
Invited paper, presented at the 4th IEEE International Conference on Software Engineering and Formal Methods (SEFM),
Pune, India, September 2006. Appears in the SEFM proceedings pp. 21–28c©IEEE Computer Society.

Harnessing Disruptive Innovation in Formal Verification∗

John Rushby
Computer Science Laboratory,

SRI International
Menlo Park CA USA

rushby@csl.sri.com

Abstract

Technological innovations are sweeping through the field
of formal verification. These changes are disruptive to tools
based on interactive theorem proving, which needs new
ways to integrate the capabilities of novel technologies.

I describe two approaches. One is development and use
of SMT solvers: these use techniques from theorem prov-
ing but apply them in ways that enable model checking,
while also supporting highly automated theorem proving.
The other is a proposal for an Evidential Tool Bus: a loosely
coupled architecture that allows many different verification
components to collaborate to solve problems beyond the ca-
pability of any single component.

1. Historical Introduction

Ever since the first program verification systems of King
[35] and Good [27], theorem provers have played an im-
portant part in the mechanically-assisted analysis of com-
puter programs and software systems. Theorem provers
have evolved over the years to better support this applica-
tion, principally through improved automation for reason-
ing about arithmetic, data structures, and recursively or in-
ductively defined functions and relations. During this time,
the focus of formal verification has expanded from verifying
small concrete programs to analyzing rather intricate (often
concurrent) algorithms and the specifications (rather than
the code) for fairly complex systems. These algorithms and
specifications often are formalized directly in the notation
of the theorem prover concerned, and these notations also
have evolved, principally through use of higher-order logic
and rich type systems, so that they provide attractive envi-
ronments for formal specification. Until recently, the large
majority of substantial formal verifications were performed
using theorem provers of this kind, such as ACL2 [34], Coq

∗ This research was supported by SRI International.

[6], HOL [28] (and HOL Light [29] and Isabelle HOL [40]),
NuPRL [12], and PVS [42].

Then, in the early 1990s, effective finite state model
checkers such as Spin [32] and Murφ [21] (both of these use
explicit state representations) and SMV [38] (which uses
a symbolic representation based on BDDs) became widely
available. The limitation to finite state meant that most spec-
ifications had to be severely “downscaled” by Draconian re-
strictions on the size of data structures. Such downscaling
usually does not preserve correctness (sometimes it does not
preserve incorrectness either) and this compromises model
checking as an approach to verification—hence, its early
uses were mostly for refutation (i.e., bug finding), but it was
highly effective for that purpose.

The invention of predicate abstraction [47] allowed
model checking to expand from refutation to verification:
rather than arbitrarily downscale an algorithm or system
specification to finite state, predicate abstraction provides
a mechanizable approach to the construction of property-
preserving abstractions—so that model checking the finite
state abstraction does verify the original specification. Ini-
tially, manual guidance was needed to select the predicates
on which to abstract, but it was soon recognized that the
predicates appearing explicitly in the specification provide
a good starting point, and that the selection can iteratively
be refined through examination of the counterexamples pro-
duced by model checking inadequate abstractions [45].

This approach evolved into the automated methodol-
ogy of counterexample-guided abstraction refinement (CE-
GAR) [11], which employs a loop comprising abstraction,
model checking, counterexample generation and analysis,
and abstraction refinement. Decision procedures are used to
construct the abstractions, and for software specifications
(where the concrete transition relation may be too large or
too complex to manipulate directly) these are often con-
structed and explored “on the fly” with an explicit state
model checker; any counterexample produced by model
checking an abstraction is checked in its concrete interpre-
tation by a satisfiability solver and the proof of unsatisfi-

1



ability generated by the solver (in the case that the con-
crete instance is not a counterexample) is mined for infor-
mation (e.g., using interpolants or unsatisfiable cores) that
will guide refinement of the abstraction [2,30].

Thus, model checking grew from a technology that orig-
inally was seen as a useful adjunct to full verification by
theorem proving (e.g., to debug a specification prior to ver-
ifying it), into one that increasingly seems to rival theorem
proving for many verification tasks.

A similar historical trend can be seen in static analysis.
The early applications of abstract interpretation [13], for ex-
ample, were in optimizing compilers (for constant propa-
gation, data flow analysis, and so on). These were then ex-
tended to strong notions of type correctness (e.g., guarantee-
ing no null pointer dereferencing, no division by zero, etc.)
and then to arithmetic properties (e.g., no array bound vi-
olations, no floating point overflows1). Recent applications
include calculation of worst case execution time and stack
depth2, and the integrity of data structures (e.g., shape anal-
ysis [46] and separation logic [5]). Thus, verification of cer-
tain properties that formerly required interactively guided
theorem proving are now fully automated by static analyz-
ers.

So much for the past; what of the future?

2. Disruptive Innovation

The emergence of methods based on model checking
and static analysis as rivals to interactively guided theorem
proving for mechanized formal verification can be seen as
an instance of “low-end disruptive innovation” [9,10]. This
kind of innovation occurs when a technology, aimed at cus-
tomers who do not require the full performance of an in-
cumbent high-end technology, maintains a rapid rate of im-
provement and eventually overhauls and displaces the in-
cumbent. Standard examples of low-end disruptive innova-
tion are the microprocessor (vs. mainframes) and digital (vs.
film) photography.

Low-end disruption poses a challenge to developers of
incumbent high-end technologies. One response attempts
to neutralize the disruption by incorporating its innovations
into the incumbent technology. The danger here is that con-
tinued innovation may generate new disruptions and the
combination technology may always lag the latest innova-
tions: this is especially likely if the developers of the incum-
bent technology are not active participants in the continued
innovations. A second response, a dual of the first, is ac-
tively to further the disruptive innovation by exploiting in-
sights from deep knowledge of the incumbent technology.
A third response is to attempt additional disruption (to dis-

1 Seehttp://www.astree.ens.fr
2 Seehttp://www.absint.com

rupt the disruptors) by some innovation that exploits new
possibilities discovered in the combination of the incum-
bent and the disruptive technologies.

The previous paragraph describes an incumbent’s pos-
sible responses to disruptive innovation from the point of
view of an enterprise reacting to erosion of its market share
or its profitability, but I think we can usefully apply similar
analysis to choices in research directions. Here, the point is
not to protect the “market share” of theorem proving in ver-
ification against the encroachment of model checking and
static analysis, but to ask how their innovations can stimu-
late new approaches to theorem proving and to its combina-
tion with model checking and static analysis and their mu-
tual application to formal verification, for the benefit of all.

In the following sections, I will outline two ways in
which theorem proving can respond to recent disruptive in-
novations. One, which is already beginning to demonstrate
its value, is SMT solving. This can be seen as an instance of
the second response outlined earlier: it is an innovation that
takes some techniques from theorem proving and reengi-
neers and reinterprets them in ways that prove disruptive in
their own right. The other, an Evidential Tool Bus, is more
speculative; it is a proposal for combining many different
kinds of formal methods tools in a new way, and can be
seen as an instance of the third response mentioned above.

3. SMT Solvers: A Disruptive Innovation

Decision procedures for linear arithmetic and other theo-
ries useful in specifying software are important components
in theorem provers used for verification, such as ACL2
and PVS. Decision procedures operate overconjunctions
of formulas in their theories; the case analysis needed to
analyze disjunctions and general propositional structure is
performed by the main body of the theorem prover in or-
der to better control “case explosion,” which bedevils the-
orem proving just as “state explosion” does model check-
ing. However, this caution in case analysis (and expansion
of definitions) is important mostly in the higher “strategic”
levels of a proof: the lower level “endgame” branches of
a proof often can be discharged by brute force—if suffi-
cient brute force can be brought to bear. Strategies such as
grind in PVS do this quite successfully;grind uses de-
cision procedures in loose combination with a BDD-based
simplifier for propositional structure. However, the vast
improvements in propositional satisfiability (SAT) solvers
over the last five years (starting with Chaff [39]) now make
the combination of decision procedures with SAT solvers a
more interesting option.

Integrating decision procedures with a SAT solver yields
a solver for “satisfiability modulo theories,” generally
known as an SMT solver. There are several ways to con-
struct such solvers, but the most successful is the “lazy”

2

http://www.astree.ens.fr
http://www.absint.com


integration [18] pioneered in ICS [14], which began as a
project to make the capabilities of the decision procedures
in PVS available separately. In the lazy integration, all non
Boolean terms are abstracted to propositions and the SAT
solver is asked to generate a satisfying assignment; if there
are none, the formula is unsatisfiable and we are done, oth-
erwise, the original interpretation of the non Boolean terms
is restored and the conjunction of their truth assignments
is asserted to the decision procedure (e.g., ifx ≤ y is ab-
stracted toP and x < y + 1 is abstracted toQ and the
SAT solver assignsP to true andQ to false, then we as-
sert(x ≤ y) ∧ ¬(x < y + 1) to the decision procedure). If
the decision procedure verifies the conjunction, we are done
(the formula is satisfiable); if not, we mine the conjunction
for an “explanation” of its invalidity and assert its proposi-
tional abstraction (e.g.,P iff Q in the example above) to the
SAT solver as an additional clause that will prevent it gen-
erating similarly poor assignments in future, and ask it for a
new assignment. The whole process repeats until it yields a
result, or the SAT solver exhausts its search space (in which
case the formula is unsatisfiable).

The basic lazy integration just described must be very
carefully engineered to deliver high performance, rather
as modern SAT solvers are carefully engineered—though
SMT solvers are far more complex than SAT solvers. In
particular, the SAT solver and decision procedures must be
very tightly integrated, and the decision procedures must
yield high-quality explanations (to achieve maximum prun-
ing of the search space) at low cost. An experimental evalu-
ation of SMT solvers in 2004 [17] led to the initiation of an
annual competition (the 2005 results are reported in [4], the
2006 results will be available in August), which has spurred
dramatic improvement in the performance of SMT solvers:
modern SMT solvers routinely solve problems with tens of
thousand of constraints and variables. At SRI, the culmina-
tion of this line of development is the SMT solver Yices3,
which was developed by Leonardo de Moura and Bruno
Dutertre. Yices not only decides linear arithmetic on inte-
gers and reals (with optimizations for the important spe-
cial case of difference logic: that is, constraints of the form
x − y ≤ c), but fixed size bitvectors, equality with unin-
terpreted functions, recursive datatypes (such as lists and
trees), arrays, tuples, and records of all these, and some
quantified formulas.

High-performance SAT solvers enabled the development
of bounded model checkers [7]: these calculate the sym-
bolic representation of thek-step unfolding of the system
specification (for some explicit boundk, such as 20) and
then seek an assignment to the open variables that will re-
fute a given safety property. Bounded model checking can
often handle larger problems than BDD-based model check-

3 Seehttp://yices.csl.sri.com

ers, and can be extended from refutation to verification by a
variety of methods, includingk-induction [49] (which is or-
dinary inductive invariance, extended to requirek steps in
the basis and in the antecedent to the inductive step; ordi-
nary induction is 1-induction in this framework, and larger
values ofk yield stronger proof methods).

By direct extension, SMT solvers enable development
of bounded model checkers for infinite state systems:
whereas a finite-state SAT-based model checker must rep-
resent (range-restricted) integers as fixed-width bitvectors,
and must synthesize symbolic representations of hardware
circuits to perform arithmetic operations (e.g., a ripple-carry
adder for addition), an SMT-based model checker can deal
with arithmetic on unbounded integers and reals using its
decision procedures. These “infinite bounded model check-
ers,” such as the one for SAL [19,16], combine the automa-
tion and other benefits of model checking (such as coun-
terexamples, and a language oriented to the specification of
computational systems rather than arbitrary mathematics)
with the broader applicability of theorem proving, and I be-
lieve they will prove disruptive to both technologies and to
several application domains.

Even for restricted arithmetic, a bounded model checker
using an SMT solver is often faster than one using a SAT
solver with the bitvector representation, and the ability use
uninterpreted functions often allows large parts of a spec-
ification to be abstracted away—for example, in verify-
ing correctness for the bypass logic of a microprocessor
pipeline we can represent the ALU as an uninterpreted func-
tion, whereas finite state model checking must use an ex-
plicit circuit, thereby incurring additional cost and the risk
of unsoundness (if the chosen circuit happens to mask the
manifestations of a bug in the bypass logic). The ability
to reason effectively over real numbers also allows infi-
nite bounded model checkers to encroach on the space of
specialized model checkers for infinite-state systems, such
as those for timed systems (e.g., UPPAAL [37]). Dutertre
and Sorea [22] describe how timed systems can be rep-
resented and analyzed effectively in SAL, and Brown and
Pike [43] describe some optimizations and their application
to an example (the Biphase Mark protocol) that previously
had posed a formidable challenge to both theorem proving
and even to the combination of theorem proving with model
checking for timed automata. Brown and Pike’s fully pa-
rameterized treatment in SAL requires less than 300 lines of
specification and is verified in under ten seconds, whereas
previous treatments required thousands of proof steps and
hours of computer time. This approach has some disadvan-
tages compared with model checkers for timed automata—
for example, the user must invent the “disjunctive invari-
ant” [44] to be verified, whereas timed automata do reach-
ability analysis—but is more widely applicable (for exam-
ple, the underlying SMT solver can deal with the case ex-

3

http://yices.csl.sri.com


plosion when fault-tolerance is added to real-time). Recent
work [36] demonstrates that SMT solvers can be very effec-
tive in calculating predicate abstractions, and it is likely that
this can aid the construction of suitable invariants.

In use, an infinite bounded model checker withk-
induction combines many of the attractive features of both
model checking and theorem proving. As with a model
checker, incorrect conjectures quickly yield explicit coun-
terexamples that manifest their falsehood (provided the
SMT solver can reach sufficiently deep instances) and, as
with a theorem prover, valid conjectures can be proved by
induction and the use of lemmas. Unlike a theorem prover,
conjectures that are insufficiently strong to support the in-
ductive step yield an explicit counterexample that can help
identify suitable strengthenings or lemmas. (If the conjec-
ture is valid, the first state of the counterexample must be
unreachable and an effective strategy is to seek strengthen-
ings and lemmas that exclude this state.) Also unlike an in-
teractive theorem prover, each attempted proof is fully au-
tomatic and usually takes only a few seconds.

SMT solvers enable construction of infinite bounded
model checkers as rivals to interactive theorem provers, but
interactive theorem provers can also use the same SMT
solvers as backends. We are in the process of engineering
this combination with PVS and Yices, and it will be inter-
esting to determine whether, and in what cases, the total hu-
man time taken to develop a verification is reduced by use
of an infinite bounded model checker compared with an in-
teractive prover that uses the same SMT solver.

4. The Evidential Tool Bus: Harnessing Dis-
ruptive Innovations

Model checking, abstract interpretation and other meth-
ods for static analysis, SMT solvers, predicate abstraction,
and other new technologies may all be disruptive to for-
mal verification based on theorem proving, but each of these
technologies tends to be trapped inside its own tools: their
full capabilities are seldom exported to the API of the tool
concerned (e.g., BLAST [30] uses predicate abstraction to
discover invariants that it uses in verifying C programs, but
it does not normally disclose those invariants), and their im-
plementations are often large and complex and not readily
extracted for use in other tools. Even if the full capabilities
of a technology were liberated from its tool, it would not
be easy to add it to some other tool—because most tools are
built around a particular technology and lack the conceptual
and practical “openings” into which additional technologies
can be inserted. For example, verification of concurrent sys-
tems by interactive theorem proving is bedeviled by the cost
and difficulty of developing suitably strong invariants, but
existing interactive theorem provers lack the means to inter-
act with the technologies (such as predicate abstraction and

dynamic analysis [24]) that can propose and strengthen in-
variants.

There is thus a “market failure” in verification technol-
ogy: component technologies are not made available as sep-
arate implementations because there are no users for them,
and established tools cannot take advantage of new tech-
nologies because they are too tightly integrated around their
current technologies.

Verification problems are seldom a perfect match to the
capabilities of any given tool, so users must compromise
and use the one they believe to be the best match, or must
constructad hoc, often manual, “tool chains” to allow use
of, say, a model checker and a theorem prover. Some the-
orem provers do integrate other technologies—for exam-
ple, PVS has both a symbolic model checker and a predi-
cate abstractor—but the basic paradigm is one of theorem
proving, so some of the capabilities of the other technol-
ogy may be lost if they do not fit the paradigm (e.g., the
PVS model checker does not provide counterexamples; this
is because the theorem prover expects its backend compo-
nents to deliver either truth values or a list of subgoals—it
has no way to interpret the sequence of states that comprises
a counterexample), and the complexities of integration gen-
erally cause the other technology to lag the state of its art.
These integrations, which are only modestly successful, can
be seen as instances of the first response to disruptive inno-
vation outlined in Section2.

We need a new framework for verification tools that al-
lows use of all technologies that can contribute to the over-
all goal, and that allows them to work cooperatively, but
without the burdens of tight integration. Such a framework
will encourage development of components that do a single
thing well, and the collection of such components will be
more than the sum of its parts. I propose theEvidential Tool
Bus(ETB) as such a framework: it provides a way to loosely
integrate verification components so that they can collabo-
rate to solve problems beyond the capability of any single
component. The idea is related to coordination languages
such as Linda [26] and to Web services and service-oriented
architectures, but it is specialized to verification and this al-
lows it to be simpler, and at the same time powerful.

In any decentralized service-oriented system, there must
be some agreed ontology for describing the services re-
quested and performed by components, and the data on
which they operate. General purpose ontologies are chal-
lenging to develop and to specify, but formal verification is
concerned with formulas in logic, so logic provides a con-
venient and rich foundation for the ontology of the ETB.
Different verification components use different fragments
of logic (e.g., propositional, quantified), and use them to de-
scribe different things (e.g., formulas, state machines, coun-
terexamples, unsat cores), so the tool bus logic must ad-
mit numerous specializations along these two dimensions,

4



which we refer to as the dimensions of sublogics and of rep-
resentations, respectively.

The ETB ontology will be expressed over these sublog-
ics and representations (e.g., “this is a counterexample on a
state machine expressed over propositional combinations of
linear arithmetic on integers with uninterpreted functions”).
A higher-order logic expressed in XML is a candidate for
the top of the tool bus sublogic hierarchy; the collections
of sublogics and representations will be open ended so that
new components with new requirements can readily be ac-
commodated.

The ETB will manipulatejudgmentson this ontology: a
judgment is an assertion of the formT ` E : A, which de-
notes the claim that component tool instanceT provides ev-
idenceE for assertionA. Evidence may be generated only
when explicitly requested, so this field can default to empty.
Typical assertions include:

1. F is a well-typed formula in contextτ ,

2. C is a decision procedure context representing the in-
putΓ,

3. Ξ is a satisfying assignment forF in theoryT ,

4. Θ is a minimal unsatisfiable set of literals fromF in
theoryT .

Components are viewed as oracles that can verify as-
sertions and construct evidence for them. Each component
builds judgments by forward chaining from existing judg-
ments or backward chaining through the generation of proof
obligations. The assertions in judgments may contain vari-
ables. For example, the assertion “?m is the abstraction of
state machineM wrt. predicatesΓ” where ?m is a vari-
able invites some component to construct a predicate ab-
straction; it will then return a judgment containing the as-
sertion “M̂ is the abstraction of state machine M wrt. pred-
icatesΓ” where M̂ is indeed the predicate abstraction of
M with respect to the predicatesΓ together with some evi-
dence for this.

Some components may be scripts that describe a recipe
for performing standard kinds of analysis (e.g., “to model
check an infinite state system, first get a finite state abstrac-
tion, then model check that”), and others may be interac-
tively guided by a human user. Scripts resemble the strate-
gies of PVS or the tactics of a HOL-style prover, but instead
of classical proof steps, they invoke the capabilities of mod-
ern verification components: generation of invariants, test
cases, construction of abstractions, mining of counterexam-
ples, and so on.

Judgments are both the means for chaining inferences
together—so that a suitable chain of judgments constitutes
a proof for a given conjecture—and the means of resource
discovery and invocation in the ETB. To its components,
the ETB looks like a virtual blackboard to which judgments

are posted: a component may be invoked explicitly by post-
ing a judgment with its name in the tool field. Judgments
may also use a variable as the name of the tool, in which
case any component that can use the judgment may then go
to work on it (possibly in competition with other compo-
nents); the identity of the component concerned will appear
in the judgments that it posts in return.

The main virtues of the interaction model used in the
ETB are that it is open ended and loosely coupled. We do
not need to know what components are “out there”: new
and experimental components can be added at any time and
will be activated whenever they can contribute to the anal-
ysis of a posted judgment. To reduce bandwidth and other
resources, large data structures (e.g., a BDD) will be trans-
mitted only on demand—normally an identifying “handle”
will be transmitted instead. The loose coupling allows com-
ponents to be designed to perform a single analysis well,
and in ignorance of what other components are available.
Of course, finding what analyses and capabilities are really
useful will depend on experimentation and consideration of
the services provided by other components, but a compo-
nent’s specification and implementation may focus purely
on the judgments that it supports.

The forward and backward chaining of the ETB resem-
ble a distributed logic programming framework such as
SRI’s Open Agent Architecture (OAA) [8], but its lower-
level virtual blackboard closer to the tuple-space model of
Linda [26] (there are also similarities with The Information
Bus [41]). The ETB will also need some simple task con-
trol functions to terminate components whose results are
no longer required and to release storage of data structures
whose handles have been finalized, and also an explicit re-
source discovery function so that human users can gain an
understanding of available components, and their capabili-
ties. An instance of the ETB could operate within a single
machine, but it naturally lends itself to distribution—both
within institutions and across them—where it could allow
developers of different component technologies to interact
seamlessly among themselves and with their users.

The ETB is intended to support interactions of a fairly
coarse granularity: those that occur one to a few thousand
times in the course of an overall analysis; it is not intended
to support the tight, fine-grained interactions that occur in-
side, say, an SMT solver (where a single analysis may in-
volve billions of interactions between decision procedures
and SAT solver), nor the very simple interactions that oc-
cur between a proof assistant and its backend solvers. These
limitations reflect the novel ground targeted by the ETB:
the tight and the simple interactions are already served by
known methods. Judgments in the ETB provide a form of
semantic integration that is different than prior work such as
MATHWEB [25], PROSPER [20], or the Logic Broker Ar-

5



chitecture [3], which has focused on operational aspects of
integration.

We anticipate that the ETB will be used in contexts, such
as certification for safety or security, where credible evi-
dence may be demanded for any claim. Because evidence is
crucial to some applications, we treat it as a first class en-
tity and that is why we call it theEvidentialTool Bus. How-
ever, although the ETB manages evidence, it does not spec-
ify or restrict its form; in particular, it does not require that
evidence is reduced to a preselected set of elementary proof
steps.

In some circumstances, the reputation of a component
may be considered sufficient evidence; in others, diverse
verifications using different components (e.g., two different
SMT solvers) may be an attractive choice; and in others, sat-
isfactory execution on (mechanically generated) test cases
may be preferred; yet others may require an independently
checkable proof. Many verification components can be sup-
ported by an independent “reference” component that lacks
the performance of the primary component, but that is much
simpler, and may be deemed trustworthy—either because it
has been formally verified, or by virtue of other V&V pro-
cesses. It is conceivable that a high performance component
can generate “hints” to boost the performance of a reference
component without compromising the soundness of the lat-
ter’s guarantee. For example, a reference SAT solver might
lack the heuristics of a high-performance solver and could
take days on problems that the high-performance compo-
nent solves in minutes. But the high-performance solver
could generate evidence that includes (or can be mined for)
a list of which variables to split on first. Such a hint could
vastly boost the performance of the reference solver. There
is likely to be a range of possibilities for reference compo-
nents that differ in performance and assurance, and in the
hints that they can use productively.

Although most components and scripts will chain on
the assertions contained in judgments, others could chain
on the evidence to automate strategies such as diversity or
the guidance of trusted reference components. In “explo-
ration” mode, we may prefer the performance of state of the
art components, and switch to the reference solver only for
the final “certification” runs. In this mode, chaining on ev-
idence could be used to mine hints from high-performance
components for consumption by reference components. We
can imagine scripts that automate this process to provide
high quality evidence with acceptable performance. The fi-
nal product will be a chain of argument that tracks the
provenance of every assumption and claim (rather like the
“proofchain analyzer” of PVS), together with the support-
ing evidence that can be used in a safety case or other certi-
fication process.

5. Conclusions

Technological innovations are sweeping through the
field of formal verification. These changes are disruptive
to approaches based on interactive theorem proving, which
needs to find ways to exploit the capabilities of new tech-
nologies. A plausible, but inadequate response, uses the new
technologies as backend solvers. It is inadequate because
the new technologies often do not fit the paradigm of theo-
rem proving and return results (e.g., counterexamples, un-
satisfiable cores, lists of predicates) that are of little use to
traditional proof procedures.

I have described two different and, I believe, more suc-
cessful responses to disruptive innovation. The first, exem-
plified by SMT solvers, contributes to the disruption by ex-
tracting a core capability—namely, decision procedures—
from theorem proving and combining it with a recent
innovation—namely, fast SAT solving—to yield an inno-
vation that is disruptive to both model checking (where it
enables construction of bounded model checkers for infi-
nite state systems), and theorem proving (wherek-induction
automates many proofs that previously required interactive
guidance).

Fast SAT solvers proved disruptive in areas beyond those
where SAT solving was traditionally employed: for exam-
ple, the best methods for certain kinds of planning and
scheduling problems now use SAT solvers. I speculate that
SMT solvers will similarly prove disruptive beyond their
current application in verification (again, planning is a can-
didate, where SMT solvers could extend SAT-based meth-
ods with the ability to handle metric and temporal con-
straints).

The second response that I described, the Evidential Tool
Bus (ETB), is more speculative and currently only a pro-
posal. However, we expect to start constructing a prototype
very soon and to make it available as an open source project
sometime in 2007. ETB-ready components available with
the prototype will be extracted from our own existing tools,
and we hope to solicit early collaborators who will provide
novel components for the same release.

We plan use the ETB to construct an analyzer for hybrid
systems based on hybrid abstraction [50], and to support
verification with components that generate invariants by ab-
stract interpretation and predicate abstraction. We will vali-
date the ETB by applying it to interesting problems, includ-
ing some proposed for the repository of the Verified Soft-
ware Grand Challenge [48,33,31].

I hope others find the ETB an attractive proposal and will
consider using it when available and will adapt their tools
to provide components that can be attached to it. Although
most instances of the ETB will operate within a single in-
stitution, it is conceivable that a worldwide verification re-

6



source could be constructed in this way and that it could
provide a forum for extensive collaboration.

If fully successful, the approaches described here could
have a disruptive impact beyond the technologies used for
formal verification: the real targets for disruption are tra-
ditional methods for software development, validation, and
certification.

Acknowledgments. The proposal for an evidential tool bus
was developed with N. Shankar and discussions with our
colleagues Leonardo de Moura, Bruno Dutertre, Josh Levy,
Sam Owre, Rachid Rebiha, Hassen Saı̈di, and Ashish Ti-
wari. An earlier version appears as [15].

References

[1] R. Alur and D. Peled, editors.Computer-Aided Verification,
CAV ’2004, volume 3114 ofLecture Notes in Computer Sci-
ence, Boston, MA, July 2004.

[2] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, and K. L.
McMillan. An analysis of SAT-based model checking tech-
niques in an industrial environment. In D. Borrione and
W. Paul, editors,Correct Hardware Design and Verifica-
tion Methods: 13th IFIP WG 10.5 Advanced Research Work-
ing Conference, CHARME 2005, volume 3725 ofLecture
Notes in Computer Science, pages 254–268, Saarbrücken,
Germany, Oct. 2005.

[3] A. Armando and D. Zini. Towards interoperable mecha-
nized reasoning systems: The logic broker architecture. In
A. Corradi, A. Omicini, and A. Poggi, editors,First AI*IA-
TABOO Joint Workshop from Objects to Agents: Evolutive
Trends of Software Systems, pages 70–75, Parma, Italy, May
2000. Pitagora Editrice Bologna.

[4] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Sat-
isfiability modulo theories competition. In K. Etessami and
S. K. Rajamani, editors,Computer-Aided Verification, CAV
’2005, volume 3576 ofLecture Notes in Computer Science,
pages 20–23, Edinburgh, Scotland, July 2005.

[5] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic exe-
cution with separation logic. In K. Yi, editor,Programming
Languages and Systems: Third Asian Symposium, APLAS,
number 3780 in Lecture Notes in Computer Science, pages
52–68, Tsukuba, Japan, 2005.

[6] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development. Springer, 2004. Coq home page:
http://coq.inria.fr/ .

[7] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In W. R. Cleaveland, editor,Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS ’99), volume 1579 ofLecture Notes in Computer
Science, pages 193–207, Amsterdam, The Netherlands, Mar.
1999.

[8] A. Cheyer and D. Martin. The open agent architecture.Au-
tonomous Agents and Multi-Agent Systems, 4(1–2):143–148,
Mar. 2001.

[9] C. M. Christensen.The Innovator’s Dilemma. Harvard Busi-
ness School Press, 1997.

[10] C. M. Christensen.The Innovator’s Solution. Harvard Busi-
ness School Press, 2003.

[11] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Emerson
and Sistla [23], pages 154–169.

[12] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleave-
land, J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock,
N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F.
Smith. Implementing Mathematics with the Nuprl Proof
Development System. Prentice Hall, Englewood Cliffs, NJ,
1986. Nuprl home page:http://www.cs.cornell.
edu/Info/Projects/NuPRL/ .

[13] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In4th ACM Symposium on
Principles of Programming Languages, pages 238–252, Los
Angeles, CA, Jan. 1977. Association for Computing Machin-
ery.

[14] L. de Moura, S. Owre, H. Rueß, J. Rushby, and N. Shankar.
The ICS decision procedures for embedded deduction. In
D. Basin and M. Rusinowitch, editors,2nd International
Joint Conference on Automated Reasoning (IJCAR), volume
3097 ofLecture Notes in Computer Science, pages 218–222,
Cork, Ireland, July 2004.

[15] L. de Moura, S. Owre, H. Rueß, J. Rushby, and N. Shankar.
Integrating verification components. In Shankar [48].

[16] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar,
M. Sorea, and A. Tiwari. SAL 2. In Alur and Peled [1],
pages 496–500. SAL home page:http://sal.csl.
sri.com/ .

[17] L. de Moura and H. Rueß. An experimental evaluation of
ground decision procedures. In Alur and Peled [1], pages
162–174.

[18] L. de Moura, H. Rueß, and M. Sorea. Lazy theorem prov-
ing for bounded model checking over infinite domains. In
A. Voronkov, editor,18th International Conference on Auto-
mated Deduction (CADE), volume 2392 ofLecture Notes in
Computer Science, pages 438–455, Copenhagen, Denmark,
July 2002.

[19] L. de Moura, H. Rueß, and M. Sorea. Bounded model check-
ing and induction: From refutation to verification. In W. A.
Hunt, Jr. and F. Somenzi, editors,Computer-Aided Verifica-
tion, CAV ’2003, volume 2725 ofLecture Notes in Computer
Science, pages 14–26, Boulder, CO, July 2003.

[20] L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind,
G. Robinson, M. Gordon, and T. Melham. The PROSPER
toolkit. In S. Graf and M. Schwartzbach, editors,Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS 2000), volume 1785 ofLecture Notes in Computer
Science, pages 78–92, Berlin, Germany, Mar. 2000.

[21] D. L. Dill. The Murφ verification system. In R. Alur and
T. A. Henzinger, editors,Computer-Aided Verification, CAV
’96, volume 1102 ofLecture Notes in Computer Science,
pages 390–393, New Brunswick, NJ, July/Aug. 1996.

[22] B. Dutertre and M. Sorea. Modeling and verification of a
fault-tolerant real-time startup protocol using calendar au-
tomata. InFormal Techniques in Real-Time and Fault-

7

http://coq.inria.fr/
http://www.cs.cornell.edu/Info/Projects/NuPRL/
http://www.cs.cornell.edu/Info/Projects/NuPRL/
http://sal.csl.sri.com/
http://sal.csl.sri.com/


Tolerant Systems, volume 3253 ofLecture Notes in Com-
puter Science, Grenoble, France, Sept. 2004.

[23] E. A. Emerson and A. P. Sistla, editors.Computer-Aided Ver-
ification, CAV ’2000, volume 1855 ofLecture Notes in Com-
puter Science, Chicago, IL, July 2000.

[24] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE Transactions on Software En-
gineering, 27(2):99–123, Feb. 2001. Daikon home page:
http://pag.csail.mit.edu/daikon .

[25] A. Franke and M. Kohlhase. MATHWEB, an agent-based
communication layer for distributed automated theorem
proving. In16th International Conference on Automated De-
duction (CADE), volume 1632 ofLecture Notes in Artificial
Intelligence, pages 217–221, Trento, Italy, July 1999.

[26] D. Gelernter and N. Carriero. Coordination languages and
their significance.Commun. ACM, 35(2):97–102, Feb. 1992.

[27] D. I. Good. Toward a Man-Machine System for Proving
Program Correctness. PhD thesis, University of Wisconsin,
1970.

[28] M. J. C. Gordon and T. F. Melham, editors.Introduc-
tion to HOL: A Theorem Proving Environment for Higher-
Order Logic. Cambridge University Press, Cambridge, UK,
1993. HOL home page:http://www.cl.cam.ac.uk/
Research/HVG/HOL/ .

[29] J. Harrison. HOL Light: A tutorial introduction. In M. Sri-
vas and A. Camilleri, editors,Formal Methods in Computer-
Aided Design (FMCAD ’96), volume 1166 ofLecture Notes
in Computer Science, pages 265–269, Palo Alto, CA, Nov.
1996. HOL Light home page:http://www.cl.cam.
ac.uk/˜jrh13/hol-light/index.html .

[30] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Soft-
ware verification with BLAST. InProceedings of the Tenth
International Workshop on Model Checking of Software
(SPIN), volume 2648 ofLecture Notes in Computer Science,
pages 235–239. May 2003. BLAST home page:http:
//embedded.eecs.berkeley.edu/blast/ .

[31] T. Hoare. The verifying compiler: A grand challenge for
computing research.J. ACM, 50(1):63–69, 2003.

[32] G. J. Holzmann.The SPIN Model Checker: Primer and Ref-
erence Manual. Addison-Wesley, 2003. SPIN home page:
http://spinroot.com/ .

[33] C. Jones, P. O’Hearn, and J. Woodcock. Verified software: A
grand challenge.IEEE Computer, 39(4):93–95, Apr. 2006.

[34] M. Kaufmann and J. S. Moore. An industrial strength the-
orem prover for a logic based on Common Lisp.IEEE
Transactions on Software Engineering, 23(4):203–213, Apr.
1997. ACL2 home page:http://www.cs.utexas.
edu/users/moore/acl2/ .

[35] J. C. King.A Program Verifier. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, 1969.

[36] S. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT tech-
niques for predicate abstraction. InComputer-Aided Verifica-
tion, CAV ’2006, Lecture Notes in Computer Science, Seat-
tle, WA, 2006. To appear.

[37] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nut-
shell. Int. Journal on Software Tools for Technology Trans-
fer, 1(1–2):134–152, Oct. 1997. Uppaal home page:http:
//www.uppaal.com .

[38] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, Boston, MA, 1993.

[39] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. InProceed-
ings of the 38th Design Automation Conference, pages 530–
535, Las Vegas, NV, June 2001.

[40] T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL: A
Proof Assistant for Higher-Order Logic. Springer, 2002. Is-
abelle home page:http://isabelle.in.tum.de/ .

[41] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Informa-
tion Bus—an architecture for extensible distributed systems.
In Fourteenth ACM Symposium on Operating System Princi-
ples, pages 58–68, Asheville, NC, Dec. 1993. (ACM Oper-
ating Systems Review, Vol. 27, No. 5).

[42] S. Owre, J. Rushby, N. Shankar, and F. von Henke. For-
mal verification for fault-tolerant architectures: Prolegom-
ena to the design of PVS.IEEE Transactions on Software
Engineering, 21(2):107–125, Feb. 1995. PVS home page:
http://pvs.csl.sri.com .

[43] L. Pike and G. M. Brown. Easy parameterized verification
of biphase mark and 8N1 decoders. InTools and Algorithms
for the Construction and Analysis of Systems (TACAS ’06),
number 3920 in Lecture Notes in Computer Science, pages
58–72, Vienna, Austria, Apr. 2006.

[44] J. Rushby. Verification diagrams revisited: Disjunctive in-
variants for easy verification. In Emerson and Sistla [23],
pages 508–520.

[45] V. Rusu and E. Singerman. On proving safety properties
by integrating static analysis, theorem proving and abstrac-
tion. In W. R. Cleaveland, editor,Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’99), vol-
ume 1579 ofLecture Notes in Computer Science, pages 178–
192, Amsterdam, The Netherlands, Mar. 1999.

[46] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Trans. Prog. Lang. Syst.,
24(3):217–298, May 2002.

[47] H. Säıdi and S. Graf. Construction of abstract state graphs
with PVS. In O. Grumberg, editor,Computer-Aided Verifi-
cation, CAV ’97, volume 1254 ofLecture Notes in Computer
Science, pages 72–83, Haifa, Israel, June 1997.

[48] N. Shankar, editor. IFIP Working Conference on Veri-
fied Software: Theories, Tools, and Experiments, Zurich,
Switzerland, Oct. 2005. Available athttp://vstte.
inf.ethz.ch/papers.html .

[49] M. Sheeran, S. Singh, , and G. Stålmarck. Checking safety
properties using induction and a SAT-solver. In W. A.
Hunt, Jr. and S. D. Johnson, editors,Formal Methods in
Computer-Aided Design (FMCAD 2000), volume 1954 of
Lecture Notes in Computer Science, pages 108–125, Austin,
TX, Nov. 2000.

[50] A. Tiwari. Abstractions for Hybrid Systems. Computer Sci-
ence Laboratory, SRI International, Menlo Park, CA, 2004.
Combines several conference papers: available athttp:
//www.csl.sri.com/˜tiwari/new.pdf .

8

http://pag.csail.mit.edu/daikon
http://www.cl.cam.ac.uk/Research/HVG/HOL/
http://www.cl.cam.ac.uk/Research/HVG/HOL/
http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html
http://embedded.eecs.berkeley.edu/blast/
http://embedded.eecs.berkeley.edu/blast/
http://spinroot.com/
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/
http://www.uppaal.com
http://www.uppaal.com
http://isabelle.in.tum.de/
http://pvs.csl.sri.com
http://vstte.inf.ethz.ch/papers.html
http://vstte.inf.ethz.ch/papers.html
http://www.csl.sri.com/~tiwari/new.pdf
http://www.csl.sri.com/~tiwari/new.pdf

