clearance together with a set of categories consti-
tutes a security class. A person may access a document only if his
clearance equals or exceeds the classification of the document and if
his category set includes that of the document. This right-to—access
relationship on security classes has the mathematical properties of a
partial order. An important special case of the multilevel policy 1is
that in which the security classes are mutually incomparable. This is
the policy of isolation where absolutely no access to information is
permitted across the different classes.

Beyond this rather limited interpretation of security as a restric-
tion on the movement of information, there are a number of related
issues which are sometimes included under more general interpretations
of the term. Examples include: preventing unauthorised modification or
generation of information (this property is known as Tintegrity”
[BIBA77]), ensuring that no user can cause the denial of service to oth-
ers, and enforcing the requirement that all who use system resources
should pay for them. Other related topics include authentication of
personnel (making sure a person is who he says he is) and the wuse of
cryptosystems to provide secure communications. These are interesting
and important matters but too remote from my central purpose to be dis-
cussed here. A useful source of information on these topics is the book
by Hsiao, Kerr and Madnick [HSIA79], which also contains an extensive
annotated bibliography.

Before proceeding to examine computer security specifically, it is
necessary to recognise that concern for security must extend to the
total system of which the computer is just a part. Security is a “weak-
est 1link”™ property: it is no use protecting information inside the com-
puter system if it is vulnerable elsewhere. Thus the entire organisa-
tion in which the computer system is employed must be scrutinized and
steps taken to safeguard the security of its operations.

Until recently, many commercial and industrial installations had
not adequately perceived the degree of threat to which their operations
were exposed and were vulnerable to quite elementary attacks; contrary
to popular belief, most “computer crime” has not required the arcane
skills of an evil “computer genius” but has attacked security weaknesses
in the larger system [BECK80, PARK76]. A whole “computer security”
industry has now sprung up to exploit these weaknesses in a more
socially acceptable manner: by selling the expertise and gadgetry neces-
sary to remove them. Most of the techniques employed derive from mili-
tary and governmental practice, where the level of perceived threat is



far greater and where concern for security has existed for decades, 1if
not centuries. Sophisticated systems of procedural controls have been
developed, together with methods for ensuring the physical security of
an installation and for vetting the trustworthiness of its personnel.
Physical security, besides the obvious use of locks and guards, may,
depending on the scale of perceived threat, go so far as to include the
screening of cables and VDU”s (in order to prevent their stray radiation
from being picked up and decoded by an electronic eavesdropper) while
procedural controls may require the immediate destruction of line-
printer ribbons that have been used to print highly sensitive informa-
tion, and the printing of that information on distinctive (coloured)
stationery.

Once the security of the rest of the operation is tightened up, so
the computer itself becomes the weakest link in the chain. The increas-
ing dependency of almost all organisations on their computer operations
further raises their vulmerability to attack from this quarter and con-
sequently their need to examine and counter the threats which it may
harbour. These threats may be internal as well as external to the sys-
tem: attacks may be mounted by those with legitimate access to the sys=
tem, or even by those involved in its design and implementation.

During the 1960”s and 70”s, considerable experience of the inabil-
ity of conventional systems to withstand concerted and skilled attack
was gained by performing pemetration audits. These entail giving a
“tiger team” of experts access to the system, but without granting them
any special privileges denied to ordinary users. Within a few days, the
team was invariably able to deliver, at will, a listing of any file held
by the system or even to seize total control of its operations. The
systems of all major manufacturers, including the specially “hardened”
versions intended for secure operations, are believed to have been
penetrated in this way - and then repenetrated after the flaws shown up
by earlier penetrations had been fixed.

The evidence of successful penetration audits is so alarming that
the military authorities are forced to use slow, inflexible and costly
procedural mechanisms such as periods processing in order to adequately
safeguard the security of their operatioms. Periods processing involves
dedicating the system to one security classification at a time. While
the machine 1is running at SECRET level, all users not cleared to this
level are refused access to the system and all data classified at levels
other than SECRET are physically removed from the system. Following a
SECRET period, the system must be ~flushed” before bringing it up again
at, say, the CONFIDENTIAL level. Flushing involves not only the
exchange of all SECRET disks and tapes for CONFIDENTIAL ones, but the

* For obvious reasons, the details of military penetration audits are
not reported in the open literature. However, it is noted in the report
of the Anderson Panel that "none of the known tiger team efforts has
failed to date" [ANDE72, vol. 1, p4] and that a large system which had
been successfully penetrated required 10-15 man-years of effort and over
250 changes to the operating system in order to repair the deficiencies
revealed by the penetration - and the “repaired” system was then re-
penetrated in less than one man-week of effort [ANDE72, vol. 1, p30].
For descriptions of some “civilian” penetration exercises, see [ATTAT76,
HEBB80, LIND75, WILKS81].



writing of zeroes to all fixed storage (a thousand times - just to be
sure) and the installation of a completely fresh copy of the operating
system. Not only are these procedures exceedingly costly (the
throughput achieved under periods processing is typically less than 10%
of that obtained from the same hardware in normal operation) but they so
hamper the timely and effective analysis of information that they
threaten the effectiveness of the organisation in which they are used.

The principle reasons for the demonstrable insecurity of conven-
tional systems are, firstly, that their security controls are con-
structed in an ad-hoc fashion, without the benefit of any formal under-
standing of what security really is, and, secondly, that privilege to
alter or bypass the security controls is dispersed throughout their
operating systems.

In order to perform their tasks efficiently (or at all) most
operating system components require privileges denied to ordinary user
processes. With most current hardware, special privileges are very much
an all or nothing affair: in supervisor state anything is possible - and
that includes the ability to bypass the security controls. So to
believe that the security controls are always invoked correctly requires
that we trust the entire operating system. This is unrealistic because
the sheer scale and unmastered complexity of an operating system, as
well as the brute nastiness of much of its interaction with the
input/output system (self-modifying channel programs, for example), all
conspire to make the existence of accidental security flaws a certainty,
before we even contemplate the awful possibility that “trap doors” might
have been deliberately planted in the system during its construction.
Worse vyet, it 1is wunrealistic to Dbelieve that security controls of
guaranteed effectiveness can be retro-fitted to existing systems; there
will be too many compromises embedded in its fundamental design and too
much complexity to allow the ramifications of basic changes to be under-
stood. Security, like reliability, is not an add-on feature: it must be
designed in from the start.

These and other problems with the security of computer operations
within military environments were reported in 1972 by the influential
Anderson Panel [ANDE72], which was set up by the Electronic Systems
Division of the United States Air Force. The Anderson Panel noted a
pressing need for truly secure computing facilities (the cost to the
USAF incurred by the absence of such facilities was estimated at one
hundred million dollars a year [ANDE72, vol. 1, p28]) and observed that
"patching of known faults in the design or implementation of existing
systems without any better technical foundation than is presently avail-
able, is futile for achieving multilevel security"” [ANDE72, vol. 2,
p38].

In part, the Anderson Panel itself proposed a solution to some of
the difficulties it had identified. This was the concept of a reference
monitor: a single isolated mechanism that would mediate all accesses to
data in order to enforce the given security policy. A reference monitor
is required to be:

1) correct — it must correctly enforce the chosen security policy. It
should be sufficiently small and simple that it can be subject to
analysis and tests whose completeness is assured.
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2) complete - it must mediate all accesses between subjects and
objects. It must not be possible to bypass it.

3) tamper-proof - it must be protected against unauthorised modifica-
tion.

The Anderson panel further identified the idea of a security kernel as a
means of realising a reference monitor on conventional hardware. A
security kernel may be considered as a stripped down operating system
that manages the protection facilities provided by the hardware and con-
tains only those functions necessary to achieve the three requirements
listed above. In order to ensure that the kernel can be neither
bypassed nor modified (requirements 2 and 3) all functions requiring
special privileges or supervisor-state operation must be performed
inside the kernel and subject, along with the rest of the kernel code,
to the exhaustive scrutiny that is intended to guarantee its correct-
ness. The rest of the system, and that should include most of the
operating system as well as all user code, is constrained to operate in
the protected environment maintained by the kernel. It may therefore be
completely untrusted = for its only means of progress is by executing
unprivileged hardware operations (whose effects are constrained by the
protection facilities of the hardware, which are themselves under the
control of the kernel) or by requesting service (via SVC or “trap”
instructions) directly from the kermel.

Ideally, the kernel contains only the code necessary to achieve the
three requirements listed earlier. In practice, however, certain other
operating system functions usually need to be brought inside the kernel
interface in order to achieve acceptable performance on a conventional
hardware base. This conflicts with the desire to keep the kernel
minimally small and uncomplicated and makes the design of security ker-
nels a task requiring exceptionmal skill and discipline. Nonetheless, a
properly designed security kernel can be orders of magnitude smaller
than a full general purpose operating system - small enough for its com-
struction to be closely monitored (to avoid the infiltrationm of ~trap
doors”) and for there to be a real chance that it will function
correctly.

Of course, those who place their trust in a security kernel require
more than a real chance of its working correctly ~ they require guaran-
tees. One approach to the provision of these guarantees might be to
demonstrate that the kernel can withstand concerted attempts to defeat
its security controls. Such penetration audits, however, while success-
ful at revealing the inadequacies of conventional systems, are less
suited to the more positive role of demonstrating the presence, rather
than the absence, of security. The problem here, as with any approach
based on testing, is its logical incompleteness: even if the system suc-
cessfully withstands a variety of attacks, we know only that it is
secure against those attacks actually tried - we have no assurance of
its invulnerability to other attacks. Consequently, attention has now
turned to the possibility of proving (or verifying) the security of a
kernel. By this is meant a formal, mathematical demonstration that the
kernel enforces an appropriate and precise specification of “security”.

This is an attractive idea: if performed successfully it would
surely provide the totally compelling evidence that justifies the trust
placed in a secure system. (Furthermore, the discipline imposed on the



system design process by the necessity of proof is widely considered to
be beneficial in its own right.)

In order to verify a security kernel, it is necessary to have a
precise, formal specification of what it means for a system to be
“secure”. (In fact, it is hard to see how any approach can progress
without such a specification.) A conventional security policy does not
constitute an adequate specification from this point of view. Rather,
it has more the flavour of a high level “requirement” since it usually
deals in concepts from the “pen and paper” world (such as “access” to a
document) which have a less clear-cut meaning in the context of a com-
puter system. The role of a security specification is, in part, to ela-
borate what it means to “access” information and for information to
“flow”. As will become apparent later, these are not such simple
notions as they may at first seem.

The earliest attempts to specify system properties relevant to
security dealt with “protection” rather than “security” itself; that is
to say, they were concerned with mechanisms to limit and control access
to the physical resources of the system, rather than with the more
abstract problem of controlling the flow of informaticn. The idea of an
Taccess matrix”, for example, was introduced by Lampson in 1971 [LAMP71]
in order to model the most basic of security, or protection, require-
ments: the right of each user to control access by others to his private
files. The access matrix is a two—dimensional array indexed, in its
simplest manifestation, by users (rows) and files (columns). The entry
in the i"th row and j"th column records the type of access allowed by
user i to file- j. The types of access that may be indicated in the
matrix cells include the familiar ones: read, write, append and prob-
ably some additional ones indicating the right to change the matrix
entries themselves, or to give some rights away to other users. In its
more elaborate forms, the columns and rows of the access matrix may be
indexed by processes as well as by files and users. Matrix entries may
then indicate the right of one process to call another, or to establish
communication with it. In this form, the entities that index the rows
of the matrix are called subjects (active entities) while those that
index the columns are called objects (passive entities). Certain enti-
ties (such as processes) may partake of both attributes.

Associated with the access matrix is the policy of “data security”
which requires that no access between a subject and an object may take
place unless the appropriate cell of the access matrix explicitly
records that the type of access concerned is to be allowed.

The access matrix model of data security cannot be implemented
directly in any practical system since the underlying hardware will
offer a very different, and usually very crude, set of protection facil-
ities. Thus the access matrix constitutes an ideal reference (a specif-
ication) against which to judge a practical implementation that must
achieve equivalent behaviour by manipulation of capabilities, storage
keys, relocation registers or whatever is provided by the hardware.

The access matrix model of data security is a purely discretionary
one. That is, each user may, at his own discretion, grant or deny per-
mission for others to access his files. To see why this is an 1inade-
quate formulation of security from the military point of view (among
others), consider a user cleared to TOP SECRET level who owns a file
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containing TOP SECRET information. Under the simple data security pol-
icy he could, at his discretion, give permission for an UNCLASSIFIED
user to read that file - and this would obviously constitute a breach of
multilevel security, if not of data security. Of course it can be
argued that a user would not do such a thing if he were cleared to TOP
SECRET level - it is the purpose of clearances to identify those who may
be trusted. And, in any case, such a security breach is not specifi-
cally a problem of computer security: a person who will give access to a
computer file might also hand over physical files too. The only threat
we need to counter, so this argument might go, is from the UNCLASSIFIED
user trying to gain access to the TOP SECRET file - and data security
will provide this level of security since we can trust the file”s owner
not to give UNCLASSIFIED users the necessary access permission.

This argument is sound, so far as it goes, but it misses one vital
point - a point that is really the whole basis of the computer security
problem. Suppose our TOP SECRET user were editing his file. Then he
would be wusing the system”s editor program which, because it would be
acting on his behalf, would partake of the same access rights as him-
self. (The editor must obviously be able to read and write the file it
is manipulating). But the editor is not a trusted user with TOP SECRET
clearance - it is a utility program, probably supplied by an outside
vendor and subject to casual modification by systems programmers. It
may easily have been modified, or even written, by the enemy and could,
while it has legitimate access to the TOP SECRET file, attempt to make
it accessible to an UNCLASSIFIED user.

This possibility that the computer system itself might contain
software with unexpected side effects (this is the “Trojan Horse”
threat) leads to the conclusion that access control cannot be purely
discretionary: it must be reinforced by additional mechanisms that are
cognizant of the (nondiscretionary) multilevel security policy. We must
be sure that a TOP SECRET file can never be read by an UNCLASSIFIED
user.

One of the earliest, and certainly the best known, attempt to
specify the nondiscretionary aspect of multilevel security in its appli-
cation to computer systems was perfo.med by Bell and La Padula at the
Mitre Corporation in the early 1970°s. The work is described in a
number of reports, of which [BELL76] is the most complete and self-
contained.

Bell and La Padula began by taking the access matrix model and
adding to it a record of the classification of each object and of the
current and the maximum clearance of each subject. (A TOP SECRET user
may not always wish to sign on at that exalted level and so it is useful
to distinguish the level at which he is currently operating from his
maximum permitted level.) The property to be enforced, in addition to
discretionary data security, is that no user may gain read access to any
object that exceeds his current clearance. This is called the simple
security property (or ss—property) and Bell and La Padula report
[BELL76, pl6] that in their early efforts they considered it to capture
the whole of multilevel security.

Further consideration of the Trojan Horse threat described earlier
will show that this belief is misplaced, however. 1If the editor pro-
gram, while it has legitimate access to the TOP SECRET file, places a
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copy of it in an UNCLASSIFIED location, where it can be read by UNCLAS-
SIFIED users, then security has been breached just as surely as if those
UNCLASSIFIED users gained access to the TOP SECRET file directly - even
though the ss-property has not been violated.

It was to cope with this problem that Bell and La Padula formulated
their famous x*—property (pronounced “star-property”) which states that
if a subject has, simultaneously, read-access to an object X and write-
access to an object Y, then the <classification level of Y must be
greater than or equal to that of X.

Bell and La Padula”s model of multilevel security rapidly became
well known and widely accepted: those who know nothing else of security
have generally heard of the x-property. In addition to the ss- and #-
properties, their model contained other properties, dealing with the
creation and deletion of objects, and also imposed a hierarchical struc-
ture on the objects. These aspects of their model are rather specific
to the Multics system which was its intended application.

If we accept Bell and La Padula”s model as an adequate formulation
of multilevel security, then it would seem that a kernel can be proved
secure by showing that it correctly enforces the requirements of the
model on all accesses by users to data. Proving that all accesses to
data are in accord with some precisely stated policy is called access
control wverification. Unfortunately, it was discovered during one of
its earliest applications [SCHI75] that this method of verification 1is
insufficient to guarantee the absence of undesired information flow: a
kernel, even one whose access controls have been verified, can itself be
used as a path for insecure information flow! (I will illustrate how
this can occur in Section 3.)

Lipner [LIPN75] and Millen [MILL76] were the first to argue that
these “leakage paths” result from a failure to identify all the objects
within the system in sufficient detail. Objects — the repositories of

information - must be considered to include, not just files, but all
storage locations within the system, including the kernel”s own vari-
ables. The Bell and La Padula model of security remained an adequate

one, they argued; it was merely necessary to refine its “granularity”
and assign appropriate security classifications to all kernel variables
and to ensure that the kernel obeyed the ss- and *—properties in its own
accesses to these variables. Obviously, the kernel cannot monitor its
own accesses at run—time and so the necessary guarantees must be
obtained by compile-time analysis of the kernel code. This analysis can
be accomplished by a method of information flow analysis which was first
proposed by D.E. Denning [DENN75, DENN76]. A theoretical justification
for this approach was provided by Feiertag and his co-workers [FEIE77)
who gave a highly abstract specification of what is meant by multilevel
security and then went on to deduce that properties equivalent to the
ss= and #*-properties, and their verification by information flow
analysis, are sufficient to guarantee this notion of security.

The techniques of access control verification and information flow
analysis have been used, in one form or another, in several recent sys=
tems. These include UCLA Secure UNIX [POPE78b, POPE79, WALK80], KVM/370
[GOLD77, GOLD79, SCHA77], and KSOS [BERS79, McCA79a]. The first part of
the rest of this paper is largely concerned with an exposition and exam-
ination of these techniques.
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1.2. Overview of the Remaining Sections

In the following sections of this paper I shall describe and illus-
trate the techniques of access control verification and information flow
analysis; I will then proceed to discuss the problems that still remain
in the area of secure system verification and will propose new tech-
niques for their resolution.

I shall illustrate the various techniques by applying them to a
very simple kernel design which will be described in the following sec=
tion. 1In order to keep the illustrations uncomplicated, the early sec-
tions of this paper will consider only the most basic of all security
policies: that of isolation. This policy requires the total absence of
information flow between different users of the system and may be con-
sidered as a degenerate case of the multilevel security policy. This
simple policy permits a straightforward presentation of the ideas under-
lying access control verification and information flow analysis yet
still allows some of their weaknesses to be exposed quite clearly.

The weakness of access control verification, which will be dis-
cussed in Section 3, is simply that it does not address the issue of
information flow - it is only concerned with access to the repositories
of information. It cannot, therefore, prevent the ~leakage” of informa-
tion. The absence of leakage channels can be established wusing the
technique of information flow analysis - and this is the subject of Sec-
tion 4. However, this method is inherently syntactic (that is, it con-
siders only the security classifications of variables, not their actual
values) and cannot cope with implementation-level descriptions of a ker-
nel, only with its high-level specifications. The security of an actual
implementation must be established by a two-stage process: first infor-
mation flow analysis is used to verify the security of a “design specif-
ication” and then the implementation is proved to be correct with
respect to that specification. Techniques for proving the correctness
of an implementation with respect to its specifications are fairly well
understood, if little practised.

I will argue, however, that the contribution made by information
flow analysis to this two-stage demonstration of security is small: the
brunt of the argument is borne by the correctness verification stage.
This is unfortunate, since only the information flow analysis step is
actually performed in conventional practice. Accordingly, I will
present, in Section 5, a new method of security kernel verification
which is sufficient, on its own, to verify the security of those kernels
which ~enforce the policy of isolation. The new method, which I call
Proof of Separability and which is given a formal description and jus-
tification in [RUSH81b], is really no more than a restricted and speci-
alised application of conventional correctness verification. 1Its basis
is to prove that to each of its users, the behaviour of the actual sys-
tem is indistinguishable from that which would be provided by an ideal-

ized (and manifestly secure) system which is dedicated to that user
alone.

In Section 6, I shall return to the examination of information flow
analysis and, in particular, to the “correctness” verification that must
be performed if the security of a kernel implementation is to be
inferred from the security of its specification. T will illustrate the
claim made earlier that, at least in the case of kernels which enforce
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the policy of 1isolation, the contribution made by information flow
analysis to the overall demonstration of security is negligible. I will
then show that the ordinary “correctness” verification - which contri-
butes the greater part of the complete proof of security in this case -
is most conveniently organised in such a way that is becomes very simi-
lar to proof of separability. There is a significant difference between
the two techniques, however, in that proof of separability is able to
address important matters relating to I/0 devices, interrupt handling,
and the flow of control, that are beyond the scope of the other tech-
nique.

Upto this point, only the security policy of isolation will have
been considered. The additional problems that arise in the design and
verification of systems intended to enforce more complex policies will
be considered in Section 7. The first of the more complex types of pol-
icy to be examined will be one which arises in connection with the
design of “secure front ends” for network applications [AUER80, BARN80].
These systems are composed, at their simplest, of two components identi-
fied as “red” and “black” which are allowed to exchange information with
each other, but only over a single known channel (whose bandwidth is
limited and whose traffic may be monitored). The concern here is not
whether red and black can communicate, but rather what channels are
available for their communication. Consequently, I shall call this type
of security policy one of channel control since the goal of verification
in this instance is to prove the absence of any communications channels
other than those intended.

I will demonstrate how a channel-control policy can be verified by
the tactic of first “cutting” the allowed communications channels and
then verifying the system that results from this surgery with respect to
the policy of isolation: only if there were no illegitimate channels in
the original system will cutting the legitimate channels cause its com-
ponents to become totally isolated from one another.

From channel-control policies I will progress, in the middle part
of Section 7, to a consideration of multilevel policies. This part of
the paper will be more controversial than earlier sections because I
consider established approaches to the design and verification of mul-
tilevel secure systems (and, indeed, much of the current conception of
the nature and role of a security kernel) to be inappropriate.

Current approaches to the design of multilevel secure systems,
exemplified by KSOS [McCA79a, McCA79b], conceive of the security kernel
as a centralized agent for the enforcement of a single system-wide (mul-
tilevel) security policy. This approach inevitably leads to difficul-
ties since practical systems necessarily provide a number of functions
that cannot be accommodated within that discipline. Examples from KSOS
include "secure spoolers for line-printer output, dump/restore programs,
portions of the interface to a packet-switched communications network
etc.” [BERS79, page 365]. In order to provide these essential func-
tions, it has been found necessary to introduce ~trusted processes” into
KSOS and other kernelized systems. Trusted processes are not part of
the kernel but are accorded special privileges to evade or override the
security controls normally enforced by the kernel.
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Once trusted processes are admitted to the system, the kernel is no
longer the sole determinant of overall security; it is necessary to be
sure that the special privileges granted to trusted processes are not
abused by those processes and may not be usurped by other, untrusted,
processes. In order to guarantee security, therefore, we have to verify
the whole of the “trusted computing base” - that is, the combination of
kernel and trusted processes. The difficulty is that existing formal
models do not provide a basis for the verification of this combination:
we do not know what it is that we have to prove!

I shall argue that the roots of these difficulties with trusted
processes lie in the mistaken belief that a single security policy can
be applied uniformly to all the components of a secure system: the
detailed security requirements of a file handler and a line-printer
spooler are inescapably different - even when both form part of a system
intended to enforce one multilevel security policy. The imposition of
the %-property, say, throughout the whole system overconstrains the
behaviour of certain components, so that they require special privileges
in order to perform their allotted tasks, while at the same time failing
to provide the controls that really are required. One of the important
properties of a secure line-printer spooler, for example, is that it
should correctly identify the security class of each item of output
which it produces.

I will propose that the different security requirements of indivi-
dual system components should be recognized and responsibility for their
enforcement devolved to the components themselves: the system should be
conceived as a network of distributed, independent, yet co-operating
components, each obeying a security policy appropriate to its own func-
tion within the larger scheme. The task of the system designer is then
to identify and formulate the security properties that must be required
of each component individually so that, in combination, they enforce the
security policy required of the system overall.

Were such a system to be realised as a physically distributed one,
there would be no need for a security kernel: security would be achieved
partly by the physical separation of its individual components and
partly by security critical functions performed by some of those com-—
ponents. A security kernel is only needed when it is decided to support
all the components of the system within a single, shared processor. In
this case, the role of the security kernel is to provide each component
of the system with an environment which is indistinguishable from that
which would be provided by a truly and physically distributed system.
Policy enforcement is not the concern of such a security kernel.

This approach leads to a clean separation of concerns: those issues
which are due to the policy and function of the system are completely
decoupled from those which are simply consequences of the fact that con-
ceptually distinct components of the system all share a single proces-
sor. Specification and verification of the critical components of the
system may be accomplished by a variety of techniques: information flow
analysis may be appropriate for some types of component, while others
are best served by techniques developed for “ordinary” functional
correctness. The kernel may be verified by proof of separability.
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The third and final part of Section 7 will briefly sketch the
application of these ideas to the specialized security policies found in
systems such as network “guards” and ~filters”. Lastly, in Section 8, I
will present some conclusions drawn from the preceding exercises and
arguments.

In order to make them accessible to a wide audience, the descrip-
tions and examples contained in this paper will be informal and will
involve only the amount of detail needed to expose the main issues. A
simple “toy” kernel will serve as a concrete basis for the discussion
and a description of this kernel forms the next section.
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2. AN EXAMPLE OF A KERNEL DESIGN

The toy kernel design that I shall use is adapted from [MILL79] (as
also are Section 3 and the first part of Section 4). The kernel is to
run on a hardware configuration consisting of a CPU connected to a main
memory via a memory management unit (MMU). I/0 devices are connected
directly to the main memory. (That is, I/0 device registers are located
at fixed addresses in memory - PDP-11 style.)
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The CPU contains eight gemeral registers named R(O),R(1l),...,R(7),
while the MMU contains four mapping registers denoted MAP(0),...,MAP(3).
The machine has two modes of operation: privileged and unprivileged; the
contents of the mapping registers cannot be changed in unprivileged
mode. The main memory consists of 128 blocks, each of 1024 words. Word
w of block b is denoted MEM(b,w). A block of memory is accessible to
the CPU only if its block number is loaded into one of the mapping
registers. (This 1is the basis of the protection mechanism provided by
the hardware.)

The system which runs on this machine is intended to provide a ser-
vice to a number of different users while enforcing a security policy of
isolation: it must be impossible for different users to communicate with
each other via the system. This policy has been chosen for study
because it is the simplest possible and also because it 1is a special
case of both the multilevel and channel control types of security pol-
icy. Techniques which work for this case may prove capable of extension
to either of the two more general types of policy; conversely, tech-
niques which prove inadequate in this simple case must surely be viewed
with suspicion.

Users communicate with the system through its I/0 devices = each
I/0 device is dedicated to one particular user and all the devices
attached to addresses in any one memory block are dedicated to the same
user. The environment or ~virtual machine” perceived by each user will
be said to constitute his regime.

The interface presented by the system to the user regimes consists
of the operations of the wunprivileged instruction set together with
those provided by the kernel (via “trap” or °~SVC”~ instructions). In
order to examine the security provided by this interface we must have
some precise description of the effects of its operations. The most
accurate descriptions are presumably those closest to the actual imple-
mentations of the operations - perhaps assembler code listings for the
kernel operations and logic diagrams for those provided by the hardware
- but it is not easy to reason formally with such 1low-level descrip-
tions. 1Instead, it seems preferable to reason about the security of the
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system with respect to some higher-level, more abstract, description of
its behaviour and then to handle the problem of ensuring consistency
between this descriptive 1level and the actual implementation as a
separate issue (which will not be addressed here).

The descriptive method used in this paper 1s based on a non-
procedural specification technique due to Parnas [PARN72] and is super-
ficially similar to the specification language SPECIAL designed at SRI
[ROUB77]. I have used this specification technique simply to maintain
consistency with most of the literature on kernel verification. Several
other specification techniques and languages have been proposed (see,
for example [ABRIB0, BURS81, LOCA80, MUSS80a, NAKA80]), and some of
these may prove superior to the current method - but that is a topic
which requires separate study.

The behaviour of our system will be described in terms of a set of
state variables and the effect of each operation will be specified by a
set of equations which define the values of the state variables after
execution of the operation in terms of their values before execution.
Quoted names (e.g. X7) are used to indicate the new (post execution)
values of state variables while unquoted names (e.g. X) denote the old
(prior to execution) values. Thus the equation

X=X +12

specifies that the new value of the variable X is to be equal to the sum
of its prior value and that of the variable Z. Sets of equations
involving subscripted variables may be abbreviated as follows, for exam-
ple:

(Vi) R(i)” = 0.

The range of the bound variable i will wusually be defined elsewhere.
Here it may be assumed to be 0...7 since these are the indices of the
general registers. (Recall these are denoted R(0),...,R(7).)

The equations defining an operation are gathered together in the
EFFECTS section of its specification and are to be interpreted as
mathematical equations; they are not programming ~statements” to be exe-
cuted in some order. If the EFFECTS section of a specification does not
define a new value for a particular state variable, then the value of
that variable is unchanged by the operation.

Preceding the EFFECTS section of a specification is the (optional)
PRECONDITIONS section which consists of a number of predicates over the
state variables defining the conditions which must be satisfied if exe-
cution of the operation is to proceed normally. These predicates are
evaluated one at a time, in the order in which they appear, and should
any of them yield the value “false”, then execution of the operation
terminates immediately with the values of all state variables unchanged.

We are now in a position to define the unprivileged hardware opera-
tions of our system.
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The essence of the hardware protection offered by our machine is
that data can only be transferred between main memory and the CPU via
the MMU. This is reflected in the specifications of the following two
operations which are the only operations that reference the main memory.

OPERATION LOAD(i,j,w)
EFFECTS

R(1)” = MEM(MAP(J),w)
END

OPERATION STORE(i,j,w)
EFFECTS

MEM(MAP(j),w)" = R(i)
END

Informally, LOAD(i,j,w) loads general register i with word w of the
memory block whose name is loaded in the j“th mapping register, while
STORE(i,j,w) transfers data in the opposite direction.

Presumably our machine also has operations for moving data among
the general registers and for performing computations and tests upon
their contents. The precise details of these operations are unnecessary
to our purpose and need not be specified here - but they would certainly
be required if verification were to be performed in earnest.

Now let us consider the operations provided by the kernel itself.
The kernel 1is intended to support a fixed number (n) of user regimes
which are identified by the integers 0,1,...,n~1. A policy of isolation
is to be enforced and so each regime is associated with its own unique
security class. For greater vividness, I shall usually refer to the
security class associated with a regime as its “colour”. (This termi-
nology, and also the choice of “red” and “black” as representative
colours, stems from cryptological usages.) Since, under a policy of iso-
lation, a regime”s identity uniquely determines its colour, there is no
real need to distinguish between these two attributes. However, it
seems more convenient to do so and consequently the state variable
RCOLOUR is introduced: RCOLOUR(r) records the colour of regime number r.

At any instant, exactly one regime is “active” - it 1is actually
running on the CPU. The number of this regime is recorded in the vari-
able AR. The active regime may relinquish the CPU to another by execut-
ing a SWAP operation. When a regime SWAP”s out, the contents of its
general and mapping registers are saved in order that they may be
restored when the regime next becomes active. The variables SR and SMAP
are used as save areas for the general and mapping registers, respec-
tively.

Memory blocks are either “free” or are owned by a particular
regime. The variable BCOLOUR(b) contains the colour of the regime which
owns block b, or the pseudo-colour “SYSTEM® if this block is free.
Since the number of mapping registers is limited, a regime may be unable
to access all of its memory blocks simultaneously: it can only access
*hose whose block numbers are loaded into one of the mapping registers.
This information is recorded in the Boolean variable ACCESSIBLE(b) -
which has the value true if and only if block b is accessible to its
nwner. A regime may request one of its currently inaccessible blocks to
e made accessible by performing an ATTACH operation: ATTACH(b, j) asks
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for memory block b to be made accessible through mapping register j -
the block previously attached to that register then becomes inaccessi-
ble.

A request to gain ownership of a free block may be made by means of
the ACQUIRE operation, while a block which is owned but inaccessible may
be returned to the free pool by means of the RELEASE operation. Not all
blocks may be RELEASEd by their owners, however. A block to which an
I1/0 device is attached may not be released - for if it were, and some
other regime were subsequently to ACQUIRE it, then that regime would
also gain control of the attached I/O device. This cannot be allowed
and so the Boolean state variable FIXED(b) is introduced to identify
those blocks which may not be RELEASEd (indicated by FIXED(b) having the
value “true”).

The formal specifications of the four kernel operations are given
in Figure 1, which also contains a list of the system state variables.
To avoid repeated quantification of the ranges of index variables (i.e.
subscripts), the symbols r,b,w,i and j will be used consistently to
stand for variables in the following fixed ranges:

!
INDEX ; RANGE : USAGE |
| | 1
l l |
i | 0 ... n-1 | regime number |
b | o ... 127 | block number ]
w | 0 ... 1023 | displacement of word within block |
i [ 0 wsss 7 | general register number |

j 0 ... 3 mapping register number

The specifications given in Figure 1 are incomplete in one impor-
tant particular: no constraints are placed upon the initial system
state. It is clear that some constraints are necessary - we must
require, for example, that each memory block is accessible to at most
one regime. For tutorial purposes, however, it is unnecessary to spell
these 1initial conditions out in detail - although they would be an
important feature of any complete proof.

Also absent from the description of the system is any mention of
program control: there is no indication of how operations are selected
for execution. Presumably this is performed under control of a program
counter (and, possibly, an interrupt system) but to include a precise
explanation of how this is done would introduce considerable, and at
this stage unnecessary, complexity into our system description.

It seems necessary to end this section with a word of warning to
the reader: although the system specified in Figure 1 is insecure, its
insecurity is not intended to be either trivial or obvious. Any reader
who is previously unacquainted with these topics and who believes he can
see the insecurity directly, is urged to re-examine his understanding of
the system”™s behaviour.
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State Variables

MEM( b,w) word w of block b of main memory

R(1) i"th general register

MAP(j) j“th mapping register

SR(r,i) copy of R(i) saved on behalf of
regime r

SMAP(r, j) copy of MAP(j) saved on behalf
of regime r

RCOLOUR(r) colour of regime r

BCOLOUR(b) colour of block b (=SYSTEM if

block b is free)

ACCESSIBLE(b) true if block b is accessible to
its owner

FIXED(b) true if block b may not be
released
AR identity of the active regime
Operations

OPERATION SWAP {relinquish CPU}
EFFECTS

AR = AR + 1 (mod n)

(Vi) R(i)” = SR(AR",1)

(Vi) SR(AR,i)” = R(i)

(V3) MAP(j)” = SMAP(AR”,])

(¥3) SMAP(AR,3)” = MAP(J)
END

OPERATION ATTACH(b, j) {attach block b to mapping register j}
PRECONDITICNS

BCOLOUR(b) = RCOLOUR(AR)

not ACCESSIBLE(Db)
Jestpepizoniv:t

MAP(J)” = b

ACCESSIBLE(MAP(j))” = false

ACCESSIBLE(b)” = true

END
CPZRATION ACQUIRE(D) {request ownership of block b}
PRECONDITICIS
BCOLOUR(b) = SYSTEM
EZFFECTS

BCOLOUR(b)~ = RCOLOUR(AR)
(Ww) MEM(b,w)” = 0
END

NPTRATION RFELEASE(bH) {relinquish awmaoarshin of block b}
PRECONDITIONS
BCOLOUR(DH) = RCOLOUR(AR)
not ACCESSIBLE(Db)
not FIXED(h)
EFFiCTS
BOALOCR(D) ™ = SYSTEM
=D

Fionrs 1

! ¥ernel Snecificrarinn Af Teamals Svateom
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3. ACCESS CONTROL VERIFICATION

We would like to prove that our toy kernel enforces total isclation
between its regimes. Isolation means the complete absence of any infor-
mation flow from one regime to another and so it seems that we need to
prove something about the way our kernel controls the flow of informa-
tion. However, this seems a rather elusive property and so it might be
best to begin, not by tackling the problem of information flow directly,
but the problem of controlling access to the places where information is
stored. In our toy system, for example, it is certainly necessary to
control access to memory blocks - for it 1is clear that security is
compromised immediately one regime accesses the private memory of
another. One property we must require of the system, therefore, is that
regimes may only gain access to memory blocks of their own colour. A
requirement such as this is called an “access control policy” - in con-
trast to the information flow type of security policy we have implicitly
considered until now. Access control policies are not concerned with
information or information flow directly, but with control of access to
the repositories of information.

In order to prove that the toy system satisfies the policy of only
allowing regimes to access memory blocks of their own colour, we must
first state that policy more formally and precisely. Careful examina-
tion of the hardware protection facilities provided by the system
reveals that a regime can access a particular memory block only if:

a) it is the active regime, and

b) the name of the memory block is loaded into one of the mapping
registers.

Thus, the access control policy may be formally stated as:
(V3j) BCOLOUR(MAP(3j)) = RCOLOUR(AR). (%)

That is, the colour of any accessible block must be the same as the
colour of the active regime.

To verify our system with respect to this policy, we must prove
that (%) is an invariant of the system: that is to say it is a property
which is preserved by each and every operation of the system.

The technique for proving the invariance of (%) is a conceptually
straightforward induction: we prove that (%) is true of the initial sys-
tem state and then, for each operation specified in the system, we prove
that if (%) is true before execution of the operation, then it will also
be true after its execution. The details of the proof, however, are
quite complex and require a fair degree of inventiveness to carry out.
This, as is so often the case with inductive proofs, is due to the fact
that it is necessary to prove a rather stronger theorem than that actu-
ally required. Thus, in order to prove the invariance of (%), we also
need to prove the invariance of several other assertions which state,
for example, that the saved versions of the mapping registers also obey
a property similar to (%) and that each block number appears in at most
one mapping register, whether saved or actual. Because they are inter-
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dependent, the invariance of all these assertions must be established
simultaneously by a single induction. I shall omit the details. (A
similar example is partially worked through in some detail by Millen
[MILL79].)

After performing access control verification for the toy system, we
may be sure that no gross security compromises can occur = no regime can
directly handle the private memory of another. However, the access con-
trol policy we have chosen in (%) is a rather weak property and informa-
tion may still be able to leak between regimes by indirect means. Con-
sider, for example, the general CPU registers of the system. They do
not feature in the statements of any of the invariants proved during
access control verification and, in fact, the proof of the access con-
trol policy (%) remains valid when the two equations

(Vi) R(i)” = SR(AR”,1i)
(Vi) SR(AR,1)” = R(1)

(dealing with the saving and restoration of the general registers) are
deleted from the specification of the SWAP operation. But in the
absence of these two equations, the system is manifestly insecure - the
contents of the general registers persist through a regime swap
unchanged and so allow the active regime to pass information to its suc-
cessor.

Another example of the inadequacy of our access control policy con-
cerns the zeroing of memory blocks that takes place during an ACQUIRE
operation. This action is also irrelevant to the access control policy
and may be deleted without affecting its proof - yet it is clearly vital
to security since, in its absence, information left recorded in a
RELEASEd block is available to the next regime to ACQUIRE it.

Plainly, there is more to the security of our toy system than the
invariance of the access control policy given in (=%).

The question remains whether this inadequacy is due to the particu-
lar policy statement embodied in (%) or to a weakness inherent in the
method of access control verification itself. Certainly the policy
statement given by the invariant (%) is rather limited and weak and it
is clear that some additional restrictions should be imposed in order to
exclude security flaws such as those described above. Some versions of
the Bell and La Padula model, for example, include a requirement which
Feiertag et al. [FEIE77] state as follows

"REWRITING OF NEWLY ACTIVATED OBJECTS =-- A newly activated
object 1is given an initial state that is independent of all
the state of any previous incarnation of the object.”

If interpreted appropriately, this rule prohibits the second security
flaw described above (failure to zero the contents of a newly ACQUIREJ
block), but it still fails to catch the first one (omitting to save and
restore the contents of the general registers on a regime SWAP). Of
course, special ad-hoc rules can be constructed for this and other cases
too, but there seems to be no systematic way of enumerating rules to
cover all the different “leakage channels” through which information
might flow from one regime to another.
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Leakage channels need not be so obvious as those just described.
In fact, they can be quite subtle and present just the type of insidious
threat that security verification is intended to exclude. As an exam—
ple, consider a multilevel secure system that allows the discretionary
sharing of files (subject to the constraints of multilevel security, of
course). Imagine a user A with legitimate access to a TOP SECRET file X
and suppose that A wishes to leak the contents of this file to an
UNCLASSIFIED user B who is running concurrently. Suppose, further, that
A owns an UNCLASSIFIED file U which B repeatedly tries to access. These
accesses will succeed only if A has granted permission for B to read the
file U (which he may legitimately do). Of course it would violate the
x-property i1f A copied the contents of X directly into U, but there is
nothing to stop him from repeatedly granting or denying permission for B
to access U. Since B can determine whether his accesses to U succeed or
not, he has the ability to sense this activity by A. A can therefore
“tap out” messages to B through the pattern by which he grants and
denies permission for B to access U. A communication channel, albeit a
rather slow and noisy one, has been established from A to B and it is a
simple matter for A to transmit the contents of X over this channel.
Notice that no violations of the ss— or x-properties have occurred; the
kernel has not failed, it has merely been duped by a technique it was
not designed to counter.

Leakage channels of this type might seem merely curious and hardly
a serious threat, but this would be a mistaken view. Channels capable
of driving user terminals through just this kind of channel have been
established in operational systems (two examples from Multics are cited
by Popek and Kline [POPE78a]) and bandwidths far lower than this are
unacceptable in military systems.

Accordingly, we must conclude that access control, while it is
plainly a necessary feature of any system that could be called “secure”,
is not a sufficient mechanism for the exclusion of undesired information
flows. Access control verification, therefore, cannot be used on its
own to certify the security of systems which are required to prevent
such flows. One possibility, however, is that access control verifica-
tion could be used to guarantee the absence of the more gross and direct
forms of security flaw, while other (probably informal) techniques are
used to check the absence of leakage paths.

Although it is hard to discover from the open literature precisely
what verification technique has been used with KVM/370 (a kernelized
secure version of VM/370 developed by the System Development Corporation
[GOLD77, GOLD79, SCHA77]) the impression given (most notably by Schaefer
et al. [SCHA77]) is that it is exactly this combination of access con-
trol verification coupled with informal checks for leakage channels. Of
course, this technique does not provide the totally compelling evidence
that we should expect of an ideal security verification technique, but
it is surely better than one based wholly on informal procedures.

If access control verification is inadequate to guarantee a secu-
rity policy that is concerned with information flow, then we must surely
seek either a different verification technique, or else a different type
of security policy. The rest of this paper is concerned with techniques
which are (claimed to be) adequate to the task of verifying information
flow policies. Before turning our attention to these, however, it
should be recognized that access control may be an appropriate security
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policy in its own right, at least for many less critical applications.
In these cases access control verification provides all the assurance of
security that 1is required. An example of this approach is provided by
the UCLA Data Secure Unix System [POPE78b, POPE79, WALK80] which
enforces “data security’: an access control policy which requires that
user data may not be read or altered except in accordance with recorded
“protection data”. This does not preclude user data being ~leaked” by
covert means but is probably quite adequate for many non-military appli-
cations. And it should be noted that although its security policy may
be rather limited, the UCLA system is probably the most completely veri-
fied of all current systems and is, indeed, one of the most realistic
and substantial examples of program verification performed to date.
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4. VERIFICATION BY INFORMATION FLOW ANALYSIS

The evidence of the previous section suggests that access control
verification is wunsuited to the task of proving that our toy system
enforces the security policy of isolation. The problem, of course, 1is
that the policy of isolation is concerned with information flow whereas
access control deals only with physical access to the repositories of
information. 1If we are to guarantee the absence of leakage channels, we
need a verification technique that addresses squarely the issue of
information flow. Before examining such a technique, however, it seems
best to investigate the different types of leakage channel that may be
present in a system.

Lampson, who first identified the threat of leakage channels
[LAMP73] enumerated three different types. The first type, exemplified
by the scenario given in the previous section, is the storage channel -
it uses the kernel”s own storage as its means of communication. 1In the
example it was the kernel”s record of the access allowed by B to U that
was used. Second is the legitimate channel, in which illicit informa-
tion is “piggybacked” onto legal information flow (by modulating message
length, for example). The third of Lampson”s types of leakage channel
is the timing or covert channel which achieves communication by modulat-
ing some detectable aspect of the system”s performance. Suppose, for
example, that the colluding users A and B each have a pair of sub-
processes, (Al,A2) and (B1,B2) respectively, where Al and Bl are CPU-
bound and A2 and B2 are I/0 bound. If A chooses to execute Al rather
than A2, then the impact on the system”s workload will be such that the
scheduler will prefer to dispatch B2 rather than Bl. If B can sense the
rate at which his subprocesses are being serviced, then he can infer
which of Al or A2 is being run. Once again, B can sense activity by A
and the basis of a communication channel has been established.

Storage and legitimate channels are considered a more serious
threat than timing channels since they are potentially more numerous,
less noisy, and of higher bandwidth. Fortunately, and wunlike timing
channels, their analysis 1is tractable. Lipner [LIPN75] and Millen
[MILL76] were the first to argue that channels of the storage and legi-
timate varieties result from a failure to identify all the objects
within the system in sufficient detail. Objects - the repositories of
information - must be considered to include, not just files, but all
storage locations within the system, including the kernel”s own vari-
ables. It 1is necessary to assign appropriate security classifications
to all kernel variables and to ensure that the kernel satisfies
appropriate restrictions on its own accesses to these variables.

The necessary guarantees on the kernel”s own behaviour must be
obtained by compile-time analysis of its code. The purpose of this
analysis is to detect all information flows from one kermel variable to
another that can possibly occur during execution of the kermel. A tech-
nique for performing this “information flow analysis” (sometimes also
called “security flow analysis”) was first proposed by Denning [DENN75,
DENN76, DENN77]. Denning”s method was originally intended to “certify
the secure execution of a program in an otherwise secure system”
[DENN75, page 9] - in other words, to be applied to “ordinary” programs
rather than security kernels. The extension of Denning”s work to secu-
rity kernel applications is largely due to Millen [MILL76, MILL79].
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The basic idea of information flow analysis is to study the func-
tional specification of a system in order to discover all potential
information paths from one variable to another. This is accomplished by
applying a set of “flow rules” to the specification. For each construct
of the specification (or programming) language concerned, these flow
rules tell us whether it is possible for information to flow from one of
its components to another. For example, in the specification language
used for our toy system it is obvious that the construct

YY" =X

causes information to flow from X to Y. Less obvious, perhaps, is the
fact that information can flow from variables appearing in PRECONDITIONS
to those changed by EFFECTS. Consider, for example, the specification

OPERATION OP
PRECONDITIONS
X#0

EFFECTS
¥" =1
END

Here, too, there is a potential information flow from X to Y - for after
execution of OP, the value of Y can tell us something about the value of
X. Clearly, if Y # 1 after execution of OP then we know for certain
that its PRECONDITIONS could not have been satisfied and, therefore,
that X = 0. If Y = 1, however, we cannot be so certain that X # 0 - it
depends on what we know about the value of Y prior to the execution of
OP. Defining precisely when information does flow from one variable to
another is a difficult problem [BEST80, COHE78] but for our purposes the
weaker notion of whether information can flow is sufficient. A set of
rules for a specification language similar to that used here has been
worked out by Millen [MILL76, MILL79]. These rules are quite complex,
particularly with respect to subscripted variables (see also [DENNS8O,
G0SS80]), but since I am only concerned with general principles, these
complexities can be ignored here.

‘ The important point is that the flow rules enable wus to identify
all potential information paths within the system. The next step is to
determine whether any of these paths, or any combination of them, can
provide users with the means to communicate with one another and thereby
violate the security policy of isolation. Now the interface between our
toy system and its users is provided by the I/0 devices attached to the
main memory and what we must prove, therefore, is that no combination of
individual flow paths can constitute an information path between memory
blocks attached to I/0 devices of different colours.

One possible method for constructing such a proof is to assign a
colour to each state variable and then to require that no individual
information path connects variables of different colours. Induction
then provides the desired conclusion that no combination of paths can
lead to a security violation. Notice, however, that the assignment of
colours to variables cannot be a purely static one. The whole problem
of system security arises because different regimes share the same
resources - and so the colour of a resource must change according to the
colour of the regime currently controlling it. The general registers
provide a simple example of this problem in our toy system. The colour
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of the registers must change with the colour of the active regime: when
a black regime has control, these registers must surely be coloured
black; likewise when control passes to a red regime, the general regis-—
ters must become red also. Thus the colour of a variable will, in gen-—
eral, be a function of the system state. The previous argument, that
for overall security it is sufficient to establish that each individual
information path connects only variables of the same colour, remains
true - except that now we must evaluate the colour of the source vari-
able in the system state which obtains prior to the execution of the
operation, while the colour of the destination variable is evaluated in
the state following its execution.

A subtle consequence of the fact that the colour of a variable may
change during the execution of an operation is that the flow of informa-
tion from a variable to itself now becomes significant: the value of a
variable may be unaltered by an operation, but if the operation changes
the colour that variable, then a potentially dangerous information flow
has occurred even though the variable has not participated in any data
flow.

A further complication arises from the fact that certain informa-
tion (for example the fact that a particular memory block is currently
“free”) may not be communicated to any regime (or else a fairly obvious
security flaw opens up) and so variables recording this information can-
not be given the colour of any regime. This is the reason for the
introduction of the pseudo-colour “SYSTEM”~ which behaves as a universal
information sink: information of any colour may flow into it, but none
may flow out. Conversely, certain information (system constants, for
example) may pass freely to all regimes and may most conveniently be
given the pseudo-colour “PUBLIC” which fulfills a contrary role to SYS-—
TEM: information may flow from it, but not to it. In effect, we have

induced a partial order (denmoted by £ ) over the enlarged colour set
where

PUBLIC < c £ SYSTEM

for each “real” colour ¢, while distinct “real” colours are incompar-—
able. What we are now required to prove is that if any operation can
cause information to flow from a variable X to a variable Y, then the
colour of X (evaluated in the “old” system state) stands in the relation
{ to the colour of Y (evaluated in the “new” system state). I shall
call this partial order the flow policy and say that we require the
information flows to respect it. (Notice that since the flow policy 1is
a partial order, a general multilevel security policy can be handled as
easily as one of isolation.)

Having explained the basic ideas behind information flow analysis,
we shall now see how it works in practice with our toy system. First,
we need to find an assignment of colours to the variables of the system.
It is important to note that, apart from those variables which can be
directly observed by the outside world and whose colours are therefore
fixed by external considerations (in our case, this means those memory
blocks which are attached to I/O devices), the assignment of colours to
variables is, in a sense, arbitrary. We just need to find some assign-
ment of colours for which the flow policy is respected.



- 26 -

Intuition suggests that it is sensible for those variables which
record information about a memory block to be given the colour of that
block, while machine registers are given the colour of the currently
active regime and the saved copies of machine registers are given the
colour of the regime on whose behalf they are saved. Thus we arrive at
the tentative assignmment given below. (Refer back to Figure 1 for an
explanation of the use of each variable.)

; VARTABLE } COLOUR i
I I |
} MEM( b,w) ; BCOLOUR (b) I
| R(1) | RCOLOUR(AR) |
| MAP( J) | RCOLOUR (AR) |
| SR(r,1) | RCOLOUR(T) |
| SMAP(r,J) | RCOLOUR(T) |
| RCOLOUR(r) | PUBLIC |
| BCOLOUR(b) | BCOLOUR(b) |
| ACCESSIBLE(b) | BCOLOUR(b) |
| FIXED(b) | PUBLIC |
| AR | PUBLIC

We now have to see whether, with this assigmment of colours to vari-
ables, the information flows of each operation respect the flow policy.

To take an easy case first, the operation LOAD(i,j,w) can be seen
to generate a direct flow from MEM(MAP( j),w) to R(i). The colours
assigned to these variables are BCOLOUR(MAP(J)) and RCOLOUR(AR) respec-
tively and so we must require

(Vj) BCOLOUR(MAP(j)) £ RCOLOUR(AR).

As it happens, this relation is an immediate consequence of the access
control policy (%) proved (or, rather, assumed proved) earlier and so
this operation certainly respects the flow policy.

Now for a more difficult case. The operation ACQUIRE(b) does not
affect the value of ACCESSIBLE(b) - but that means that it generates a
flow from ACCESSIBLE(b) to itself! (Recall the discussion on the previ-
ous page.) The colour of ACCESSIBLE(b) is given by the value of
BCOLOUR(b) - which can be altered by the ACQUIRE(b) operation. If the
prior value of BCOLOUR(b) is SYSTEM, then its value after the operation
is RCOLOUR(AR). Therefore, the colour of the information in
ACCESSIBLE(b) can change from SYSTEM to RCOLOUR(AR) and so we must
require

SYSTEM < RCOLOUR(AR).
But this cannot possibly be true, since RCOLOUR(AR) is a “real” colour.
This does not necessarily imply that the system is insecure, how-
ever, because a failure to respect the flow policy can arise for reasons

other than insecurity. In the first place, it may simply be that the
assignment of colours to variables is inappropriate: the flow under
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consideration may respect the flow policy if a different assignment of
colours 1is chosen. If this is the case, then we may simply substitute
the new assignment for the old (after rechecking all the flows examined
previously) and proceed. Millen [MILL79] states that choosing a good
assignment requires a combination of experience, guesswork and trial and
error.

In the case of the troublesome flow in ACQUIRE, however, no reas—
signment of colours to variables seems to solve the problem - but still
this does not necessarily indicate an insecurity. This is because the
flow rules are conservative: they do not tell us whether there is a flow
from X to Y, but whether it is possible that there could be such a flow.
Furthermore, the flow rules are syntactic: they are sensitive to the way
a specification is written and a flow may vanish when a specification is
rewritten 1in a syntactically different, yet semantically equivalent
manner. Millen [MILL78, MILL79] calls these apparent security viola-
tions “formal” since they arise from the form of the specification, not
from any real information channel.

It turns out that the flow, in ACQUIRE, from ACCESSIBLE(b) to
itself is formal: it may be removed by the rather drastic expedient of
deleting that entire array of state variables from the system. This is
possible because ACCESSIBLE(b) is redundant - the expression

not ACCESSIBLE(b)

which appears in the PRECONDITIONS for ATTACH and RELEASE can be
replaced by the universally quantified expression:

(Vi) MAP(3) # b

Unfortunately, the flow involving ACCESSIBLE is not the only trou-
blesome one in ACQUIRE. There is also a flow from BCOLOUR(b) (in the
PRECONDITIONS) to BCOLOUR(b) (in the EFFECIS). Since the colour of
BCOLOUR(b) is its own value - which, as we have seen, may start off as
SYSTEM and finish as RCOLOUR(AR) - we again require the impossible rela-
tionship.

SYSTEM < RCOLOUR(AR).

No reassigmment of colours can remove this problem, nor does the flow
appear to be formal - so perhaps we have found a real security flaw
after all. The only way to convince ourselves of this is to construct a
scenario which actually demonstrates a security compromise.

It is fairly easy to construct a suitable scenario for the present
case: it depends upon the fact that memory blocks are explicitly named
in the ATTACH, ACQUIRE and RELEASE operations.

Suppose the currently active regime performs the three operations
ACQUIRE(0), ATTACH(0,0) and LOAD(0,0,0). (That is, it first requests
ownership of block number O, then attaches that block to mapping regis—
ter 0, and finally, it loads the contents of the first word of the block
attached to mapping register O into general register 0.) Then there are
two possible outcomes: if block 0 was formerly free (i.e.
BCOLOUR(O) = SYSTEM before the ACQUIRE) then it will be given the colour
of the currently active regime and be made accessible to that regime
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through mapping register 0. The final contents of register R(0) will
then be equal to zero - since they are loaded from word O of block O
which was zeroed when the block was ACQUIREd. On the other hand, 1if
block O is currently owned by some other regime, then the ACQUIRE(O) and
ATTACH(0,0) operations have no effect (since their PRECONDITIONS will
not be satisfied) and the memory block accessible through mapping regis-
ter 0 will be not block O but whichever block was accessible through
that register previously - say block b. If the contents of MEM(b,0)
were earlier set to some non-zero value, then the final value in R(0)
will be non-zero also. Thus R(0) is set to zero or non-zero according
to whether block 0 is free or not. This means that another regime can
signal to the current one by ACQUIRing and RELEASing block O and so,
because there is a communication channel (albeit a noisy one) from one
regime to another, the system is insecure.

There is no simple way to remove this flaw from the system since it
is due to the fact that memory blocks are subject to a global naming
scheme: a regime can request that a particular block be ACQUIREd and can
subsequently detect whether this operation was performed successfully or
not. A plausible repair would be to allow only that some block be
ACQUIREd. But this operation must fail when no free blocks remain and
so one regime can still signal to another by controlling the availabil-
ity of free blocks. (The technique of suspending a regime until a block
becomes available does not solve the problem either; it merely replaces
a storage channel by a timing channel - and also admits denial of ser-
vice and deadlock problems.) The existence of any finite shared resource
must always cause a security flaw of this type unless each regime has
its own individual resource quotas and the system is able to homour all
of these quotas simultaneously. In the case of our toy system, this
could be accomplished by allowing each regime to own no more than MAX
memory blocks, where MAX #% n { 128 (remember, there are n regimes and
128 memory blocks in total). In this case, there is no dynamic memory
sharing and so no point in providing the RELEASE and ACQUIRE operations
- we may as well fix the memory blocks to be allocated to each regime
once and for all at system initialisation time. The resulting system
can be made a little more interesting by allowing the use of virtual,
rather than actual block numbers in the ATTACH operation (i.e. each
regime numbers its blocks 0,1, ... ,MAX-1l.) This modified system is
specified in Figure 2. The new array called ACTUAL is introduced to
perform the mapping of virtual to absolute block numbers: ACTUAL(r,v)
contains the actual block number of the r”“th regime”s virtual block
number v. (Henceforth, the symbol v is bound to the range 0 £ v < MAX).
Naturally, we require that ACTUAL(rl,vl) = ACTUAL(r2,v2) only if rl = r2
and vl = v2., Since there is no dynamic memory sharing, the state vari-
ables RCOLOUR, BCOLOUR, ACCESSIBLE, and FIXED are no longer required.

Insofar as it led us to discover the insecurity in the toy system
of Figure 1, the method of information flow analysis seems an effective
technique. But what of the positive aspects of verification? Suppose
our analysis revealed no unpleasant flows - could we then be sure that
the system was secure? The answer is that we cannot. The reason 1is
that so far we have only examined information flow caused by the opera-
tions themselves; we have not considered the possibility of information
flow caused by the ability to choose which operations to execute. That
may sound a little enigmatic so let me explain. Operations which wmove
data from a “red” variable to a “black” one are obviously insecure - and
the techniques introduced so far will detect this kind of insecurity.
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OPERATION LOAD(i,j,w)
EFFECTS

R(1)” = MEM(MAP(J),w)
END

OPERATION STORE(i,j,w)
EFFECTS

MEM(MAP( ) ,w)” = R(1)
END

OPERATION ATTACH(v,j)
EFFECTS

MAP(j)” = ACTUAL(AR,vV)
END

OPERATION SWAP
EFFECTS
AR” = AR+1 (mod n)
(Vi) R(i)” = SR(AR7,1)
(Vi) SR(AR,1)” = R(i)
(Vi) MAP(3j)” = SMAP(AR”,J)
(Vi) SMAP(AR,j)” = MAP(3J)
END

Figure 2 : Modified Kernel Specification

But now consider an operation which moves data from one “red” variable
to another. This operation seems safe enough - and so it is provided it
is executed by a “red” regime; if a “black” regime has the ability to
execute this operation then, by choosing whether to exercise that abil-
ity or not, it has the power to decide whether the “red” destination
variable will be altered or not — and consequently the power to communi-
cate information to the “red” regime. Thus, the execution of an opera-
tion can cause information to flow from the active regime to all those
variables which may be altered by the operation. We can ensure that
this information flow is safe by requiring that each variable which may
be altered by an operation has the same colour as the active regime.
Feiertag et al. [FEIE77] have shown that this extended form of informa-
tion flow analysis is sound:* that is, if a system is shown to be secure
by this techniques, then it is truly secure.

Encouraged by this guarantee of the soundness of the extended form
of information flow analysis, we might now attempt to apply the tech-
nique in order to verify the security of the system specified in Figure
2. A fairly straightforward analysis shows that all the information
flows caused by the operations LOAD, STORE and ATTACH are secure, but
what of the SWAP operation? It is the essence of this operation that it

* More accurately, [FEIE77] establishes the soundness of information
flow analysis for those systems whose behaviour is adequately described
by the computational model used therein. 1In Section 6, I shall argue
that this model does not capture all the salient characteristics of a
security kernel and that information flow analysis does not provide a
completely sound technique for verifying security kernels.
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should save the register contents of the outgoing (say “black”) regime
and restore those of the incoming (say “red”) regime. Thus it is essen-
tial that this operation should read and write both “red” and “black’
variables. But, as we have just seen, a “black” operation (i.e. one
invoked by a “black” regime) cannot be allowed to write “red” variables.
It follows that the method of security verification by information flow
analysis is unable to attest to the security of the SWAP operation and
so fails to verify the security of the system given in Figure 2 (even
though this system is secure) .

This inability to verify a truly secure system would not be so bad
if the troublesome SWAP operation could be considered a pathological or
a special case: we could then comnstruct an ad-hoc argument for this one
particular circumstance and rely on information flow analysis elsewhere.
However, I do not consider this a temable position. Rather, I believe
that operations like SWAP are right at the heart of the problem of secu-
rity kernel verification - for one of the fundamental tasks of a secu-
rity kernel 1is to allow the limited physical resources of the computer
system to be shared securely among a number of regimes. The operation
SWAP is the means by which the kernel allows for the secure sharing of
the CPU resource. In a real system there will be many other resources
to be managed, and many of the operations upon those resources will
surely require simultaneous access to components of different “colours”.
Operations involved with paging, shared I/0 devices and backing store
are all likely to have this character. Far from being a pathological
case, SWAP is the very paradigm of those operations which embody the
fundamental character of a security kernel. :

1f information flow analysis is to provide a sound basis for veri-
fying the security of operations such as SWAP, then it is clear that we
must seek modifications or extensions to the method. Simple modifica-
tions or extensions will not suffice, however, because information flow
verification is based on the assumption that a system can be verified by
considering one operation at a time. This assumption is not universally
valid. To see this, recall the system of Figure 2. This system 1s
secure. Now consider a system in which the SWAP operation of Figure 2
is replaced by the operation NEWSWAP defined as follows:

OPERATION NEWSWAP
EFFECTS

AR” = AR+l (mod n)

Vi) R(1)" =0

(V3j) MAP(3)~ = SMAP(AR",J)
= (V3) SMAP(AR,j)” = MAP(J)

(NEWSWAP is just like SWAP except that instead of saving and restoring
the general registers, it zeros them.) This is also a secure system.
Both the system with SWAP and that with NEWSWAP are secure because, in
each case, a regime knows, when it gives up control, exactly what values
its general registers will contain when next it receives control Dback
again. Now suppose both SWAP and NEWSWAP are available. This system is
manifestly insecure since a regime can signal to its successor by choos=
ing whether to zero the general registers of the incoming regime (using
NEWSWAP) or to restore their previous values (using SWAP). But which is
the insecure operation - SWAP or NEWSWAP? Of course it is neither indi-
vidually: it is the presence of both which is insecure.
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It follows that a security verification technique cannot consider
each operation in isolation but must consider the system in its total-
ity. Furthermore, it is often necessary to consider the actual values
possessed by kernel variables, not just their “colour”. (This is the
key to verifying the SWAP operation — we must prove that it restores the
same register contents as it previously saved. ) These are such radical
departures from the philosophy implicit in information flow analysis
that the conclusion seems inescapable: that technique, on its own, 1is
inadequate to the task of security kernel verification. It must either
be replaced or reinforced by some quite different technique.

This conclusion is not a new one. In its application to security
kernels, information flow analysis is conventionally seen as a technique
to be applied to the high 1level “design specifications” [BERS79,
McCA79a); the task of demonstrating that the actual implementation is
secure is then accomplished by proving it to be a correct implementation
of these secure specifications. If this two—-stage approach is sound
(and in Sections 6 and 7 I shall argue that it is not), then it can only
be so if both 1its stages are actually carried out. In conventional
practice, however, the second stage is not performed: the KSOS contract,
for example, called for only “illustrative” proofs of the implementation
[BERS79].

The explanation for this failure to perform the second stage of
verification concerns cost and perceived risk: proving the correctness
of an implementation with respect to its specification is a far more
complex and costly procedure than performing information flow analysis
on the specification - while its apparent benefit is considerably less
since it is tacitly assumed that all the security-critical aspects of
the design are embodied in the design specification and that the transi-
tion from this specification to the actual implementation is merely a
coding exercise. If this coding is performed by skilled and trusted
personnel and subjected to rigorous, though informal, checks, then
surely, it might be argued, the risk of introducing a security flaw into
a proven secure design is sufficiently small that the cost of full
correctness verification is unjustified. This analysis may seem plausi-.
ble but is, in my view specious.

Firstly, it underestimates the risk of introducing a security flaw
during the elaboration of the high-level specification into one at
implementation level - for this elaboration involves, not mere coding,
but the introduction of design decisions that are crucial to security.
In the case of the toy kernel of Figure 2, for example, the description
of the SWAP operation would be removed from the specification to the
implementation level if this two-stage approach were followed. Verify-
ing the security of the high-level specification would then become an
affirmation of the obvious, while the crucial issue of determining the
security of the SWAP operation remained unbroached. (I shall work this
example through in some detail in Section 6.)

* Andrews and Reitman [ANDR80] have developed a technique that combines
flow analysis with correctness verification. Using their method it may
be possible to prove, for example, that SWAP restores the same register
values as 1t saved. However, this does not solve the really crucial
problem: how do we deduce that this is the property of SWAP that is vi-
tal for security?
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In the case of large, complex systems such as KSOS, where the ker-
nel contains, among other things, the mechanism to support a multilevel
secure file system, there are so many opportunities for security flaws
in the design specifications that threats from the implementation level
may seem small by comparison. But while they may be small in comparison
with the threats from elsewhere, these threats are not small in absolute
terms. The systems with which I have been personally concerned [BARNSO ]
are sufficiently simple that the security of their high-level descrip-
tion is obvious. All the perceived threat in these cases comes from the
implementation stage. And when this stage is examined in isolation, the
threat is seen to be considerable - for the security of the whole enter-
prise rests on the manipulation of some of the nastiest and trickiest
aspects of the underlying hardware, notably the memory management facil-
ities, the I/O system, and the interrupt mechanism. It is precisely in
the secure management of such complex details as these that the guidance
and reassurance of an appropriate verification technique is vital.
Indeed, Popek”s group have observed:

"One should realise that it is essential to carry the verifi-
cation process through the steps of actual code-level proofs
because most security flaws in real systems are found at this
level” [WALK80, pll8]

Not only does the conventional analysis underestimate security
threats due to flaws in the implementation rather than the specification
but also, by assuming that the absence of such flaws can be guaranteed
by ‘“ordinary” correctness verification, it fails to cast any light on
the problem of just what it is that makes an implementation secure.
Clearly it is somewhat extravagant, when all we require is an assurance
of security, that we should have to prove utter correctness, but it 1is
not simply on aesthetic grounds, nor even on those of cost, that I
object to this approach to verifying the security of an implementation;
my concern 1is that it indicates a failure to isolate the significant
issues: if we cannot separate the security of an implementation from
other aspects of its correctness, then, surely, we do not have a really
firm grasp on this concept of “security”.

_ A verification technique is not simply a procedure to be applied
blindly, pronouncing “correct” or “incorrect” as the case may be; much
more important is the insight that its mastery provides. Familiarity
with the idea of a “loop invariant”, for example, benefits the under-
standing of all who write programs, not only those who must prove them.
The discipline and insight engendered by a verification-oriented
approach to system design and implementation not only allows us to prove
our programs correct, it helps us get them correct in the first place.
To prove the security of an implementation by way of its total correct-
ness 1is to use a rather blunt instrument; a technique specific to secu-
rity could assist in the separation of concerns and provide guidelines
for the systematic construction of secure implementations.

It is to the development of just such a technique that I now wish
to turn.
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5. VERIFICATION BY PROOF OF SEPARABILITY

Some security problems only arise when different regimes share a
single system. Red/black isolation, for example, ceases to be an issue
when the red and black regimes each run in their own private and physi-
cally separate systems. We must assume that external constraints
(presumably of cost) prevent the adoption of this simple expedient and
instead require all regimes to share a single system. But if this
shared system exhibits precisely the same behaviour as the multiple-
system ideal then surely it, too, is secure. Indeed, is this not the
natural definition of what we really mean by a security policy of isola-
tion?

It follows that a plausible method for verifying the security of a
system is to prove that, from the viewpoint of each individual regime,
the visible behaviour of the shared system is indistinguishable from
that which would be provided by some private, unshared system dedicated
to that regime alone. Notice that it is not necessary to exhibit such a
private system; it is sufficient merely to prove that one could exist.
However, there are additional benefits to be gained from a more con-
structive approach in which a description of an idealised, private sys-—
tem is actually produced for each regime. Not the least of these bene-
fits 1is the fact that the specifications of the idealised systems pro-
vide a convenient and exact description of the kernel interface seen by
each regime. I shall call these idealised systems “abstract”, as dis-
tinct from the “concrete” system which is shared by all regimes and
whose security is to be verified.

Given the specifications of the abstract systems, verification of
the security of the concrete, shared system can be achieved by proving
that its behaviour is “consistent” with each of these private, abstract
systems. We now need a precise interpretation of what we mean by “con-
sistent” and a method for establishing the presence of this property.
In this regard, it will prove useful to digress from the discussion of
security for a short while in order to recall some of the issues con-
cerned with the related problem of verifying the correctness of imple-
mentations of abstract data types.

An abstract data type consists of a state together with a collec-
tion of operations for changing that state and for extracting informa-
tion from it. The specifications of an abstract data type form a suc-
cinct, high 1level description of its behaviour and define an interface
between those parts of a system which implement the type and those which
use 1it. The basic method for proving that the implementation of a type
satisfies its specifications is due to Hoare [HOAR72] and has subse-
quently been further developed by others, notably the Alphard Group
[WULF76]. In this method, the states and operations defined by the
specifications are described as abstract states and operations while
those of the implementation are described as concrete. The key idea
(due to Milner [MILN71]) is to relate these two levels by means of an
abstraction function. This is a function, called ABS say, from concrete
to abstract states: ABS(X) is the abstract state represented by the con-
crete state X. Note that abstraction functions are, in general, many to
one (several different concrete states may all represent the same
abstract state) and partial (some concrete states may not represent any
abstract state at all). For an implementation to be correct with
respect to its specification, we require that the following diagram
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commutes (where ABOP is the abstract operation which is implemented by
the concrete operation COP):

ABOP
ABS(X) > ABS(Y)

ABS ABS

cop

That is to say, if the concrete system is in the state X, representing
the abstract state ABS(X), then the new abstract state obtained by
applying the abstract operation ABOP to ABS(X) should be the same as
that represented by the concrete state Y which results from applying the
concrete operation COP to X. This approach is treated more carefully in
[WULF76], where further conditions (involving the use of abstract and
concrete “invariants”) are placed upon the notion of correctness, but
the idea of an abstraction function remains central to all later refine-
ments since it provides the connection between the concrete and abstract
views of the system.

With these ideas in mind, let us now return to the consideration of
secure systems. Here we had distinguished a concrete version of the
system - which is shared by all regimes, and a set of abstract versions
- each one private and dedicated to a particular regime. There is a
similarity to be found here between the concrete and abstract views of a
secure system and those of an abstract data type. Perhaps then, we can
draw on this similarity and attempt to carry the idea of an abstraction
function over to secure systems. In this way it may be possible to
reconcile the concrete view of a shared system with the abstract view of
a private system and to define a notion of “consistency” between them.
Notice, however, that unlike the case of an abstract data type, where an
implementation is required to be consistent with one abstract specifica-
tion, a concrete secure system is required to support multiple abstrac-
tions simultaneously — one for each regime. The key to our new security
verification technique is to handle this multiplicity of abstractions in
the most natural way possible - by introducing a multiplicity of
abstraction functions. In the simple case of a red/black system, for
example, we will have two such functions: REDABS and BLACKABS. The
former will map states of the concrete shared system into those of the
red regime”s abstract private system, while the latter does the same for
black.

I am now going to restrict my attention to those concrete systems
which “time share” between their different regimes. That is systems
(such as those of Figures 1 and 2) in which operations are performed at
the behest of one currently “active” regime. (All systems likely to
arise in practice are of this type.) Suppose it is the red regime that
is active when the system performs a concrete operation COP. Then we
must require that the effects of this operation, as perceived by the red
regime, are just as if some operation REDOP has been executed by the red
abstract system. Thus, if execution of COP takes the concrete system
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from an initial state X to a final state Y, we demand that REDABS(Y) is
the same state of the red abstract system as that which results from
applying the abstract operation REDOP to the abstract state REDABS(X).
In other words, just as with an abstract data type, we require the fol-
lowing diagram to commute:

REDOP
REDABS(X) > REDABS(Y)

REDABS REDABS

COP

This condition ensures that the active regime cannot distinguish
between the behaviour of operations performed on its behalf by the con-
crete system and those which would be performed by its own abstract sys—
tem. But it is also crucial that the execution of a concrete operation
on behalf of the active regime should not affect the state of the system
perceived by inactive regimes. For secure isolation we must, therefore,
also require that the transition between concrete states X and Y pro-
duces no corresponding change in the states of abstract systems belong-
ing to inactive regimes. That is, in the case of the black regime, we
require that BLACKABS(X) = BLACKABS(Y), or in diagrammatic form:

BLACKABS (X )=BLACKABS(Y)

BLACKABS//////? R\\\\\l:LACKABS
X > Y

cop

If these were the only conditions attendant upon the operations and
the abstraction functions, then all systems could be “proved” secure by
the trick of taking every abstract system to consist of but a single
state which is preserved by all operations. (That is, a system which
never does anything.) To discover what additional conditions are needed,
let us recall the intuition we are seeking to formalise in this method
of security verification. The basic idea is that, to each of its users,
the shared system is to be indistinguishable from another, unshared one.
If the shared and the unshared systems were hidden behind a screen, the
user must be unable to determine which of them is actually connected to
his I/0 devices. And this raises the point that we have missed until
now: the two systems must be “I/0 compatible”. The abstract system can-
not be chosen arbitrarily; it must be sufficiently “realistic” that it
can simulate the I/0 behaviour (and instruction sequencing mechanism) of
the concrete system.
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Informally (and expressed solely in terms of the RED regime), the
additional conditions required are:

a) If activity by a RED I1/0 device changes the state of the concrete
system from X to X“, and the same activity changes state Y to Y~,
then REDABS(X) = REDABS(Y) must imply REDABS(X”) = REDABS(Y").
(i.e. state changes in the RED regime caused by RED I/0 activity
must depend only on the activity itself and the previous state of
the RED regime.)

b) If a non-RED I/0 device changes the state of the concrete system
from X to Y, then REDABS(X) = REDABS(Y). (i.e. non-RED I/0 devices
cannot change the state of the RED regime.)

c) If REDABS(X) = REDABS(Y), then RED I/O devices must not be able to
perceive any difference between the concrete states X and Y.

d) If REDABS(X) = REDABS(Y), then the next operation executed on
behalf of the RED regime must also be the same in both cases.

Conditions a) and b) above are the analogues, for I/0 devices, of
the conditions imposed on CPU operations by the commutative diagrams
given earlier. A precise statement of all these conditions requires
rather more formalism than I am willing to introduce here, although a
complete and rigorous formal development of the method can be found in
[RUSH8L1D]. More serious, perhaps, than the lack of formality in the
statement of these properties is the absence of any i1illustration of
their practical interpretation and significance. The toy kernel specif-
ication which I have been using to 1illustrate the wvarious techniques
does not contain any description of the behaviour of I/0 devices or the
instruction sequencing mechanism. Consequently, it cannot be wused to
illustrate the application of the conditions a) to d). Extending the
specification to include additional properties would make this already
long paper even longer and so I prefer to defer detailed illustration
and interpretation of conditions a) to d) to a subsequent report. Here
I want to concentrate on those aspects of this new verification tech-
nique that are directly comparable to those considered already. I hope,
in this way, to convey the basic intuition and motivation behind the
method as simply as possible.

Since this method of security verification relies on showing that
the behaviour of the single, shared system is indistinguishable from
that of a collection of physically separate, unshared systems, I shall
refer to it as verification by proof of separability. This name may not
be succinct, but it is at least mnemonic. By way of an example of the
use of the technique, I will sketch a proof of the security of the sys-
tem which was specified in Figure 2.

First we need a specification of the abstract system perceived by
each regime. 1In this case each regime sees a different copy of the same
abstract system and so a single specification (or perhaps it 1is better
called a specification schema) will suffice. This specification is
given in Figure 3. Notice that the operations and state variables of
the r“th regime”s abstract system are distinguished by a subscripted r.
‘'nsubscripted operations and state variables continue to refer to the
'oncrete  system of Figure 2. It is instructive to compare the opera-
tions of Figures 2 and 3. Note, in particular, that SWAP is perceived
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State Variables

MEM (v,w) word w of block v of main memory

R.(1) i“th general register
MAP_ (j) ~ j th mapping register
Operations

OPERATION LOAD (i,7j,w)
EFFECTS

R.(1)" = MEM.(MAP,(J),w)

OPERATION STORE (i,3,w)
EFFECTS

MEM  (MAP,(§),w)" = Rp(4)
g T (HARL(3) ¥ &

OPERATION SWAPr

EFFECTS
{none}
END
OPERATION ATTACH_(v,7)
EFFECTS
MAPr(j)’ = v
END

Figure 3 : Kernel Specification of “Abstract” System

as a no-op from each regime”s viewpoint. (The perceived EFFECTS of
NEWSWAP would be (V1) R.(1)" = 0.)

Next we need to construct the abstraction functions. The abstrac-
tion function for regime r is a mapping from the state space of the con-
crete system to that of the r“th regime”s abstract system. Since these
state spaces have been defined implicitly (in terms of variables and the
effects of the operations upon them) rather than explicitly (as sets),
it 1is dinconvenient to define the abstraction functions explicitly;
instead, following [ROBI77] (for example), I will define them implicitly
by asserting the following equivalences between expressions involving
abstract and concrete state variables:

MEM (v,w) = MEM(ACTUAL(r,v),w) (1)
R.(i) = if r=AR then R(i) else SR(r,i) (2)
ACTUAL(r,MAP_( j)) = 1f r=AR then MAP(J) else SMAP(r,J) (3)

These equations express how the variables of the abstract systems are

% Actually, this problem of defining abstraction functions raises some
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represented within the concrete system. Consequently, I shall speak of
each right hand side as the representation of its corresponding left
hand side. In the case of (2) and (3), where the equations have the
form:

abstract_expr = 1if r=AR then concrete“expr1 else concrete_exXpr,

I shall speak of concrete_expressionl as the active representation of
the abstract_expression on the left hand side and concrete_expression2

as its passive representation. The right hand side of (1) is both the
active and the passive representation of its left hand side.

We now need to use these representations in order to establish con-
sistency between the operations of the concrete and abstract systems of
Figures 2 and 3. Consider the effect of the abstract operation
LOAD (i,j,w) wupon the abstract variable R.(i1). From Figure 3, we see
that the new value of R.(i) is given by the abstract expression

mr(mpr( j) ,W) ol (4)

Now the effect of LOAD.(i,j,w) upon R.(1i) should be consistent with the
effect of the corresponding concrete operation LOAD(i,j,w) upon the
representation of R_(1). Since the concrete system only executes opera-
tions on behalf of the active regime, we must have r = AR and so it is
only the active representation of R.(i), namely R(i) that we need to
consider. Figure 2 tells us that the new value of R(i) after execution
of LOAD(1,j,w) is

MEM(MAP( j) ,w)

and we now need . to show that this is, indeed, a wvalid (active)

fascinating and rather deep issues. In formal treatments (for example
[GOGU78]), an abstract data type is regarded as a (many sorted) algebra.
The notion of correctness which I described earlier (in terms of
abstraction functions) then corresponds to a homomorphism on algebras.
However, we have not explicitly constructed the algebras corresponding
to our abstract and concrete systems, we have merely given specifica-
tions of them. Technically, our specifications are “theories” (or would
be, if we were doing this formally) and the systems (algebras) which
they specify are the models (in the logicians” sense) of those theories.
Since we are working with theories, rather than the algebras they speci-
fy, we really need a notion of “correctness” that operates at this lev-
el. Nakajima et al. [NAKA78, NAKA80] argue that the logicians” notion
of interpretation [ENDE72, SHOE69] is appropriate for this purpose. An
interpretation is defined by a translation from the terms of the
abstract specification into those of the concrete one. (As opposed to
20 abstractinn function which is a homomorphism from the concrete to the
abstract algebra.) For correctness, we require that when the axioms of
the abstract theory are translated into the language of the concrete
theory, they become theorems of that theory. Although I have explained
and informally justified “proof of separability” in an implicitly “alge-
braic® setting, the example of its application employs a ~logical” ap-
proach (with equations (1), (2), and (3) defining the translation from
abstract to concrete terms).
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representation of the abstract expression (4). This is easily done, for
(1) gives

MEM (MAP.(J),w) = MEM( ACTUAL(r ,MAP_.( j),¥))
and since (3) gives (in the case that r = AR)

ACTUAL(r,MAPr(j),w) = MAP(J)

we deduce

MEM_(MAP.( j),w) = MEM(MAP(J),w)
as required.

What we have done here is to show that the same result is obtained
independently of whether we first apply an abstract operation and then
take the concrete representation of the abstract result, or take the
representation first and then apply the corresponding concrete opera-
tion. Readers who are familiar with the notion of rewrite rules
[HUET80b] may care to note that this procedure for verifying the con-
sistency of LOAD. and LOAD with respect to their effects on R, (i) is
equivalent to showing that both sides of the equation

R.(i) = MEM (MAP.(J),w)  (from Figure 3)

have the same “reduced form” under the the following set of rewrite
rules:

R(i) —> MEM(MAP(J),w). (from Figure 2)
MEM . (v,w) —> MEM(ACTUAL(r,v),w) (from 1)
R.(41) = R(1) (from 2)

ACTUAL(r,MAP_( j)) —> MAP(J) (from 3)

If course, this presupposes that the rewriting system has the ~“Church-
Rosser property” [ROSE73] (also called “unique termination” [MUSS80a]
and equivalent to “confluence” [HUET80a]) but it raises the hope that
parts of “proof of separability” can be automated quite easily. (The
Knuth-Bendix Algorithm [KNUT70] and its extensions [HUET80a, HUET80c,
MUSS80b, PETE8l] are relevant here.)

Similar arguments may be repeated for the other operations and
state variables of the r”th regime”s abstract system in order to estab-
lish that, in each case, the behaviour of the concrete and abstract sys-
tems are consistent. The details, at least in the case of concrete
operations which do not alter the identity of the active regime (i.e.
all except SWAP) are straightforward, if a little tedious, since it is
necessary to consider only the active representation of each abstract
variable. SWAP is a little different because it does change the active
regime and so it is necessary to consider both active and passive
representations. Specifically, since the abstract effect of SWAP (i.e.

SWAP ) is a no-op, we need to show, for each abstract variable of the
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“outgoing” regime, that SWAP converts its active representation into its
passive one. For example, since the active representation of R.(1) is
R(i) and 1its passive representation is SR(r,i), it is necessary to
ensure that SWAP contains the transition

SR(r,i)” = R(1i)
- which indeed it does.

These arguments (suitably formalised) establish a consistency
between the operations of the abstract and concrete systems. We also
need to prove that the execution of a concrete operation has no effect
upon the abstract variables of inactive regimes. This is elementary in
the case of the three operations which do not alter the identity of the
active regime since, in these cases, it is sufficient merely to note
that concrete variables involved in the passive representation of
abstract variables are never altered by these operations. In the case
of SWAP, it is necessary to prove that the representation of each
abstract variable of the “incoming” regime is converted from its passive
to its active form, while the passive representations of the variables
of other regimes remain undisturbed.

All of these steps are conceptually straightforward and easily per-
formed, at least informally. Reliable verification of realistic systems
will require more formalised arguments and, almost certainly, mechanical
assistance. Developments in these areas should follow once greater
experience has been gained in the practical application of this verifi-
cation technique. It is also possible that there could be some useful
interaction between the techniques proposed here and those used in the
verification of concurrent programs. (For example [OWIC79], requires
that "each operation of a shared type must be described in terms of its
effects on variables of the process invoking the operation”.)

Before moving on to other topics, it is instructive to reconsider
the original (insecure) system that was specified in Figure 1. If we
were to attempt to verify the security of this system wusing the new
technique of verification by proof of separability, we should have to
begin by constructing specifications for each regime”s abstract system.
This means that from the single, composite system defined in Figure 1,
we should have to try and disentangle the private view of the system
perceived by each regime. Immediately we see that this puts the cart
before the horse: for it must be more natural to begin with the desired
private abstractions and then to use these to guide the comstruction of
a concrete system which is formed as a synthesis of the individual
abstractions. Indeed, it seems possible that large parts of this syn-
thesis can be performed semi-mechanically once the concrete representa-
tions of the abstract variables have been chosen. So, unlike other
techniques, such as information flow analysis, proof of separability not
only provides a technique for verifying the security of systems, it also
suggests and encourages a systematic methodology for the actual con-
struction of such systems. Gross insecurities of the type present in
the system specified by Figure 1 just could not occur using this metho-
dology = for the insecurity in Figure 1 is manifest in the fact that it
is impossible to construct any description of the behaviour of the sys-
tem, as perceived by an individual regime, without making reference to
objects external to that regime (or else introducing non-deterministic
operations).
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In conclusion, I claim that proof of separability provides a sound
and natural technique for verifying the security of those kernelized
systems which enforce a policy of isolation. In Section 7, I will show
that its application extends to more complex policies also, but first I
want to examine its relation to verification by information flow
analysis.



6. INFORHATION FLOW ANALYSIS — REVISITED

We saw, in Section &4, that security kernels which enforce a policy
of isolation cannot be verified by information flow analysis alone.
Section 5 introduced the idea of “proof of separability” and argued that
this does provide a sound and practicable method for verifying these
systems. In this present section I want to re-examine the role of
information flow analysis in order to determine just what it is that
this method of analysis can do for us. I will illustrate the two-stage
approach to security kernel verification, in which information flow
analysis is used to verify the security of a high-level “design specifi-
cation” while ordinary “correctness” verification is used to prove the
security of its implementation. I shall argue, however, that the con-
tribution made by information flow analysis to the overall proof is
almost negligible and the main burden falls to the other component -
that 1is, to the correctness verification. I will then show that this
correctness verification is most conveniently organised in such a way
that it becomes nothing other than a variant of “Proof of Separability”.
Finally, I will discuss the realism of the model wused to justify the
soundness of information flow analysis as a security verification tech-
nique [FEIE77] and will argue that, unlike proof of separability, infor-
mation flow analysis provides no basis for verifying crucial security
properties related to the flow of control, I/O devices, and interrupts.

Recall that the attempt to verify the security of the system speci-
fied in Figure 2 by means of information flow analysis foundered on the
“colour change” performed on the general and mapping registers by the
SWAP operation. As D.E. and P.J. Denning say [DENN79, p237]:

"We do not know how to certify programs that wuse variables
whose security classes can change during execution.”

In other words, methods based on information flow analysis cannot verify
the secure use of shared objects. If there were no shared objects, then
this problem would not arise. Why not postulate, therefore, a system in
which there are no shared objects - that is, one in which each regime
has its own set of general and mapping registers? This 1s the idea
behind the two-stage approach to security kernel verification. Informa-
tion flow analysis is not applied to a specification of the kernel
implementation, but to a higher level “design specification” from which
all difficulties caused by the wuse of shared objects have been
abstracted away. As Feiertag, Levitt and Robinson put it [FEIE77, pé62]:

"with respect to specifications, there is a separate machine
for each security level.”

The security of such a system can be verified by information flow
analysis but we are then faced with the difficulty that this verifiably
cecure system (I shall call it a partitioned system) is not the same as
the implementation we actually have available. We can overcome this
difficulty, however, and thereby establish the security of the implemen-
tation, by proving that it exhibits exactly the same behaviour as the
partitioned system. In conventional parlance, this 1is proving the
correctness of the implementation with respect to the specification
vnbodied In the partitioned system.




- BT -

To make things definite, let us actually construct the “design
specifications” for a partitioned system corresponding to Figure 2.
Rather than just one copy of each shared variable, we will now require
an array of copies: one for each regime. For example, instead the sin-
gle set of general registers R(i), each regime will now have 1its own
set: those belonging to regime T will be denoted R(r,i). The state
variables of the partitioned system are, therefore:

MEM(r,b,w) word w of block b of regime r”s main memory
R(r,i) i“th general register belonging to regime T
MAP(r,j) j”th mapping register belonging to regime r

ACTUAL(r,v) real block number corresponding to virtual
block number v for regime T
AR identity of the active regime

The operations of the partitioned system are shown in Figure 4.

OPERATION LOAD(i,J,w)
EFFECTS

R(AR,1)” = MEM(AR,MAP(AR,J),w)
END

OPERATION STORE(i,j,w)
EFFECTS

MEM(AR,MAP(AR, §),w)” = R(AR,1)
END

OPERATION ATTACH(v,j)
EFFECTS

MAP(AR, j)”~ = ACTUAL(AR,V)
END

OPERATION SWAP
EFFECTS

AR” = AR+l (mod n)
END

Figure 4 : Specification of “Partitioned” System

We can easily verify the security of this system by information
flow analysis. The variable AR is coloured SYSTEM while all others are
given the colour of the regime to which they belong: that is,
MEM(r,b,w), R(r,i) and MAP(r,j) are all given the colour of regime r.
We then observe that each operation specified in Figure 4 only generates
information flow to and from the active regime. (Except SWAP which,
because it changes the value of AR, also generates a flow to the ~supe-
rior” pseudo-colour SYSTEM.) All these flows are safe and so the system
is secure.

But does this procedure really deserve the title “information flow
analysis”? It is not so much an analysis as a statement of the obvious.
The structure of the partitioned system i{s such that it is really no
more than a number of “private” systems joined together = in fact it
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could be produced mechanically from the specification of the private
“abstract” systems given in Figure 3. Indeed, this mechanical produc-
tion is so straightforward that the systems of Figures 3 and 4 could be
considered as no more than notational variants of each other. We hardly
need, therefore, to “analyse” Figure 4 in order to discover its manifest
security.

A proponent of information flow analysis might argue that there 1is
no need for the very obvious partitioning used in Figure 4 and that the
technique could be used to verify the security of a system much closer
to that of Figure 2. (In particular, the main memory could be left
unpartitioned since it is already shared in space rather than time).
The immediate riposte is then: "why bother”? Since information flow
analysis cannot verify a system in which objects are shared dynamically,
it can never verify a system that is close to Figure 2 in any signifi-
cant sense. The crucially important feature of the system given in Fig-
ure 2 is that its general and mapping registers are shared in a secure
manner. This element of secure sharing, which is the whole raison
d"@tre of security kernels and their verification, cannot be modelled in
any system that information flow analysis can verify: for that method to
succeed, there must always be, at bottom, a partitioned system. The
only room for manoeuvre is in the extent to which this partitioning 1is
made manifest rather than obscure and, in either case, the real problem
- that of proving the security of the system as it 1is actually imple-
mented - remains unbroached. To accomplish that step we must prove the
implementation is correct with respect to the specification embodied in
the partitioned system.

As T said in Section 4, one danger with this two stage approach is
that 1if its first stage (verifying the security of the partitioned sys-
tem) is a substantial task (as it may be in the case of systems which
enforce multilevel security), then it may come to appear as the most
significant step in the whole enterprise. The correct implementation of
the partitioned system by means of the unpartitioned, shared system may
then seem to be no more than a question of careful coding - something
that one ought to prove is done correctly but in which the likelihood of
error 1s so small that the enormous cost of proof 1is wunjustified in
practice. Thus, the KSOS verification plan requires full verification
of the security of its design specifications but only "illustrative"
proofs of the correctness of its implementation [BERS79]. But, at least
in the case of isolation (and I shall consider more general cases
shortly), this emphasis on the first stage at the expense of the second
is the precise opposite of what is appropriate. The real issue is the
secure management of dynamically shared resources - which can only be
verified using the techniques employed at the second stage.

So let us now look more carefully at this second stage. In princi-
ple, it poses the same problem as verifying the correctness of an imple-
mentation of an abstract data type with respect to 1its specification.
As we saw in Section 5, the central requirement for an implementation to
be correct is that the following diagram should commute:
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ABOP
ABS(X) > ABS(Y)

ABS ABS

corp

Here, ABOP is the operation in the partitioned system that corresponds
to COP in the implemented system and ABS is the abstraction function
from the states of the implemented system to those of the partitioned
one. The fact that we are dealing with a partitioned system, however,
will allow us to split the abstraction function into separate components
and to exploit this separation in order to reduce the complexity of the
verification process. This is accomplished as follows. The very parti-
tioning of the partitioned system means that its state space is the
cross product of the state spaces of the individual, private systems
embedded within it. Thus

S=—-‘SIXSZX PN XSnXSq

where S is the complete state space of the partitioned system, Si

(1£i¢n) is the state space spanned by the i-coloured variables and S_ is
that spanned by the single variable AR (coloured SYSTEM). Then instead

of one monolithic abstraction function ABS: S > S (where S is the state

space of the implementation) we can factor out a number of “local”
abstraction functions:

i (1£i<n) and

where, for all s in §,
ABS(s) = (ABSI(S),ABSZ(S), een ,ABSn(s),ABSq(s)).

The verification of the security of the partitioned machine was achieved
by showing that each of its operations (except SWAP) references only
variables of the same colour as the currently active regime. Thus, if X
and Y are two states of the partitioned system and ABOP is one of its
operations such that

ABOP
X

N
o

where X = (xl’XZ’ see 5XLy e 5X X )

n°q
and ¥ = (YI:YZ’ i) »Yr, L )ynsyq)
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and r is the identity of the currently active regime, then 1t follows
that

ClLidn, idr),

and

ABOP

X >y

r

where ABOPr is a restriction of ABOP to the r-coloured variables.

Hence, the monolithic commutative diagram given earlier can be
structured into the following two diagrams.

ABOPr
AB%r(X) > ABSr(Y)
1 |
ABSr ABSr
X > Y
cop
(where r is the active regime) and
ABSi(X)=ABSi(Y)
ABSi ABSi
X > Y
COP

(where i is an inactive regime).

The reader can observe the similarity between these diagrams and
those which introduced proof of separability in Section 5. Although 1
have glossed over many details, it should be clear that, mutatis
mutandis, the proof that a concrete, shared system is a correct imple-
mentation of a partitioned system is really no different, in principle,
to its verification by “proof of separability”.

The similarity between these two methods is incomplete in ome sig=
nificant respect, however. Proof of separability requires more than
just the commutativity of the diagrams above: it also imposes four addi-
tional constraints governing the behaviour of I/0 devices and the
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instruction sequencing mechanism. These constraints (which were listed
on page 36) reflect issues of major importance to the security of com-
puter systems; issues which are not addressed by, and cannot even be
expressed within, the model underlying the two-stage “information flow
analysis plus correctness” method of verification. Robinson, one of
those responsible for the verification of KSOS, puts it as follows
[ROBI79]:

"Despite current successes in proving that a given piece of
kernel software provides security, it cannot be proven with
existing techniqueS* that there is no way to circumvent that
piece of software. The answer may be to add some explicit
notion of interpretation to the state machine model. This
extended model would make it possible to address such concerns
as parallelism, language semantics, and interrupt handling.”

It is not surprising that techniques based on information flow
analysis should fail to address issues such as interrupt handling and
asynchronous I/0 devices - for they were not developed for the purpose
of verifying security kernels. In her Thesis [DENN75, p9], D.E. Denning
proposed information flow analysis as a method to:

"certify the secure execution of a program in an otherwise
secure system”.

Similarly, Feiertag”s model was constructed to provide a basis for
verifying the “Secure Object Manager” (or “SOM”) of PSOS [FEIE77,
NEUM77] - for which purpose it is perfectly suitable. This model formu-
lates a specification of multilevel security for a system which consumes
inputs that are tagged with their security classifications and produces
similarly tagged outputs. “Ordinary” programs, such as the SOM or a
file-server, are sound interpretations of this model. But a kernel is
different. A kernel is essentially an interpreter - it behaves like a
hardware extension and executes instructions on behalf of its user
regimes. The identity of the regime on whose behalf it is operating at
any one time is not indicated by a tag affixed to the instruction by
some external agent, but is determined by the kernel”s own state. Thus
the use of Feiertag”s model, unchanged, to justify the use of informa-
tion flow analysis for the verification of the KSOS kernel [ANON78a] is
of dubious validity and any attempt to verify a security kermel in that
way must be incomplete in the areas I have mentioned.

It follows that the credibility of verifications based on informa-
tion flow analysis is seriously undermined -~ for some of the trickiest
code in a security kernel is concerned with exactly the issues ignored
by this method of security verification, notably the management of asyn-
chronous I/0 and interrupt handling. Penetration audits have shown that
these are typically the weakest points in the security of traditional
systems and just the ones, therefore, that really need the rigorous
scrutiny that verification provides. Unlike those for information flow,
the model which underlies proof of separability [RUSH81b] explicitly
addresses the interpretive character of a security kermel and thereby
provides a sound and complete method for verifying the security of such
systems. (Since no illustration or justification of that claim is

* by which he means those of information flow analysis
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provided here, the reader may justifiably regard it with scepticism. I
hope to allay such doubts in a subsequent report.)

Not only does proof of separability address issues outside the
scope of techniques based on information flow analysis, but there is
also a considerable difference in the mental attitudes engendered by the
two approaches. The “information flow analysis plus correctness verifi-
cation” technique encourages us to view the system from outside, to see
it as a single, monolithic entity which requires analysis in order to
discover the isolated regimes hidden within it. Proof of separability,
inverts this perspective and invites us to examine the system from the
viewpoint of the individual regime. The complete system is then seen as
a fairly straightforward synthesis of these individual regimes.

One of the benefits (some might say, the principal benefit) that
accrues from the attempt to verify a system lies in its impact on the
design of that system. The requirements of proof impose a discipline
and . frame of mind that encourages good design: complex, muddled
desi, s do not yield to simple proofs of their correctness. Not only
does verification enable us to prove that our design is right, but it
helps us to get it right in the first place. It follows that a verifi-
cation technique may be judged not only on its mathematical soundness,
but also on its ability to identify the really crucial design issues and
to provide the insight which leads to their mastery. I suggest that
security verification by information flow analysis followed by correct-
ness verification, fails to provide this insight and tends to cloud,
rather than clarify, the central issues.

In contrast, I claim that proof of separability not only provides a
sound technique for verifying the security of those kernelised systems
that enforce a policy of isolation, but also lays bare the central
features of their design and encourages a systematic approach to that
design.

This conclusion might seem to be a consequence of the fact that I
have concentrated, so far, on the very special security policy of isola-
tion: proof of separability is particular to that policy and must surely
fail when confronted by kernels which enforce the more general policy of
multilevel security. In the next section, I shall argue that this is
not so - or, rather, I shall argue that multilevel secure kernels are a
chimera and that to enforce multilevel security within a security kernel
is a fundamental design error. The correct role for a security kernel
within a multilevel secure system is exactly that which underlies proof
of separability.
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7. MORE COMPLEX SYSTEMS AND POLICIES

So far we have only considered the security policy of isolation - a
rather special policy which probably appears to be of rather limited
practical interest. In this penultimate section I want to examine the
additional problems that arise when designing and verifying systems to
enforce more complex security policies. I shall argue that to embed the
policy in the kernmel, as is the current practice, leads to considerable
difficulties and that it is better, as well as more natural, to distri-
bute responsibility for policy enforcement to the individual components
of the system. The only responsibility of the kernel is then to
severely 1limit the extent to which different components can communicate
or interfere with each other - a task which is very similar to imposing
a policy of isolation upon them. Thus, isolation may be regarded, not
merely as a limited and special case of the more sophisticated policies,
but as the fundamental basis for their enforcement.

7.1. Channel Control Policies

Before moving on to consider multilevel policies, I want to intro-
duce a quite different, but crucially important type of policy which can
be illustrated very naturally in connection with a design for a Tsecure
network front end” (an “SNFE”) - that is a device which is interposed
between a network and its host machines in order to provide end-to-end
encryption.

There is more to the provision of secure communication through a
network than simply inserting a cryptographic device (a erypto) between
each host machine and the network. Some of the design issues have been
discussed by Auerbach [AUER80] and a particular design is described by
Barnes [BARN80]. Basically, the issues are as follows. As well as a
crypto, the SNFE must certainly contain components for handling the pro-
tocols and message buffering required at its interfaces with the commun-
ications lines to the host on one side and the network on the other. We
can call the component on the host side the “red” component and that on
the network side the “black” component. Packets of cleartext data from
the host are received by the red component and passed to the crypto from
where they travel, in encrypted form, to the black component for
transmission over the network. In order to allow for red-black co-
operation (essentially, the exchange of packet headers), a second, unen-
crypted channel (the cleartext bypass) must also connect the red and
black components.

The security requirement of the system is that user data from the
host must not reach the network in cleartext form. It is therefore
necessary to be sure that the red component does not use the cleartext
bypass to send user data directly to the black component. The software
in the red component is too large and complex to allow its wverification
and so a censor is inserted into the bypass to perform rigid procedural
checks on the traffic passing through - to check that it has the appear-
ance of legitimate protocol exchanges, rather than raw cleartext. A
fairly simple censor can reduce the bandwidth available for illicit com-—
munication over the bypass to an acceptable level.

Plainly, the role of the censor is critical to this design = but
that 1is not my present concern. A perfect censor would be useless if
any additional, uncensored, communication path directly connected the
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red and black components. The important issue here then is not whether
red and black can communicate, but what channels are available for that
communication. The channel via the censor is permitted; we must prove
that there are no others. This is an example of what I call a channel
control policy since it is concerned with the identity of the channels
through which information may flow, not simply with the presence or
absence of flow.

We now have to consider how to verify a kernel which enforces a
channel control policy. Techniques based on conventional information
flow analysis are inapplicable, not only because they fail to identify
the channels through which information may flow, but also because they
assume a transitive flow relation. In the example, this would lead to
the conclusion that, since information is allowed to flow from red to
censor and from censor to black, direct flows from red to black must
also be allowed! These and other difficulties encountered when trying
to verify what are basically channel control issues in an environment
based on information flow analysis are described by Ames and Keeton-
Williams [AMES80].

I propose that, as in the case of isolation, the natural way to
verify channel control policies is to relate the behaviour of the system
actually available to that of an idealized system whose own security is
obvious. In the present case, the ideal realisation of the system is
surely the one sketched above - in which each of its four components is
allocated to a private, physically separate machine and the communica-
tions channels between them are provided by external wires. In this
ideal case, the absence of any communications channels other than those
permitted by the policy can be established by direct physical examina-
tion.

In this realization of the system, the only software which performs
a security-critical task is in the censor (the crypto is a trusted phy-
sical device); security is otherwise achieved by the physical distribu-
tion of the components and the physically limited communication paths
provided between them.
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In the real world, however, we have to construct and verify a con-
crete implementation of this ideal in which the red, black, and censor
components, and the communications channels between them are all inter-
nal to a single, shared system. In order to keep the implementation
close to its idealized model, it seems natural to base 1t wupon a
security-kernel which, as far as is possible, isolates each component
within a separate regime. But how are we then to control the communica-
tion paths between the components when these are not physical wires but
properties (and presumably subtle ones) of the kernel software? The
idealised model gives us a clue: if we cut the communication paths that
are allowed, then in the absence of illicit paths, the subsystems become
isolated. So if we could “cut” the allowed communication paths provided
in the concrete system, and then verify that the resulting system satis-
fied a policy of isolation, we should have achieved our objective of
proving the absence of illicit communication paths. The previous sec-
tions have shown us how to verify the policy of isolation so all that
remains is to discover how to “cut” a communication path that is not a
tangible piece of wire but a property of some software.

The solution to this problem is easily found once we consider how
communication is actually achieved in software - that is, by the use of
shared variables. If one regime can communicate with another, then
there must, at bottom, be some variable (or, in general, a set of vari-
ables) which the sender can write and the receiver can read. Suppose,
then, that two regimes, A and B, are allowed to communicate through a
shared variable X. If we now replace all of A”s references to X by
references to a new object, X1, and all of B”s references to X by refer-
ences to another new object, X2, then, surely, this is equivalent to
“cutting” the communication channel represented by X with X1 and X2 tak-
ing the parts of the two “ends” produced by the cut.

An example should make this technique clear. Suppose the system of
Figure 2 were to be augmented by the addition of a facility to allow
regime 0 to write to regime 1. We could achieve this by adding a state
variable X to the system together with two new operations READ and WRITE
specified as:

OPERATION READ OPERATION WRITE
PRECONDITIONS PRECONDITIONS
AR =1 AR =0
EFFECTS EFFECTS
R(0)” =X X” = R(0)
END END

Now to verify that the channel provided by the variable X is the
only one in the system, we simply replace the appearance of X in READ by
Xl and that in WRITE by X2 and verify (usin, the techniques of the pre-
vious sections) that the resulting system enforces a policy of isola-
tion. (Notice that the selection of which instances of X to replace by
X1 and which by X2 is a matter of judgement; choose “wrongly” (in this
example, replace both instances by X1, say) and it will not be possible
to establish isolation for the resulting system — but this do.sn’t
affect the soundness of the method, only its success.)
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This is an indirect argument and may appear specious: we prove a
property (isolation) of one system (that with its “wires cut”) and infer
another property (absence of illicit channels) of a different system.
However, if the differences between the two systems are of the very lim-
ited, controlled form that I have described (involving only the “alias-
ing”~ of certain names), so that the consequences of the differences
between them may be understood completely, then, surely, the technique
is sound.

Once we have established that no inter-regime communication is pos-
sible, save over the channel provided by X, it remains to work out which
regimes have access to this communication channel, and in which direc-
tions information can flow over it. Now the only way to transmit on the
“X channel” is by invoking an operation which can change the value of X,
and the only way to receive is through an operation which can read this
value. In the case of the example above, inspection of the PRECONDI-
TIONS to each operation reveals that only regime O can transmit (through
WRITE) and only regime 1 can receive (through READ) - and so we have
verified the desired policy. Naturally, more complex arguments might be
needed in the case of systems less trivial than this example, but the
same underlying principle will remain.

In the case of the SNFE design sketched earlier, it is clear that
there must be no direct communication channels connecting the red and
black regimes: all traffic must pass through either the crypto or the
censor. The absence of illicit communications channels is not the whole
story, however: it will often be necessary to impose constraints on the
behaviour of those channels which are allowed.

Suppose, for example, that the operation of the censor is to per-
form checks on “tokens” submitted by the red regime and then, if they
are satisfactory, to copy them over to the black regime. Suppose also
that the censor does not keep its own copy of the token it is checking,
but uses the one stored on its communication channel with the red
regime. Then there 1is a clear danger of a security flaw if the red
regime can change the value of the token stored on this channel between
the time when the censor reads it for checking purposes and the time
when it reads it again for copying to black. To avoid this danger, we
must either provide a censor which protects itself against such attacks
(for example, by reading the value of each input token only once), or
else the channel over which the red regime submits its tokens must have
properties which prevent such attacks ever being mounted.

If the censor really were housed in its own physically separate
machine, then we should probably have to adopt the first course of
action: a censor so exposed must be prepared to counter arbitrary
attacks upon its I/0 interfaces. Alternatively, each separate machine
in the system could contain a trusted subsystem which is guaranteed to
impose an acceptable discipline on communications between machines. Of
course, such a subsystem would need to be verified and would have much
of the character of a security kernel. This suggests that the use of
separate machines for each component of a secure system might not be
quite the ~ideal” alternative to the use of a shared machine as it at
first appears.

If the censor is housed in one of the regimes supported by a shared
machine, then the security kernel of that machine can provide the censor
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with a benign communications environment. In particular, since it pro-
vides all the inter-regime communications channels, the kernel can
impose a suitable discipline on the use of those channels. 1In the case
of the channel between the red regime and the censor, a suitable discip-
line is that provided by the abstraction of a bounded buffer [HOAR74],
where only red can add tokens to the buffer, and only the censor can
remove them. Proofs of the properties required of the censor may then
assume this discipline is enforced at its I/O interfaces, while the ker-
nel verification must be extended to prove that this discipline 1is
enforced. The construction of suitable proofs for these properties is
beyond the scope of this introductory survey but will be discussed in a
subsequent report.

7.2. Multilevel Policies

The security of the design for the SNFE outlined above depends
partly on the task performed by the censor and partly on the channel
control policy enforced by the kernel. A similar division of responsi-
bility can be adopted in the case of multilevel secure systems. Con-
sider, for example, the very simple system sketched below.

' |
|

: Authority !
| |
1

Regime 3 Regime 4

The idea here is that four isolated single-user regimes are to be
allowed to communicate with one another via a central “authority” which
acts as a ~forwarding agent”. If the user in regime 1 wishes to send a
message to the user in regime 3, then he must send it via the authority
which has the power to decide whether or not to forward the message to
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its intended recipient. The decision may depend on the content of the
message, or on the security classifications of the users currently asso-
ciated with regimes 1 and 3. As a particular form of the latter case,
the authority can impose a multilevel policy - only forwarding messages
if the classification of the vreceiver is at or above that of the
sender.

Obviously, the authority is crucial to the security of this system
and must be proven to enforce its stated policy. The important point,
however, is that just like the censor in the previous example, the role
of the authority can be fully understood and specified, and its imple-
mentation proved correct, at a level of abstraction in which the author-
ity is considered to be physically isolated from the user regimes, and
the user regimes from each other: we may imagine that each regime runs
in its own private machine. There is, at this stage, no need for a
security kernmel: the software in the authority regime is an ordinary
program that provides a fixed single service - that of receiving and
forwarding messages; it supports no user programming.

The need for a security kernel only arises when the physically iso-
lated machines and the external communications channels of this ideal-
ized system are replaced by an implementation in which the four wuser
regimes, as well as the authority and its communications channels, all
share a single machine. 1In this case, a security kernel is needed to
preserve the assumptions under which the idealized system was proved
secure: it must provide an environment in which each regime can continue
to imagine itself running in an isolated, private machine with external
communications channels connecting it to other similarly isolated
machines. The responsibilities of the security kernel end with the pro-
vision of this environment. The overall purpose and policy of the sys-
tem is none of its concern - those issues are the responsibility of the
authority. Furthermore, the kernel need not be aware of the special
responsibilities of the authority. To the kernel, the authority should
appear as just another regime. Conversely, the software of the author-
ity, and its specification and verification, should be independent of
the kernel. The authority assumes a certain environment, but whether
that environment is provided by physically separate machines or is simu-
lated by the kernel of a shared machine is immaterial.

What has been achieved here is one of the goals of good software
engineering practice: a separation of concerns. We have distinguished
the issues of policy enforcement from that of sharing limited resources.
The first issue, manifest here in the role of the authority, arises
because the system is required to permit and control the sharing or com-
munication of information between users of different security classifi-
cations. This issue is inherent in the very function which the system
is intended to perform: although different implementations may tackle
this issue in different ways, it is not a consequence of any implementa-
tion choices but of the purpose and policy of the system. Accordingly,
I shall refer to it as the “policy problem”.

* Of course, for this to be possible, there must be some additional
mechanism (an authentication server), not shown in the diagram, to in-
form the authority of the identity and security classification of the
user currently associated with each regime. T shall return to this to-
pic later.
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The second issue, which I call the “sharing problem”, arises only
in those implementations where different users or system components
share the same hardware resources. This issue is not a consequence of
what the system is required to do, but of how it does it. The security
kernel of our example system is a mechanism for solving the sharing
problem: it makes it possible for conceptually separate regimes to share
the same machine in a secure manner.

The most important benefit of this separation of concerns 1is that
it enables us to handle the problem of “trusted processes”. This will
become apparent later when I discuss systems more complex and realistic
than the elementary example c.nsidered so far. A related benefit can be
seen even in this simple example, however. Because the policy and the
sharing problems are handled separately, by the authority and the kernel
respectively, we can select specification and verification techniques
appropriate to each problem independently of the other.

The purpose of the kernel is to enforce a channel control policy on
five 1isolated regimes, one of which has communications channels to each
of the other four. This can be verified by the method of “proof of
separability”, augmented as described earlier to handle the control of
communications channels. The function of the authority, on the other
hand, is to switch a number of multilevel data streams. This role can
be described by the SRI model of multilevel security [FEIE77] and from

‘this it follows that information flow analysis can be used for its

verification.

This proposal may surprise readers who formed the impression that
Sections 4 and 6 of this paper condemned information flow analysis out
of hand as a security verification technique. The explanation for this
apparent inconsistency is that the differences between a kernel and an
authority are sufficiently significant that the objections to informa-
tion flow analysis as a kernel verification technique do not extend to
its application to an authority.

Recall that the first objection to information flow analysis as a
kernel verification technique is that it fails to address matters relat—
ing to interrupts and the asynchronous operation of I/0 devices. How-
ever, the reason why these issues loom so large in kernel verification
is that one of the purposes of a kernel is to shield its regimes from
exactly these concerns: the kernel designer must worry about interrupts
and malicious I/0 devices just so that those who write application
software need not. Operating, as it does, within the protected environ-
ment created by a kernel, authority software may be considered as a
sequential program with communications to the outside world through
well-behaved I/0 channels. Thus the first objection to information flow
analysis does not apply to its application to non-kernel software.

The second problem with information flow analysis is that it cannot
cope with objects whose security classifications change during execu-
tion. At the lowest level, basic machine resources such as general
registers have to be used for many different purposes and their classif-
ication must change with their use. As a result, and as we have already
seen, information flow analysis cannot be applied to implementation-
level kernel descriptions, but only to high-level “design specifica-
tions”. The task of proving that an implementation retains the security
properties of its specification 1s 1left to conventional correctness
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verification. This correctness verification step is likely to be far
more complex and costly than the information flow analysis step, but
without it the verification exercise has little point.

It might seem that this argument should apply in the case of an
authority just as in the case of a security kernel. Strictly speaking,
of course, this must be true. Information flow analysis can, indeed,
provide only part of the evidence needed to verify the security of an
authority - for if information flow analysis is not applied to the
actual implementation of the authority, but only to its specification,
then it cannot attest to the security of that implementation. However,
there 1is a difference between an authority and a kernel which lessens
the force of this argument and allows us to conclude that an authority,
though not a kernel, can be adequately verified by application of infor-
mation flow analysis alone. The difference concerns the extent to which
the elaboration from verified specifications to executable code can be
performed automatically, by a compiler.

If a specification of an authority has been proved secure by infor-
mation flow analysis, then any implementation of that specification
which preserves the same input/output behaviour will be acceptable and
will also be secure. If a compiler is available for the specification
or programming language concerned, then this elaboration from secure
specification to secure implementation can be left to the compiler.
Strictly speaking, of course, we should verify the correctness of the
compiler but in practice we can surely trust it without proof - for the
possibility that a compiler which has performed correctly many thousands
of times should this time deliver code that also behaves apparently-
correctly (for we will certainly test it), but which contains a security
flaw that can be exploited through the very limited input/output inter-
face provided by the authority is surely negligible.* To fear security
threats from this quarter 1is otiose if not paranoid. The resources
needed to verify their absence would be better employed elsewhere.

Now whereas the authority is an “ordinary” program, whose
input/output behaviour is completely defined in its specificatioms, a
security kernel is best understood as an interpreter for other programs.
Or, more accurately, it is best understood as part of an interpreter -
for much of the interpretation of user programs is performed directly by
the hardware. In consequence, certain hardware resources (such as the
general registers) are directly visible to user programs and this con-
strains the way in which kernel specifications can be elaborated into
code. It is necessary, for example, that both the UNCLASSIFIED and the
TOP SECRET sets of general registers should, at different times, be
mapped onto the single set of hardware registers. Of course, the vari-
ables of the authority software must also be mapped onto hardware regis-
ters but the crucial difference is that the users of the authority are
not allowed to manipulate those hardware registers directly.

It is the basic task of a security kernel to manage machine regis-
ters “securely” - yet at the “design specification” level, these regis-
ters are not present in any realistic form. In truth, “design specifi-
cations” for a kernel are hardly specifications at all, for they do not

*# I am assuming a stable, much used compiler, not specially written or
modified for the task in hand.
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completely define its input/output behaviour: the input/output interface
of a kernel includes all the machine registers that are visible to user
programs and to attached 1/0 devices. Thus, unlike those of an author-
ity, high-level kernel specifications cannot be elaborated into code
automatically: human ingenuity is required to reconcile the visible but
fixed resources and interpretations provided by the hardware with those
assumed by the specifications. It follows that an additional verifica-
tion step is needed in the case of a kernel that is not required in the
case of an authority.

Let me summarise the discussion so far. We have distinguished the
“policy problem” and the “sharing problem” as separate issues within the
overall problem of secure system design and implementation. This dis-
tinction leads to a system design in which all policy issues are the
responsibility of an “authority” while the sharing problem is handled by
a security kernel. The separation of concerns so achieved is aestheti-
cally pleasing and of practical benefit since it enables the kernel and
the authority to be verified separately, and by different techniques; in
each case we may employ the most appropriate method: proof of separabil-
ity for the kernel and information flow analysis for the authority.

Now it might seem that this clean and simple design will become
less so when we add the other functions that must be provided by a real-
istic system. How are we to fit a secure line-printer spooler, file
store and network interface into this neat dichotomy of authority and
kernel? The answer is that we do not fit these new services into either
of the existing components but add them as further self-contained
“gservers”. Just as the authority is conceived as an autonomous, 1iso-
lated component dedicated to the provision of a multilevel secure mes—
sage forwarding service, so multilevel secure file and print servers can
be added as further autonomous and isolated components provided with
limited connections to each other and to user regimes through dedicated
communications channels. Naturally, since each of these new components
performs a security-critical task, their design and implementation must
be shown to maintain the security of the overall system.

The security properties required of a multilevel secure file
server, 1like those required of the message-forwarding authority, can be
described by the SRI model and can be verified by information flow
analysis. A secure print server, on the other hand, must satisfy rather
different requirements. For example, the “Line-Printer Daemon” (de-
spooler) of KSOS is required to:

"... apply the appropriate headers, footers, and burst page
information to correctly mark the classification of the out-
put. Markings shall be in accordance with DoD Directive
5200.1-R. The Daemon shall create auditing records noting the
creation of classified output.” [ANON78b, Section 3.2.2.2.3]

These requirements are additional to those of multilevel secure informa-
tion flow and cannot be verified by information flow analysis. Further-
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more, a print server may not merely require to add to the normal mul-
tilevel constraints, but also to break them. The KSOS Line Printer Dae-
mon, for example:

“shall be privileged to violate the security *-property, in
order to allow iE to delete files after printing.” [ANON78b,
Section 3.2.2.2.1]

Other specialised system components, such as those responsible for
authenticating users as they log in and with initialising the system at
start-up time, although they are clearly vital to security, seem to have
requirements even further outside the normal rules of multilevel secure
operation.

What we are seeing here is that just as the overall security prob-
lem may be divided into policy and sharing issues so, within the policy
problem itself, we may distinguish a number of sub-problems, each
specific to the precise role and function of an individual component.
Although a file server and a print server may both be parts of a system
designed to enforce one multilevel security policy, the policies that
govern their own behaviour cannot simply be that overall policy in
microcosm but must be particular to their individual function and to
their role within the larger system. The properties required of a
secure print server, for example, depend as much on the fact that it is
a print server as on the security policy that is to be enforced.

It follows that the overall security of a complex system cannot be
founded on the centralised enforcement of a single, all-embracing secu-
rity policy - yet this is precisely the approach used in existing sys=
tems such as KVM/370 and KSOS. 1In these systems, the intention is that
all security-critical software should reside in the kernel and that the
kernel should be verified to enforce multilevel security. From the
immediately preceding discussion it is apparent that this approach is
incompatible with the provision of certain necessary system functions
and it is hardly surprising to learn that both KSOS and KVM/370 contain
security critical “trusted processes” that reside outside the kernel and
which are allowed to flout the security controls enforced by the kernel.
These “semi-trusted” processes, as they are called in KVM/370 or
“privileged NKSS”~ (Non Kernel System Software) in KSOS, perform all the

%# If the print server and all its spool files are at the highest securi-
ty classification, then users of more lowly classification cannot in-
spect their own spool files - even for the innocent purpose of discover-
ing whether their jobs have been printed. For this reason, it is usual
for spool files to be classified at the level of their owners = while
the print server continues to run at the highest classification level so
that it can read spool files of all classifications. But then the print
server cannot delete spool files after their contents have been printed,
nor can it even inform their owners of this fact - for such actions con-
flict with the *-property of multilevel security. So, in order to pro-
vide an acceptable user interface, while avoiding a proliferation of
used spool files, it seems necessary that a print server should be al-
lowed to violate the %-property.
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system functions which don”t seem to fit in with the general security
rules of the system. In KSOS, for example, the privileged NKSS con-
tains:

“Support software to aid the day-to-day operation of the sys-
tem (e.g. secure spoolers for 1line printer output,
dump/restore programs, portions of the interface to a packet—
switched communications network, etc.).” [BERS79, p365]

while in KVM/370, the semi-trusted processes:

"control access to global system resources (page scheduling,
direct access storage, slot allocation). They have the poten-
tial to leak data indirectly.” [SCHA77, p&403]

The contract for KSOS required proof of the security of all the
privileged NKSS, but I understand that this has not, and will not, be
achieved. 1In KVM/370, the semi-trusted processes were “audited” (i.e.
checked informally) rather than verified [GOLD79]. The existence, and
apparent difficulty of proof, of trusted processes do not imply that the
KSOS and KVM/370 kernels are ill-designed. Rather, to quote from Berson
and Barksdale again:

"To a large extent, they represent a mismatch between the
idealizations of the multilevel security model and the practi-
cal needs of a real user enviromment.” [BERS79, p365]

The basic problem is not the individual design of the KSOS and
KVM/370 kernels; it is the whole conception that a security kernel
should act as a centralized agent for the enforcement of a wuniform
system-wide security policy that is fundamentally flawed. The tasks
performed by trusted processes just cannot be accomplished wunder the
restrictions that normally govern multilevel secure operation and so
special privileges are required in order to evade those restrictions.
Responsibility for the security of the total system is therefore divided
between the kernel and the trusted processes. But this division is not
a clean one: it does not represent a separation of concerns but a confu-
sion of the same. The kernel has to provide the trusted processes with
the means to evade its own control, yet the trusted processes are not
autonomous - they rely on residual protection afforded by the kernel.
Thus the security properties of the kernel are inextricably bound up
with those of the trusted processes. Neither kernel nor trusted
processes can be fully understood independently of each other, while in
conjunction they can hardly be understood at all!

In the absence of any precise formulation of the role of trusted
processes within a model of secure system behaviour, and in the absence
of any formal understanding of how properties proved of trusted
processes combine with those proved of a security kernel in order to
establish the security of the complete system, there is little real jus-
tification for speaking of the “verification” of the security of such
systems at all. Landwehr, for example, observes:

"... in the final version of their model, Bell and La Padula
did include trusted processes. What is not included in their
exposition is a technique for establishing when a process may
be trusted.” [LAND80, p&46]
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Instead of attempting to comstruct secure systems around a central-
ised mechanism that imposes a single security policy over the entire
system, it is surely more natural seek a system structure which allows
cach component to make its own contribution to the security of the
sverall system and which treats all contributions equally - as begits
the ‘“weakest link” nature of security. We should not elevate the secu-
rity requirements particular to one component, or class of components,
to a special status and attempt to impose them system-wide at whatever
inconvenience to components with different requirements.

I suggest, therefore, that it is helpful to conceive of secure sys-
tems as distributed systems composed of communicating but otherwise iso-
lated components, each dedicated to a single function within the overall
system. Some components will service the users of the system and will
support untrusted user-written applications programs. Other components
will be trusted to provide services such as secure communication between
users and secure access to shared data. The main task of the system
designer is then to identify and formulate the security properties that
must be required of each component individually so that, in combination,
they enforce the security policy required of the system overall.

Of course, sceptics will point out that this is a formidable task:
the components of the system interact and cannot be studied indepen-
dently of each other. The print server, for example, requires special
services of the file server (i.e. the ability to delete spool files of
all security classifications) and both of these components depend upon
information provided by the authentication mechanism. But the difficul-
ties that appear formidable here are no less so in a conventional, ker-
nelized system: the same functions and the same interactions must be
present there also - and will be no less significant, merely less visi-
ble. Furthermore, the interactions in a distributed system are between
its trusted components. These components have concrete tasks to perform
and their interactions can also be specified concretely: we can state
precisely what the special services are that the print server requires
of the file server and we can satisfy ourselves that the ramifications
of these special services are fully understood. This is quite different
to granting the de-spooler of a kernelized system a dispensation to
flout the x-property.

Under the “distributed” approach to secure systems design, the
presence of a security kernel is a totally independent issue: one that
only arises when a conceptually distributed system 1is actually imple-
mented within a single, shared machine. Thus the “trusted components”
of a distributed system are not merely “trusted processes” under a dif-
ferent name, but may be thought of as trusted processes whose responsi-
bilities have been so greatly magnified (at the expense of those of the
kernel) that their role has undergone metamorphosis. Trusted components
are autonomous (although they may cooperate with each other and share a
ccamon purpose) and can be understood independently of the kermel. They
require no special privileges of the kernel, neither does the kernel
need to know anything of their responsibilities. Policy enforcement is
not the concern of a security kernel: its only purpose 1is to maintain
the abstraction of an environment composed of distributed, independent
components within an undistributed, shared implementation.
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This approach decouples the verification of the different system
components from one another and from the verification of the kernmel.
Once the role and security requirement of every component has been
understood and specified in relation to the larger whole, each component
may thereafter be studied and verified independently of the others.
Some components may conform to the SRI model of multilevel security, in
which case information flow analysis will provide a suitable technique
for their verification. Other components may present new and quite dif-
ferent problems of security specification and verification. Selecting
(or developing) appropriate techniques for the resolution of these prob-
lems may be a difficult and challenging task - but we are surely 1in a
better position to tackle these difficulties when the function and
responsibilities of each component are isolated and exposed, as in the
distributed model, rather than hidden among the special privileges
granted to “trusted processes’ .

The approach proposed here is not new - although its presentation
is intended to be more coherent and its foundation on “proof of separa-
bility” is believed to be more soundly based than earlier proposals of a
similar wvein. The idea that a security kernel should simulate a “dis-
tributed” environment within a single machine is very close to the
notion of a ~Virtual Machine Monitor” (a “VMM"). The application of
VMMs to security was proposed by Anderson in 1974 [ANDE74] and, in more
detail, by Popek and Kline in the same year [POPE74b]. 1In a panel ses-
sion at the AFIPS Natiomal Computer Conference of 1974, Popek articu-
lated essentially the same approach as that advocated here:

"Let the basic kernel of a general purpose operating system
provide for supporting and isolating simple processes. The
only primitive sharing facility included might be the ability
to arrange shared read-write segments. Then, a file systemn,
with its own kernel, could be built in one process, and when=
ever a user wished to act on a file, he would communicate with
the file system through a shared segment. The original
kernel”s task of process isolation and the responsibilities of
the file system”s kernel have been separated, decreasing com-
plexity.” [POPE74a, p977]

Obviously this approach is not restricted to multilevel policies:
its application to specialised systems with unusual or conflicting secu-
rity requirements remains quite natural. As the next section will
illustrate, implementations based on conventional kernels are not so
flexible. '

7.3. Special Purpose Policies and Systems

Due to modern hardware developments, large general-purpose mul ti-
user mainframe-based systems no longer dominate data processing opera-
tions as they did only a few years ago. Systems based on a number of
interconnected, relatively small machines, each dedicated to a single
user or providing a single service, are becoming increasingly attrac-
tive.

With the arrival of such systems, the problem of constructing mul-
tilevel secure general-purpose cperating system assumes less importance
than formerly. 1In its place come a number of new problems, each
specific to a single application: for example, the provision of secure
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data-bases, file servers, and network front ends. A number of such
applications have been described by Woodward [WOOD79] while network
applications are also considered by Padlipsky et al. [PADL79].

It is not obvious that the systems and security models developed
for the “old” problem of multilevel secure general-purpose operation
will be appropriate, or even applicable, to the problems of specifying
and enforcing the security properties required for these new applica-
tions. The secure network front end outlined in Sectiom 6.1, for exam-
ple, has security requirements that bear no relationship whatever to the
multilevel models of Feiertag or Bell and La Padula - and to base its
implementation on a counventional multilevel secure kernel would be to
take several steps in the wrong direction. Regrettably, however, there
is a tendency to assume that the multilevel model (and in particular the
x-property) is fundamental to all notions of security and that kernel-
ized multilevel secure systems provide the natural base for all applica-
tions that require the enforcement of some notion of security.

This attitude leads to multilevel security becoming a Procrustean
Bad to which all applications must be ruthlessly accommodated. An
interesting example is provided by the ACCAT Guard [WOOD79].

The Guard is a facility for the exchange of messages between a
highly classified system and a more lowly one. Messages from the LOW
system to the HIGH one are allowed through the Guard without hindrance,
but messages from HIGH to LOW are displayed to a human “Security Watch
Officer” (SWO) who must decide whether they may be declassified to the
level of the LOW system. The security properties demanded of the Guard
include, for example, the requirements that all messages from HIGH to
LOW are displayed to the SWO in their entirety and that only the ones
which he accepts are passed through to the LOW system. These require-
ments have nothing in common with the ss— and *-properties of conven-
tional multilevel security and, furthermore, all information flow from
HIGH to LOW is in direct contravention of the *-property. It must be
considered extraordinary, therefore, that KSOS was chosen as the basis
for the implementation of the Guard - for since the KSOS kernel permits
information flow in only the LOW to HIGH direction, all HIGH to LOW
transfers have to be accomplished by trusted processes whose basic pur-
pose is to get round the fundamental security principle of the KSOS ker-
nel! It is not clear how the use of the KSOS kernel has contributed to
the overall security or verifiability of this design and it is certainly
no surprise to learn from Landwehr [LAND80, p46] that:

"Verification of the trusted processes to be used in the Guard
has consumed far more resources than originally planned.”

I have argued that the centralised enforcement of a single all-
smbracing sccurity policy 1is 1inappropriate, even for a system whose
warall purpags w13 {a geanreal as~ar] elth that policy. ‘- Ia the ecase of
a system like the Guard where two incompatible policies have to be
caforced simultaneously (one for LOW to UIGH transfers and another for
HIGH to LOW) it is not merely inappropriate, it is grotesque.

The most obvious characteristic of the Guard is that it is funda-
aontally dichotomized: the management of LOW to HICH transfers is quite
firferens and lagically separate from that of  HIGH ro LOW  transfers.
T™e only senaible wiv to proceed is to reecognize this dichotomy and
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structure the system as two distinct subsystems, corresponding to the
two directions of transfer. A security kernel is then needed to allow
the subsystems to co-exist in the same machine without interfering with
one another. The enforcement of their individual security policies is
the responsibility of the subsystems themselves: the kernel cannot
assist one without hindering the other. Thus the problem of the Guard
can be broken down into three completely independent sub-problems: the
LOW to HIGH subsystem, the HIGH to LOW subsystem and the security ker-
nel. 1In this way we obtain a separation of concerns and a corresponding
simplification that is quite absent from the KSOS-based implementation.

Whether the benefits of this simplification would be significant in
practice remains to be seen. The Guard performs a complex function and
its verification must necessarily be rather difficult. It would be
facile to claim that all the difficulties and complexity described in
[AMES80] can be removed by the techniques advocated here. Nonetheless,
it is, perhaps, significant that a successor to the ACCAT Guard (this is
the “LSI Guard”~ [CRAI80]) is not based on a KS50S-type kernel.

The proposals for the design and verification of secure systems
which have been presented here are currently being evaluated in prac-
tice. An SNFE similar to that outlined in Section 7.1 has been built by
T4 Division of the U.K. Royal Signals and Radar Establishment and has
been in use for some time now as part of their “Pilot Packet Switched
Network” [BARN80, MAST80]. Although the design and implementation of
this system preceded the formulation of the verification-oriented
rationale presented here, it 1is entirely consonant with it. Current
work is aimed at the verification of this system. If this is accom-
plished successfully, it will have the singular distinction of being the
smallest operational system for which security properties are claimed to
have been verified.
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8. CONCLUSION

Imagine an office in which a number of workers generate and process
information recorded in files which are fetched and stored on their
behalf by a clerk. Because of the sensitivity of the information con-
cerned, a security policy is imposed: certain rules govern which workers
may deal with which files. In order to enforce these rules we can iso-
late each worker in a separate sealed room. Each room is provided with
a desk, a chair, a private filing cabinet and so on, and also with a
mailbox through which files and written requests for files may be
exchanged with the filing clerk who inhabits a common outer room. The
security of this operation depends on the trustworthiness and diligence
of the filing clerk: he must be relied on to refuse requests for files
that are not in accord with the security policy. Since the workers are
isolated from one another in separate rooms, however, they have no
opportunity to communicate with one another and need not be trusted.

Now suppose that financial constraints dictate that only one room
can be heated to a level sufficient to support cerebration: unfortunate
workers consigned to an unheated room enter a state of suspended anima-
tion: they survive but are quite unconscious. Even in these straitened
circumstances we can still provide a secure and productive environment
for our participants if we enlist the aid of another trusted employee -
the caretaker. The task of this functionary is arrange, periodically,
for the inhabitant of the heated room to exchange places with one of the
other participants. The caretaker has to ensure that when each newly
arrived worker wakes in the heated room, he finds his surroundings
exactly as when he was last conscious of them (apart from the possible
arrival of material through a mailbox). Thus, the caretaker must look
after the furniture and private working material of each worker and, in
the case of the filing clerk, provide facilities that are denied to oth-
ers (i.e. access to the central filing cabinets and to the mailboxes of
other workers).

It seems clear that this scheme, though more complex, need not be
any less secure than the first. Furthermore, the filing clerk and the
other workers need not be informed of the new arrangements: they should
perceive no change in their environment and be unaware of their occa-
‘sional lapses into unconsciousness.

The point of this, perhaps rather strained, analogy to convey
(especially to those readers who may have chosen to begin their examina-
tion of this paper here, rather than at its beginning) an intuitive
basis for understanding my assertion that the design and verification of
secure systems poses not just one, but two problems. I call these the
“policy” and the “sharing” problems and they are exemplified here in the
roles of the filing clerk and the caretaker, respectively.

The policy problem is a conscquence of the task performed by the
system and the security constraints it is required to meet. It is, in
short, a consequence of what the system has to do. The system just
described has to provide a number of workers with access to a central
filing system subject to certain constraints on that access. This 1is
achieved by placing a trusted filing clerk in charge of the filing sys-
tem and requiring him to mediate all accesses by the other workers.
Thus the filing clerk is a mechanism to handle the policy problem.
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The role of the caretaker, however, is quite different. He is not
required as a consequence of the purpose of the system, but of its
implementation; he is needed because circumstances dictate that every-
body has to share the use of certain resources - the heated room in this
case. While the caretaker is not responsible for the security policy of
the system, he 1is responsible for its ability to enforce that policy:
both the filing clerk and the caretaker must behave properly if the
overall system is to be secure. Security founders if the clerk delivers
a file to a worker who should not be allowed to see 1it, and it also
founders if the caretaker ushers a new worker into the heated room
without removing material belonging to its previous occupant.

The point to be stressed is that the roles of the filing clerk and
of the caretaker are fundamentally different to one another and should
be studied independently of each other. It would be a grave error of
design to combine both roles into one all-purpose general servant.

I am convinced that the cleanest separation of policy and sharing
issues 1is achieved if secure systems are conceived as distributed sys-
tems in which the subjects of the security policy and the agents of its
enforcement all reside in conceptually private and separate subsystems
linked by appropriate communications lines.

The system designer must study the role of the components in his
distributed design in order to determine the properties required of each
of them individually so that, in combination, they enforce the security
policy of the overall system. The security requirements of components
such as file-servers can often be expressed as restrictionms on informa-
tion flow as formalised in the models of SRI and Mitre. The technique
of information flow analysis can verify the security of such components
very economically (since it is only necessary to consider the security
classifications of variables, not their values). Other components, such
as those which interact with the outside world (for example, print
servers), or which influence the behaviour of other components (for
example, authentication servers) have requirements expressed in terms of
the actual values of quantities which they output, not just their secu-
rity classification (i.e. they must produce the right answer, not just
an answer that depends only on inputs below a certain classification
level). Information flow arguments are not sufficient to verify the
security of these components; more powerful methods are required.

The requirements of a security kernel are different again. A
kernel”s task is to allow conceptually distributed system components to
share a single machine in perfect safety. To do this it provides each
component with an environment indistinguishable from an isolated machine
dedicated to that component alome. Existing techniques are not well
suited to the verification of this property and I have argued that a
specialised technique called ~proof of separability” is the correct tool
for this job.

I claim that this approach to the design of secure systems both
exposes and narrows the interfaces between different components. By
reducing the interdependence between the security kernel and the other
trusted components it brings about a separation of concerns which
lessens the complexity of the system and enables the security kernel to
be studied and verified more or less independently of the rest of the
system. On the other hand, by making explicit the communications
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channels that run between certain components, the approach makes all too
clear the delicate web of mutual interdependence and trust on which
overall security depends. Making complexity manifest is no bad thing -
especially if it leads to a more profound appreciation of the conse-
quences of demanding too many “facilities” in a secure system.

Secure systems are among the first real-world systems to be built
under contracts which require formal verification of certain aspects of
their behaviour. As such, they pose both an opportunity and a threat to
those who believe that verification and verification-oriented design
offer the best hope of advancing computer programming from the status of
a craft to that of an engineering discipline.

The opportunity is obvious: for the first time, sufficient
resources are being made available to allow practical application of
formal specification and verification techniques. Much will be learned
thereby. The danger is that expectations will be allowed to exceed
realistic prospects. Verification systems are still in the early stages
of development and our understanding of many important issues is still
incomplete. Yet it is becoming routine that proposals for military sys-
tems should include the requirement that their security be formally ver-
ified. There must be a danger that the verification of these massive
systems will become a meretricious exercise - its purpose being to
impress the customer with its size, detail and formalism even 1if it
leaves him uncertain of precisely what has been proved.

Verification of the security (or any other property) of a system is
achieved by demonstrating, in a suitably formal manner, that the
behaviour of the system is “consistent” with that of a model which is
sufficiently simple that it may be seen, directly and intuitively, to
possess the desired property. The notion of “consistency” must also be
sufficiently natural that it can be accepted without question. A verif-
ication exercise has achieved its goal only when every step of the argu-
ment, from model to system, is so utterly compelling that any suitably
trained person will be convinced of its veracity. Repeatedly, experi-
ence has taught us that our ability to reason about complex systems is
limited and fallible. To have any hope of success, we must, at least
for the time being, curb our ambition and strive for simplicity. As
Hoare observed in his Turing Award Lecture:

"There are two ways of constructing a software design: one way
is to make it so simple that there are obviously no deficien-
cies and the other way is to make it so complicated that no
deficiencies are obvious.” [HOAR81]

It is not the purpose of verification to lend a spurious respectability
to systems that follow the latter course - although commercial pressures
may be leading in that direction.

Verification provides a coherent framework for mastering some of
the myriad details that must be attended to if a computer system is to
perform satisfactorily. It is not a tool for making large, complex sys-
rems as easy to manage as small simple ones. Indeed, one of the princi-
ple benefits of verification lies in its capacity to reveal complexity
and thereby encourage good design. What is needed now are convincing
demonstrations of the practicality and utility of this approach applied
to (relatively small, but useful) operational systems.
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