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John Rushby

Abstract Suitable formalisms could allow the arguments of a safety case to
be checked mechanically. We examine some of the issues in doing so.

1 Introduction

A safety case provides an argument that a system is safe to deploy; the notion
of “safe” is made precise in suitable claims about the system and its context
of deployment, and the argument is intended to substantiate these claims,
based on evidence concerning the system and its design and construction.
The approach can be applied recursively, so that substantiated claims about
a subsystem can be used as evidence in a parent case. Evaluators examine
the case and may certify the system if they are persuaded that the claims are
appropriate, the evidence is valid, and the argument is correct.

The safety case approach to safety certification may be contrasted with
the standards-based approach, where the applicant is recommended or re-
quired to follow certain guidelines and standards. These generally specify
the development and assurance processes that should be used, the interme-
diate artifacts to be produced (requirements, specifications, test plans etc.),
the kinds of reviews, tests, and analyses that should be performed, and the
documentation that should record all of these.

The intellectual foundations for the two approaches are fundamentally
very similar: we can think of the social process that generates guidelines
and standards as constructing a generic safety case; documentation of the
processes and products for a particular system then constitutes the evidence
for an instantiation of this case. The main difference is that the argument
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(and often the claims, too) are implicit in the standards-based approach:
they presumably inform the internal debate that decides what evidence the
standard should require, but are not formulated explicitly, nor recorded.

Although fundamentally similar, the two approaches do have their own
advantages and disadvantages. Standards-based approaches generally incor-
porate much accumulated experience and community wisdom, and they es-
tablish a solid “floor” so that systems developed and assured according to
their prescriptions are very likely to be adequately safe. On the other hand,
standards tend to be slow-moving and conservative, and can be a barrier
to innovation in both system design and in methods for assurance. Further-
more, a generic standard may not be well-tuned to the specifics of any given
system—so that its application may be excessively onerous in some areas, yet
provide insufficient scrutiny in others.

An explicit safety case can be customized very precisely for the specific
characteristics of the system concerned, and therefore has the potential to
provide stronger assurance for safety than a standards-based approach, and
at lower cost (by eliminating unnecessary effort). Safety cases can also be
more agile, allowing greater innovation than standards-based methods.

However, some observers express concern over the reliability of judgements
about the quality of a safety case, particularly if some of its elements are novel.
One experienced practitioner told me that he feared that regimes lacking a
strong safety culture would accept almost any safety case, after demonstrating
diligence by probing minor details. Of course, true diligence and competence
and a strong safety ethic are required in the performance and evaluation of
standards-based approaches as well as safety cases, but the social process
that generates standards, and the infrastructure and skill base that devel-
ops around them, may provide stronger collective support than is available
for a solitary safety case. On the other hand, the motivation for introducing
safety cases in the first place came from investigations into a number of dis-
asters where traditional approaches were deemed to have failed [14]. Perusal
of recent aircraft accident and incident reports (e.g., [1, 27]) certainly erodes
complacency about the standards-based approach employed for airborne soft-
ware [19].1

We may conclude that safety cases seem to be the better approach in
principle, but that it could be worthwhile to inquire if there might be some
systematic processes that could help increase confidence in the soundness of
a given case. Now, a safety case is an argument, and the branch of intellec-
tual inquiry that focuses on arguments is logic, with formal logic allowing
the checking—or generation—of certain kinds of arguments to be reduced
to calculation, and thereby automated. So, this paper will explore some of
the opportunities and challenges in applying formalism to safety cases. It is
written from my personal perspective—which is as a practitioner of formal
methods—and may not coincide with the views of those with more experience

1 A recent report finds massive fault with a major safety case [9].
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in safety cases. My hope is that it will help develop a dialog between these
two bodies of knowledge and experience.

The next section considers the top-level argument of a safety case; this
is followed by consideration of lower-level arguments, and then probabilistic
arguments. The paper concludes with a summary and suggestions for further
research.

2 The Top-Level Argument

The concepts, notations, and tools that have been developed for representing,
managing, and inspecting safety cases (e.g., [3, 13]) provide strong support
for structuring the argument of a safety case. Nonetheless, the safety case for
a real system is a very large object and one wonders how reliably a human
reviewer can evaluate such an argument: consider the thought experiment of
slightly perturbing a sound case so that it becomes unsound and ask how
confident can we be that a human reviewer would detect the flaws in the
perturbed case? These concerns are not merely speculative: Greenwell and
colleagues found flaws in several cases that they examined [8].

Although a safety case is an argument, it will generally contain elements
that are not simple logical deductions: some elements of the argument will
be probabilistic, some will enumerate over a set that is imperfectly known
(e.g., “all hazards are adequately handled”), and others will appeal to expert
judgement or historical experience. All of these are likely to require human
review. While suggesting that there may be benefits in formalizing elements
of a safety case, I do not propose that we should eliminate or replace those
elements that may be difficult to formalize. Rather, my proposal is that by
formalizing the elements that do lend themselves to this process, we may
be able to reduce some of the analysis to mechanized calculation, thereby
preserving the precious resource of expert human review for those elements
that truly do require it. Furthermore, formalization of some elements may
allow the context for human reviews (e.g., assumptions) to be more precisely
articulated and checked.

By formalization and calculation, I mean representing elements of the ar-
gument in a formal notation that is supported by strong and automated
methods of deduction—that is, theorem proving. I do not see good prospects
for adoption of formalization in safety cases, nor much value in doing so,
unless it is supported by pushbutton automation. Fortunately, I believe the
prospects for achieving this are good: the arguments in a safety case are not
intricate ones that tax a theorem prover—they are large, but simple.

An important choice for this enterprise is the logical system in which to
formalize safety case arguments. Experiments and experience will be needed
to make a well-informed decision, but I can suggest some considerations. On
the one hand, we should choose a logic and theories that are supported by
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pushbutton automation, and on the other, we need a choice that is able to
express the kinds of arguments used in a safety case. To make this concrete,
here is the top level of an argument examined by Holloway [11]:

“The control system is acceptably safe, given a definition of acceptably safe, because

all identified hazards have been eliminated or sufficiently mitigated and the software

has been developed to the integrity levels appropriate to the hazards involved.”

We can decompose and slightly restructure this into the following elements.

1. We have a system in a context, and a safety claim about these, and the
claim is appropriate for that system in that context.

2. There is a set hset of hazards, and the members of this set are all the
hazards relevant to the claim for the system in its context.

3. The system handles all members of the set hset of hazards.
Note: I have restructured the prose argument here: my notion of “handles”
includes either elimination or mitigation of each hazard and, for the latter,
assurance that the software has been developed to a suitable integrity level.
The decomposition into elimination and mitigation-plus-integrity will be
performed at a later stage of the argument.

4. Satisfaction of the preceding items is sufficient to ensure that the system
is safe in its context.

We can formalize item 1 as

appropriate(claim, system, context)

where claim, system, and context are uninterpreted constants, and
appropriate is an uninterpreted predicate. Uninterpreted means that no
properties are known about these entities (other than that they are distinct
from each other), apart from what we might introduce through axioms; this is
in contrast to interpreted types and predicates (such as integer, or iszero)
whose meaning is built-in to the theories of the logical system concerned.
We can informally attach interpretations to the symbols (e.g., system means
“the system under consideration”), or we can do so formally by supplying
axioms or formal theory interpretations [24]. If the formal elaborations are
done correctly (and part of what a theorem prover does is check that we do do
it correctly), then anything we can prove about the uninterpreted constants
remains true of their interpretations.

Here, the justification that the particular claim is appropriate pre-
sumably rests on precedent, legislation, experience, and judgement, and
will be documented suitably. We can introduce an uninterpreted constant
approp claim doc to represent existence of this documentation, and the doc-
umentation itself can be attached to the constant. Attachments are used quite
widely in AI and in formal verification (e.g., [6]), usually to provide a compu-
tational interpretation to some term, in which case they are called “semantic
attachments.” Here, we have “documentation attachments” and a theorem
prover could easily be augmented to assemble or cite the documentation that
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supports a particular chain of deduction. Mere existence of documentation
is insufficient, however: the developers, reviewers, or evaluators of the safety
case need to record their judgement that it is adequate. We can allow for this
by an uninterpreted predicate good doc and the following axiom

good_doc(approp_claim_doc)

IMPLIES appropriate(claim, system, context)

The reviewers can indicate their assent by adding
good doc(approp claim doc) as an axiom; the theorem prover will
then derive appropriate(claim, system, context) by forward chaining.
The triviality of the deduction here does not negate its value: it provides a
computationally effective way to record the existence of documentation, the
evidence that it supports, and a judgement about its adequacy. By intro-
ducing variants to good doc, we can distinguish the developers’ judgement
from those of the reviewers or evaluators.

We can formalize item 2 in a similar way as

hset = allhazards(claim, system, context)

where allhazards is an uninterpreted function whose informal interpretation
is that its value is the set of all hazards to the claim about the system in its
context.

Then item 3 becomes

FORALL h IN hset: handles(system, h)

where handles is an uninterpreted predicate whose informal interpretation
is that the system successfully eliminates or mitigates the hazard h, and
FORALL...IN... is universal quantification (a concept from logic).

Item 4 can be expressed as

safe(claim, system, context)

where safe is an uninterpreted predicate whose informal interpretation is
that the system is acceptably safe.

The structure of the top-level argument is then expressed in the following
axiom

LET hset = allhazards(claim, system, context) IN

appropriate(claim, system, context)

AND FORALL h IN hset: handles(system, h)

IMPLIES safe(claim, system, context)

where AND and IMPLIES are the logical symbols for conjunction and material
implication, respectively, and are written in upper case simply to distinguish
them from what logicians call the “nonlogical” symbols. The LET...IN con-
struction is syntactic sugar that can be eliminated by simply replacing all
instances of the left hand side by the right.

This axiom actually expresses one of several general tactics for construct-
ing a safety case: namely, enumerating the hazards and showing that each is



6 John Rushby

handled effectively. This general tactic could be expressed by replacing the
constants claim, system, and context by variables (free variables are as-
sumed to be universally quantified). The axiom shown above would then be
an instantiation of the general tactic.

The next step in this example is to record the process of hazard identifi-
cation. This is one of the most important elements of a safety case, and one
that depends crucially on human judgement. Although formalization cannot
and should not aim to replace this judgement and its supporting processes, it
should record them, and lend calculational assistance where feasible. Human
judgement in identification of hazards is usually supported by systematic but
manual processes such as checklists, HAZOP/guidewords, or functional haz-
ard analysis (FHA). Evidence that all hazards have been identified is gener-
ally by reference to documentation describing conformance with an accepted
process or standard for performing hazard analysis.

In our example, we could express this in the following axiom

good_doc(hazard_doc)

IMPLIES allhazards(claim, system, context) = {: H1, H2, H3 :}

where H1, H2, and H3, are the (otherwise undescribed) hazards named by
Holloway, {: ... :} is the extensional set constructor, and hazard doc is
an uninterpreted constant associated with the documentation of the hazard
analysis performed. As before, the predicate good doc is used to indicate
that human review, and other processes that might be required, concur that
the documentation attached to hazard doc does indeed establish that the
hazards are just the three identified. We indicate that this “signoff” has been
achieved by asserting good doc(hazard doc) as an axiom.

Observe that we have chosen to use the uninterpreted function
allhazards, which returns the set of hazards. An alternative would be to
quantify over all possible hazards and have a predicate ishazard that identi-
fies those that are true hazards. We could then define allhazards as follows.

allhazards(claim, system, context) =

{ h: hazards | ishazard(h, claim, system, context) }

These two approaches seem almost equivalent from a logical point of view,
but reflect a different balance between formalism and judgement. As men-
tioned previously, identification of hazards is one of the most delicate and
important judgements required in a safety case, and formalization should be
done in a way that respects that judgement. Quantifying over all potential
hazards and picking those that are true hazards carries the implication that
there is some objective, external set of potential hazards—which is not so. In
the formalization used here, the “mystery” of hazard identification is hidden
inside the allhazards function, where it will be described and justified—as
it should be—as the application of human judgement, aided by a systematic,
but informal process.

We will take this example just one step further. Holloway’s description
states that hazard analysis determines that hazard H2 has potentially catas-
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trophic consequences, and that the acceptable probability of such hazards is
1× 10−6 per year. These can be recorded in the following axioms.

good_doc(hazard_doc) IMPLIES severity(H2) = catastrophic

max_prob(catastrophic) = 1/1000000

We can then state that a general tactic for mitigating hazards is to use
fault tree analysis to show that their maximum probability of occurrence does
not exceed that established for their severity level, and that the integrity level
of the system software is at least that required for the given severity level.
We can state this as a generalized axiom (with variables) as follows.

mitigate(s, h) =

fta(s, h) <= max_prob(severity(h))

AND integrity(s, h) >= sil(severity(h))

mitigate(s, h) IMPLIES handles(s, h)

Here, s and h are variables representing a system and a hazard; fta is an
uninterpreted function whose value is informally understood to be the prob-
ability of hazard h in system s as determined by fault tree analysis (FTA),
integrity is an uninterpreted function whose value is the integrity level of
the software in s with respect to hazard h, and max prob and sil give the re-
quired maximum probability and minimum integrity level for the severity
level of h. Furthermore, we assert that mitigation is an acceptable way to
handle a hazard.

We will then instantiate these general axioms for the case of our system
and hazard H2, and assert axioms such as the following.

sil(catastrophic) = 5

good_doc(H2_fta_doc) IMPLIES fta(system, H2) <= 1/1000000

good_doc(H2_integrity_doc) IMPLIES integrity(system, H2) = 5

Here, H2 fta doc is documentation that describes the fault tree analysis per-
formed and justifies the claim that this establishes the given probability;
similarly, H2 integrity doc is documentation that justifies the claim that
the software satisfies the requirements for integrity level 5 (in some scale).

My purpose in sketching this formalization is simply to identify suitable
logics and theories in which to frame it. What has been used in this exam-
ple so far is first order logic (with set theory), which is undecidable and so
cannot be automated in its full generality. However, various fragments of this
logic are decidable and have been found to be pragmatically adequate for
most purposes. In particular, the unquantified fragment with uninterpreted
symbols and equality is decidable. The example does use quantification, but
only in elementary ways that are easily automated.
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Thus, my conclusion is that to describe safety case arguments, we need
a formalism that includes quantification, uninterpreted predicates and con-
stants, set theory, and arithmetic—but the theorem proving needs pushbut-
ton automation only for the unquantified case. These capabilities are a (sub-
set) of the capabilities of formalisms built on, or employing, SMT solvers
(i.e., solvers for the problem of Satisfiability Modulo Theories) [20]. Modern
SMT solvers are very effective, often able to solve problems with hundreds
of variables and thousands of constraints in seconds. They are the subject of
an annual competition, and this has driven very rapid improvement in both
their performance and the range of theories over which they operate.

Many specification and modeling formalisms are able to use SMT solvers
to provide pushbutton automation. One example is the PVS verification sys-
tem, which uses the Yices SMT solver (both of these are from SRI [25]). The
formalization of the example safety case shown above can be typed into PVS
almost verbatim and checked in seconds. PVS is in fact a higher order logic,
and this allows a particularly straightforward mechanization of the simple
set theory used in the example (sets are predicates). PVS is able to report
the axioms actually used in the construction of a proof: for a fuller version of
Holloway’s example, PVS reports that it uses the top-level tactic of enumer-
ation over hazards (shown above), and the lower-level tactics of eliminating
and mitigating hazards (the latter also shown above), plus the axioms asso-
ciating probabilities and integrity levels with hazard severities (also shown
above). PVS also enumerates the good doc axioms required to discharge the
claims made in the case: these must justify the appropriateness of the claim,
the identification of hazards and their severity, the elimination of the hazard
H1 (by formal verification), and the probability of occurrence (by fault tree
analysis) of hazards H2, and H3, and the integrity level of associated software.

3 Lower-Level Arguments

Our formalization of Holloway’s example safety case involves only the most
abstract treatment of the system itself. Lower levels of the case, however,
will be very much concerned with details of its design and implementation,
and the assumptions underlying these. Formal verification is a very well-
understood application of formal methods to these concerns. In formal verifi-
cation, we develop detailed formal models of algorithms, designs, or programs,
and use theorem proving, model checking, static program analysis, or other
methods of automated deduction to show that these have desired properties.
Verification systems such as PVS have been used to verify important prop-
erties of significant designs (e.g., [18]). However, PVS and its like are general
purpose—that is why they can model abstract safety cases—and greater au-
tomation in verification of software systems and their designs can be achieved
using notations and techniques specialized to these tasks. Tools employing
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these are generally referred to as “model checkers,” even though most are not
model checkers in the strict sense used by logicians. A particularly interesting
kind of tool in this class is an “infinite bounded model checker,” such as the
one in the SAL suite developed at SRI [25]. Infinite bounded model checkers
make very effective use of SMT solvers and thereby provide very powerful
automation.

The models verified by model checkers are usually very detailed and
explicit—equivalent to executable programs. However, and this is not widely
understood, infinite bounded model checkers can be applied to rather abstract
descriptions that use uninterpreted functions to hide detail. This is feasible
because the underlying SMT solvers provide effective automation for this
theory. Properties can be attached to the uninterpreted functions by means
of axioms supplied directly to the SMT solver or, indirectly, by synchronous
observers attached to the model supplied to the model checker [22].

The value in applying formal verification to very abstract designs is that
this can be used to automate, or provide automated assistance for, some
kinds of safety analyses traditionally performed informally. Many of these
analyses can be thought of as informal ways to examine all the possible
states of a system, to see if any are unsafe or otherwise undesirable. The
reachable states of any interesting system are vast, if not infinite, in number.
To examine the reachable states in reasonable time using unaided informal
reasoning, we group many similar states together (that is abstraction), and
consider only those states encountered on paths that are considered likely to
exhibit interesting cases. For example, Failure Modes and Effects Analysis
(FMEA) explores only those paths that start from a state in which some
component has failed; Fault Tree Analysis (FTA) explores paths backwards
from an undesired state to see if some combination of events (usually failures)
can render it reachable. These analyses are typically applied to very abstract
models; this is because they are often performed early in design exploration,
before detailed designs have been developed, and because abstraction reduces
the search space.

The benefit in applying automation to these activities is that, unlike in-
formal analyses, they can examine all possible states and scenarios. Infinite
bounded model checkers are particularly suitable for this purpose because
they can operate on abstract models (using uninterpreted functions); how-
ever, because of the power of the automation available, they may be able to
operate on more realistic abstractions than those used informally. Further-
more, like all model checkers, they not only verify true properties, but also
provide explicit counterexamples to false ones (cf. a cut set in FTA). The
counterexample capability can be exploited for other purposes, such as the
generation of test cases [10].

Holloway’s example states that hazard H1 is eliminated by formal verifi-
cation, and that the probabilities of hazards H2 and H3 are established by
FTA. The formalized top-level safety case simply makes reference to the doc-
umentation for these, but we can imagine that they could themselves be
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partially or fully formalized and automated. For example, infinite bounded
model checking on a detailed formal model of the system design could verify
that H1 is unreachable, and similar model checking on more abstract mod-
els could identify the precipitating events for H2 and H3; separate, informal
analysis could then estimate their probability. The following section considers
probabilistic arguments in more detail.

4 Probabilistic Arguments

Probability plays an important part in safety cases, quite apart from its use
in FTA. Safety is about controlling risk, which is the product of the severity
of an outcome and its probability, so a significant part of most safety cases
is concerned with assessment of probabilities. Estimating the probability of
system failure given probabilities for component failures is a well-understood
task, with its own methods and tools. The task is more challenging, how-
ever, where software is concerned. Software contributes to system failures
through faults in its requirements, design, or implementation, and these, in
the language of safety analysis, produce “systematic failures,” meaning they
are not random but are certain to occur whenever circumstances activate
the fault concerned. But although the failure is certain, given circumstances
that activate the fault, those circumstances have a probability of occurrence:
some faults are activated by almost any input, others require very specific,
and unusual combinations of inputs. Hence, failure probabilities can be as-
sociated with software and are determined by the likelihood of encountering
circumstances that activate its faults.

For modest values, say down to about 1 × 10−4 probability of failure on
demand, it is feasible to measure software failure probabilities by statistically
valid random testing [5], where “statistically valid” means that the test case
selection probabilities are exactly the same as those that are encountered in
real operation. When the required probabilities are smaller than can be veri-
fied by direct measurement, the general recourse is to show that the software
has been developed to some Software Integrity Level (SIL), as in Holloway’s
example. However, the practices recommended for most high-level SILs (e.g.,
DO-178B Level A), such as elaborate documentation of requirements, spec-
ifications, and designs, traceability among these, and extensive reviews and
testing, are really about ensuring correctness, and there is no clear justifica-
tion for determining a correspondence between SILs and failure probabilities.

In contrast, Littlewood [15] introduced the idea that software may be pos-
sibly perfect and that we can contemplate its probability of perfection. This
is attractive because probability of perfection can be interpreted as a subjec-
tive assessment of confidence in the verification activities performed on the
software. Furthermore, a probability of perfection can be related to reliabil-
ity, and this has particularly great utility in fault-tolerant systems, where
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the possible perfection of one “channel” can be shown to be conditionally
independent of the reliability of the other; hence, the probability of system
failure is the product of these individual probabilities [16].

Using the idea of possible perfection has two ramifications on a safety case.
One is that the upper level assessment of the probability of system failure
will employ probabilities of software perfection; the other is that the subcase
concerned with software must consider the possibility (and probabilities) of
its own imperfections. These are likely to be smaller when parts of the case,
particularly any verifications and analyses, are formalized and subject to
mechanical checking. I suggest considerations for the assessment of these
probabilities in a recent paper [23].

Another area where formalization intersects with probability is in assur-
ance for fault-tolerant systems. Many system failures are due to flaws in
fault tolerance: the very mechanisms that are intended to prevent failure be-
come the dominant source of failure! Formal verification of these mechanisms
produces two very valuable results: first, it requires precise specification of
assumed component failure modes, the number of these to be tolerated, and
their assumed probabilities; second, it provides convincing evidence (i.e., a
proof) that the mechanisms work, provided the number and modes of com-
ponent failure are consistent with those specified. This bipartite division sep-
arates assurance for the correctness of the mechanisms from calculation of
system reliability.

The reason that many fault-tolerant systems fail is that their components
fail in ways different than assumed in the design of the mechanism for fault
tolerance. When the fault-tolerance aspects of the safety case are informal,
the failure assumptions may be imprecise, and their probabilities assessed
optimistically [12]. Formal verification forces precision in the statement of
failure mode assumptions and, thereby, explicit recognition of the cases not
tolerated—and realistic assessment of their probability. The latter should
drive the design of fault-tolerant mechanisms toward those that make minimal
assumptions and are uniformly effective (e.g., Byzantine-resilient algorithms)
and away from the special-case treatments that are prevalent in homespun
designs.

Even principled designs can benefit form this type of consideration; for
example, it is well-known that Byzantine-resilient algorithms that use “signed
messages” can tolerate more faults than those that use “oral messages”; but
if signatures are flawed for some reason, the signed messages algorithms will
fail. Given this information, a developer or assessor can perform principled
analysis of the tradeoff between a design that makes fewer assumptions vs.
one that tolerates more faults at the cost of more assumptions—or they can
be motivated to explore algorithms that combine the best of both choices [7].

Analysis of fault-tolerant systems is one example where appropriate for-
malization allows the case for correctness to be separated from the case for
reliability: formal verification provides assurance that the system does not
fail, given assumptions about the failures of components; separately, we esti-
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mate the probability of the assumptions, and thereby calculate the reliabil-
ity of the system. There can be other circumstances in a safety case where
logic assures a conclusion, given certain premises, but we are not completely
confident in the premises. Our (lack of) confidence in the premises can be
represented by attaching a probability to them.

For fault tolerance, calculation of the probability of the conclusion given
the probabilities of the premises is very straightforward, but the general case
is more difficult—largely because the probabilities on the premises may not be
independent. In its general form, this topic enters the domains of probabilistic
logic and methods for probabilistic and evidential reasoning, such as Bayesian
Belief Nets (BBNs) and Dempster-Shafer theory.

Since safety is about risk, which involves probability, it is quite likely that
some of the argument at or near the top level of a safety case will involve
probabilistic reasoning of these kinds. For example, we may have evidence
for software based on testing and on its integrity level, and we will wish
to combine these two “legs” to yield a “multi-legged” case, perhaps using
BBNs [17]. A question is whether these probabilistic calculations should be
opaque to the formalization, in the way that hazard analysis is, or at least
partially represented in the formalization—e.g., by attaching probabilities to
formal statements representing uncertain evidence or deductions. There are
techniques that combine formal methods with probabilistic calculations, such
as probabilistic model checkers, and there are also techniques that use formal
methods to estimate probabilities, such as Monte Carlo model counting using
SAT solvers. Experimentation is needed to understand how best to meld the
logical and probabilistic elements of a safety case, but my own belief is that
no matter how it is done, both kinds of analysis must be driven from the
same representation of the structure of the case.

5 Summary, and Suggestions for Future Work

I have adumbrated some of the issues in using formalization to represent
arguments in a safety case. One benefit of formalization is that it allows use
of automated tools to check the logical soundness of the case. Whether this
is worthwhile or not depends on whether unsoundness is a significant hazard
to real safety cases. My own experience in formal verification is that I have
repeatedly been humbled as the theorem prover finds flaws in arguments
that I considered either cast iron, or obvious. And in reading even tutorial
examples of safety cases, I have been unsettled by the size and diverse tactics
of the arguments. Other small examples have been found to employ flawed
reasoning [8], but I do not know whether this is a threat in real cases.

Kelly makes a strong argument for a systematic approach to safety case de-
velopment, and has introduced GSN (Goal Structuring Notation) as a means
to facilitate this [14]. In advocating formalization, my aim is not to supplant



Formalism in Safety Cases 13

GSN or other methods for developing and documenting safety cases in a
systematic and reader-friendly manner: rather, it is to provide a means for
mechanically checking the logical soundness of cases developed through these
or any other methods. Kelly himself describes a semantics for GSN in first
order logic that could, in principle, be used to check cases for soundness; the
techniques considered in this paper differ only in focusing on methods that
can be supported by powerful automation.

Formalization supported by automation brings a further benefit: by assur-
ing us that the overall argument is sound, it allows us to focus on the evidence
and assumptions that support the argument. Being able to concentrate on
each such item in isolation seems a valuable benefit to me. In addition, some
new opportunities become available: for example, the validity of certain kinds
of assumptions can be assured by checking or monitoring them at runtime. If
the assumptions are formalized, then construction of monitors can be auto-
mated by methods developed in the field of runtime verification [21]. Relia-
bility of monitored architectures with formal (and possibly perfect) monitors
is an interesting topic [16].

Yet another benefit of formalization is that it could allow development of
canonical representations for various tactics of argument, and of “metacases”
(cases about cases). I think this could be of value in its own right, as it would
allow a social process of community review and thereby reduce the vulner-
ability of intellectually isolated “one-off” cases. Current work at Adelard is
exploring these topics.

Using a simple example [11], I illustrated one way to formalize the top-
level argument of a simple case in classical logic (I actually used the higher
order logic PVS). Basir and colleagues [2] have undertaken a similar exercise
using pure first order logic. The example illustrates only one tactic for safety
argumentation: namely, enumeration over hazards. The work at Adelard has
identified eight different tactics and it remains to be seen whether each of
these can be formalized effectively.

Some proponents of safety cases look to Toulmin [26] rather than classical
logic in framing cases [3]; Toulmin stresses justification rather than inference.
My opinion is that Toulmin’s approach has merit in arguing topics such as
aesthetics or morality, where reasonable people can hold different views; but a
safety case should be based on agreed evidence about a designed artifact, and
here the expectation is that reasonable people must concur on the concluding
claim if the argument is sound. Thus, I remain of the opinion that classical
logic is adequate for formalizing safety cases, but I do agree that it is worth
seeking ways to represent Toulmin’s “warrant,” “backing,” and “rebuttal”
within the formalization. The predicate good doc that I used in the example
can be seen as a way to link to an extralogical “warrant” for certain steps
in the argument. However, the larger goals of Toulmin’s approach—namely,
justification and persuasion—are better achieved, in my opinion, by using
formalization and automation to allow reviewers to explore arguments in an
active, dynamic manner—for example, by conducting “what if” experiments.
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At the upper levels of a safety case, the system is represented very ab-
stractly, or even indirectly (e.g., by its hazards); at lower levels, there is
generally an explicit model of the system and the reasoning is closer to tradi-
tional formal verification, or its variants (such as mechanized FMEA). There
is obvious benefit if the formalization and reasoning at these levels can be
connected in some way. Similarly, we would like a connection between the
logical and probabilistic modes of formalization and reasoning. It is not at
all clear how to do this, but a tool bus may be one way forward, as it does
not require all tools to share a common representation [20].

A tool bus or other integration for the different modes and kinds of for-
malization and reasoning used in safety cases is a good topic for future inves-
tigation. Another is the identification, formalization, and analysis of canon-
ical tactics for safety case argumentation. Techniques for developing safety
cases in a modular or compositional manner would be a breakthrough; the
topic of emergent properties is particularly interesting in this context [4]. The
most important tasks for the future, however, are experiments to determine
whether formalization does deliver benefit in the development and assessment
of safety cases.
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