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Abstract. A synchronous observer is an adjunct to a system model that
monitors its state variables and raises a signal flag when some condition
is satisfied. Synchronous observers provide an alternative to temporal
logic as a means to specify safety properties but have the advantage
that they are expressed in the same notation as the system model—
and thereby lower the mental hurdle to effective use of model checking
and other techniques for automated analysis of system models. Model
checkers that do use temporal logic can nonetheless employ synchronous
observers by checking for properties such as “never(flag raised).”

The use of synchronous observers to specify properties is well-known;
rather less well-known is that they can be used to specify assumptions
and axioms, to constrain models, and to specify test cases. The idea
underlying these applications is that the basic model generates more
behaviors than are desired, the synchronous observer recognizes those
that are interesting, and the model checker is constrained to just the
interesting cases. The efficiency in this approach is that it is usually
much easier to write recognizers than generators.

The paper describes and illustrates several applications of synchronous
observers.

1 Introduction

Model checkers are called that because, in their basic form, they check whether
a system defined as a finite state machine is a Kripke model of a specification ex-
pressed in a temporal logic. The selection of finite state machines for the system
description and (branching time) temporal logic for their specification has prag-
matic benefits: in this form, the model checking problem can be fully automated
and its complexity is linear in the size of both system and specification (although
the size of the system is often exponential in the number of its components).
However, the term model checking has grown beyond this precise usage and
now refers to any highly automated method for formal analysis of systems and
their specifications—as contrasted, for example, to methods that use interac-
tive theorem provers. Under this looser usage, specification methods other than
temporal logic may be employed, and one example is the synchronous observer.
Here, the system is described as a state machine, as before, and its specification
is likewise described by a state machine that observes the state variables of the



system and sets a Boolean “flag” variable true as long as the required properties
hold. The “model checker” then verifies that the flag variable is always true.
Obviously, the flag variable can be used in either “parity”: we can choose to set
it true when the required property is satisfied or, alternatively, if it is violated.
For consistency in the examples, we will use state variables whose names are a
variant on ok for the former case and a variant on alarm for the latter.

Both the concept and the term “synchronous observer” were introduced in
the context of the synchronous languages developed in France and, in particular,
by the Lesar model checker for the language Lustre [1,2]. However, the idea is
readily adapted for use with temporal logic model checkers: we simply model
check for the temporal property always(ok) or always(NOT alarm) (this ex-
presses the never construct used in the abstract to this paper); the “always”
operator may be written as AG in a specification language based on the branching
time logic CTL (Computation Tree Logic), or as G or O in one based on Linear
Temporal Logic, LTL. If the model checker allows liveness properties (e.g., its
specification language provides the operator eventually, which may be written
AF, F, or ©) then synchronous observers can likewise be extended to liveness
properties.

An advantage claimed for synchronous observers over temporal logic speci-
fications is that a single language is used to describe both the system and its
required properties (and, as we will see later, also its assumptions). Furthermore,
engineers readily understand the method, since it is like adding a runtime check
to an executable program. In contrast, when using temporal logic specifications,
the engineer is required to learn and use one language and method for describing
the system, and another for specifying its properties. As we will see, many sim-
ple specification constructs are quite difficult to write as temporal logic formulas
and intermediate “pattern languages” have arisen to ease this difficulty [3].

The purpose of this paper is to describe and illustrate the uses and benefits
of synchronous observers. We begin with their familiar use in the specification of
properties and assumptions, and then proceed to less familiar uses where they
enable the specification of relational constraints and of axioms for uninterpreted
functions. We then turn from applications in verification to their use in the
construction of test cases. These illustrations of the versatility of synchronous
observers constitute Section 2 of the paper; brief conclusions are presented in
Section 3.

2 Synchronous Observers and their Applications

In the subsections that follow, we introduce several applications for synchronous
observers.
2.1 Specification

We begin by describing the standard use of synchronous observers to specify
properties and assumptions, as in Lesar [2], but we do so in the framework of



model checkers that ordinarily use temporal logic specifications. To make our
illustrations concrete, we use the syntax and tools of the SAL suite of model
checkers from SRI [4].

In SAL, systems are specified as synchronous or asynchronous compositions
of modules that read and write state variables of various (not necessarily finite)
types. Thus, an observer module can be written as follows.

observer: MODULE =
BEGIN
INPUT
<state variables>
QUTPUT
ok: BOOLEAN
INITIALIZATION
ok = TRUE
TRANSITION
[
<property> --> ok’ = TRUE
1
ELSE --> ok’ = FALSE
]
END;

Here, <state variables> represents declaration of the observed state vari-
ables and their types, and <property> represents a Boolean expression over these
state variables that specifies the desired property. The observer sets the Boolean
flag variable ok to TRUE or FALSE according to whether the property is satisfied
or not: “primed” variables in SAL represent values in the “new” state, and “un-
primed” in the “old” state; the symbol --> indicates that the assignments are
“guarded” by the Boolean expression appearing to its left.

If the system is specified in a module system (which may itself be the compo-
sition of other modules), then the “observed system” is the synchronous compo-
sition of this with the observer, which is written as follows (in SAL, the symbol
| | represents synchronous composition).

’ observed: MODULE = (system || observer);

We can then specify the theorem correctness, which states that ok is always
true in the observed system.

’ correctness: THEOREM observed |- G(ok);

Depending on the types of the state variables in system, we can examine
correctness using the symbolic, bounded, or infinite-bounded model checkers
of SAL using shell commands such as the following.

sal-smc example.sal correctness

sal-bmc example.sal correctness -d 17 -it

sal-inf-bmc example.sal correctness -i -d 2 -ice




The first of these invokes SAL’s symbolic (BDD-based) model checker on the
theorem correctness in the file example.sal; this will prove the theorem if
it is true, or provide a counterexample if it is not (of course, it may also run
out of memory or time). The second invokes the bounded (SAT-based) model
checker to search for a counterexample up to depth 17, operating iteratively
(i.e., depth 1, depth 2,...); the third invokes the infinite-bounded (SMT-based)
model checker to attempt proof by k-induction at depth 2 (i.e., 2-induction),
and to provide an inductive counterexample if this fails.

The basic construction illustrated above allows checking of invariants over
the state variables of the system; it can be extended to general safety properties,
including bounded liveness properties and properties on transitions, by adding
new variables to the state of the observer that act as “history variables” to
remember the values of system state variables some time in the past.

2.2 Assumptions

Systems are seldom expected to satisfy their specifications in an unconstrained
environment; usually there are assumptions about the environment and the sys-
tem is required to satisfy its specification only in cases where the assumptions
are satisfied.

Like properties, assumptions also can be described by synchronous observers
and the verification method can be suitably adjusted to ensure that the required
properties are satisfied for all those reachable states that satisfy the assumptions.

In SAL, we could use an assumptions module, defined in a similar way to the
observer module in the previous section, but using a flag variable aok (for “as-
sumptions OK”) whose assignments are guarded by Boolean expressions over the
state variables that specify the assumptions. We then form the synchronous com-
position of the system, assumptions, and observer and state the requirement
that the correctness property should be true whenever the assumptions are sat-
isfied (the symbol => represents implication in SAL).

constrained: MODULE = (system || assumptions || observer);

requirement: THEOREM constrained |- G(aok => ok);

Actually, the LTL formula suggested above G(aok => ok) raises some inter-
esting issues. Consider the trace of some imaginary system shown below, which
displays the values of aok and ok in the first six steps (where T represents true,
and F false).

step123456
aok: TTTFTT
ok: TTTTFT

This fails to satisfy the formula G(aok => ok) because ok is false at step 5
while aok is true. But aok itself was false at step 4 and usually we do not care
what happens after the assumptions have been violated.



To specify this different requirement in LTL, it is convenient to use the “weak
until” operator W, which is usually defined in terms of the “strong” variant U as
follows (where V indicates disjunciton):

W(p,q) < G(p) VU(p, q)-

Intuitively, U(p, q), which is primitive in most formulations of LTL, requires that
q eventually becomes true, and that p is true until (and possibly beyond) that
point; W is the same but relaxes the requirement for ¢ to become true if p is
invariantly true. A subtle point is that LTL formulas are defined only on infinite
traces; however, most model checkers extend interpretation of G and W (but not
F or U) to finite traces. Using the W operator, our adjusted requirement can be
written in SAL as follows.

’ requirement_altl: THEOREM constrained |- W(ok, NOT aok); ‘

Intuitively, this says that ok must be true until aok is false, and it accepts the
trace we saw earlier, and also the following one.

step123456
aock: TTTFTT
ok: TTTFFT

Here, both aok and ok go false at step 4. There are several formulations of
compositional reasoning (e.g., [5,6]) that require the assumptions to fail before
the property. The trace above does not satisfy this requirement, but the first
one does. An LTL formula that specifies the “fails before” requirement uses the
strong until operator U and is expressed in SAL as follows.

requirement_alt2: THEOREM constrained |- NOT U(aok, NOT ok);

Most readers will surely agree that it is not easy to see that this formula
captures exactly the informal requirement that aok fails before ok; neither is
it straightforward to comprehend the difference between this formula and the
earlier one using W, nor why the positions of ok and aok are reversed in the
arguments to W and U.

We are employing a “hybrid” approach here: using synchronous observers to
specify properties and assumptions, and temporal logic to combine them. This is
rather unnatural and was done to illustrate some of the complexities in writing
temporal logic specifications.

Exploiting synchronous observers more fully, it becomes straightforward to
say what we mean. First, we adjust the assumptions module so that it does

nothing if the <assumption> is satisfied and “latches” aok as soon as it becomes
false.



assumptions: MODULE =
BEGIN
INPUT
<state variables>
OUTPUT
aok: BOOLEAN
INITIALIZATION
aok = TRUE
TRANSITION
[
<assumption> -->
]
ELSE --> aok’ = FALSE
]
END;

Then we modify the observer module so that it takes aok as an input and
latches ok to false if the desired <property> ever goes false when aok is true.

observer: MODULE =
BEGIN
INPUT
aok: BOOLEAN,
<state variables>
OUTPUT
ok: BOOLEAN
INITIALIZATION
0K = TRUE
TRANSITION
L
aok AND NOT <property> --> ok’ = FALSE
]
ELSE -—>
1
END;

Now we use the model checker simply to verify that ok is invariantly true.

requirement_simplified: THEOREM constrained |- G(ok);

This combination of observers requires the assumptions to fail before the
property; if we wish to allow the assumptions to fail at the same time as the
property, then we can simply replace the appearance of aok in the observer
guard by aok’.

As always when theorems have the form of an implication, as these implicitly
do, it is prudent to check that they are not vacuously true: that is, we should
check that the antecedent is not invariantly false. There is a large literature
on the related problem of vacuity detection in LTL formulas (e.g., [7]) and the
necessary tests become quite difficult. However, this difficulty is a result of the
complex LTL formulas used to state the basic property of interest. If we use



synchronous observers of the form described above, then all we need to do is
check that each of the positive flag variables can remain true and each of the
negative ones can remain false at least one step beyond its initialization. In
the example, this is accomplished by seeking a counterexample to the following
formula, which asserts that aok is false in the second step.

’ check_simple: CLAIM constrained |- X(NOT aok);

Of course, an alternative is to prove the positive claim X (aok), but this is com-
putationally more demanding (with a bounded model checker, it requires k-
induction).

2.3 Expressivity

Model checkers in which the system is specified by state machines generally
provide some way to describe how the values of state variables are updated on
a state transition. For example, in SAL, the expression

x? =x+y

indicates that the “new” value of the state variable x is the sum of the current
values of itself and the state variable y. Nondeterministic assignments are often
supported as well, as in the following example, where x is nondeterministically
assigned a value between 25 and 50, inclusive.

’x’IN{a:nat|a>=25ANDa<=50} ‘

Now, suppose we wish to specify that the new value of x can be any value
larger than its current value. In SAL we could write

’x’IN{a:nat|a>x} ‘

but not all model checkers provide this expressivity. Another option, available
in those languages that provide guarded commands is the following.

’ (x> > x) --> x’ IN { a: nat | TRUE } ‘

But notice this requires a primed variable to appear in the guard, and not all
model checker state machine languages allow this.

In this simple case, an alternative would be to use an auxiliary variable that
is nondeterministically set to the amount by which x should be incremented.
However, this does not solve the general problem, which is that of updating
(possibly several variables of) the state so that some constraint is satisfied—
such as to nondeterministically update real variables x and y so that they lie on
a unit circle (i.e., x¥x + y*y = 1).

However, one method that is almost always feasible uses a synchronous ob-
server. Returning to the simple example of nondeterministically incrementing x:
in the main system specification, we make an unconstrained nondeterministic
assignment to x as follows.



’ x> IN { a: nat | TRUE }

Then, in a synchronous observer module, we enforce the desired relation using
cok (for “constraints OK”) as our flag variable as follows.

TRANSITION
[
(x’ > x) -—>
1
ELSE --> cok’ = FALSE
]

If the language does not allow primed variables in the guards, then we will need
to introduce a history variable o1dx to remember the previous value of x.

TRANSITION
oldx’ = x;
L
(x > o0ldx) -—>
]
ELSE --> cok’ = FALSE
1

Then we model check for whatever property p we had in mind, but only in
cases where cok is true.

constrained_prop: THEOREM (system || constraints) |- G(cok => p)

Or, if the required property is specified by a synchronous observer with flag
variable ok, we would use the following variant.

constrained_req: THEOREM
(system || observer || constraints) |- G(cok => ok)

Rather than the explicit implication G(cok => ok), we can also use the meth-
ods of the previous section. Note that if we are using a history variable in the
constraints module, then the property p or flag ok must also be defined in a
similar way, or should reference oldx rather than x, as otherwise the property
will be out of step with the constraint.

Sometimes, we may we wish to consider only traces in which the constraints
are satisfied globally. For example, in the following trace the constraint is violated
at step 6, but it may be that some earlier decisions made this violation inevitable.

step123456
Cok: TTTTTF
ok: TTTFFT

Hence, although the required property is violated at steps 4 and 5, we consider
this entire scenario invalid because the constraint is not globally true. If desired,
although it is seldom appropriate, we can specify this interpretation as follows
(and, of course, we can do the same for other kinds of assumptions as well).



globally_constrained_req: THEOREM
(system || observer || constraints) |- G(cok) => G(ok)

Note that this is a liveness property and cannot be verified by bounded model
checkers, although they can find counterexamples.

Using observers to specify constraints is especially useful when we wish to up-
date multiple variables in a way that enforces a relation on them as, for example,
the case mentioned earlier of points constrained to lie on a circle. This finds par-
ticular application in specifying relational abstractions for hybrid automata [8].
Unlike other methods for abstracting hybrid automata, which typically abstract
the state space, relational abstraction retains the state space (i.e., continuous
variables continue to range over the reals) but simplifies the transition relation.

Generally, we start with a true hybrid automaton (i.e., a state machine plus
differential equations) and calculate a relational abstraction in the manner de-
scribed by Sankaranarayanan and Tiwari and mechanized in the HybridSAL
Relational Abstractor [9]. But another approach, suitable when we have or need
only a crude model of the dynamical system, is to assert a relational abstraction
as the model. An example is described in [10]; there, the basic task is analysis
of human-machine interaction and only crude models of the aircraft automation
and dynamics are needed, such as “when automation is in a climb mode, the
pitch angle must be positive” and “when the pitch angle is positive, the altitude
increases.” These are specified in a constraints module as follows.

INITIALIZATION
cok = TRUE;
TRANSITION
[ actual_mode = op_des AND pitch > 0 --> cok’ = FALSE;
[1 actual_mode = op_clb AND pitch < 0 --> cok’ = FALSE;
[1 actual_mode = vs_fpa AND fcu_fpa <= O AND pitch > O
--> cok’ = FALSE;
[1 actual_mode = vs_fpa AND fcu_fpa >= O AND pitch < O
--> cok’ = FALSE;
[ pitch > O AND altitude’ < altitude --> cok’ = FALSE;
[ pitch < O AND altitude’ > altitude --> cok’ = FALSE;
[] pitch=0 AND altitude’ /= altitude --> cok’ = FALSE;
[1 ELSE -->
] END;

Observe that each guard is the negation of a desired constraint (e.g., the
first guard is the negation of the natural constraint actual mode = op_des =>
pitch <= 0). This is because we generally require all assumptions or constraints
to be satisfied—i.e., they are conjoined together—whereas guarded commands
are disjoined. Hence, we apply De Morgan’s rule and disjoin the negations. An
alternative is to conjoin all the (unnegated) constraints together in the guard of
a single command.

This subsection has shown how synchronous observers provide expressivity
that can assist in the construction of system models. This is a different topic
than their expressivity with respect to the classes of properties that can be



specified, which will be considered in Section 3. In the following subsection, we
continue our examination of the use of synchronous observers in the construction
of system models by considering the case of very abstract models that employ
uninterpreted functions.

2.4 Axioms for Uninterpreted Functions

Traditional model checkers require the system model to be totally explicit—
effectively, a program or hardware circuit—and this is one of the reasons that
interactive theorem provers are preferred for some verification tasks. For reasons
of efficiency or generality, we often wish to abstract some parts of a design prior
to verification. One way to do this is to replace parts of the design by a nondeter-
ministic component (this is feasible with traditional model checkers) but a more
general and attractive method is to use uninterpreted functions constrained by
suitable axioms.

One standard example in model checking is to verify correctness of the bypass
logic in a model of a processor pipeline [11]. The pipeline feeds values into an
arithmetic logic unit (ALU) and a standard way to verify its correctness is to
prove that the outputs of the ALU are the same in a processor design with and
without the pipeline. In traditional model checking we need to provide some
implementation for the ALU; if this is fully accurate the verification complexity
may be very high, but if it is simplified (e.g., every operation is an addition)
some flaws in the bypass logic may be masked by the simplification (e.g., a flaw
that transposes arguments will be masked by the commutativity of addition);
and if the simplification is excessive (e.g., nondeterministic) then the property
may become unverifiable. A much more attractive solution is to model the ALU
by an uninterpreted function ALU(x, y): that is, a function about which we
know nothing. If we did wish the function to be commutative for some reason,
we would add the following axiom.

Vx,y : ALU(x, y) = ALU(y, x)

First order logic provides uninterpreted functions and, when restricted to the
unquantified case (i.e., all variables are implicitly universally quantified), the
theory of uninterpreted functions with equality is decidable. Interactive theorem
provers provide uninterpreted functions and often a decision procedure to au-
tomate the unquantified case and, for this reason (among others), they may be
preferred to conventional (i.e., finite-state or explicit-state) model checkers for
some verification tasks.

However, the theory of uninterpreted functions is one of the core theories
automated in modern solvers for satisfiability modulo theories (SMT) [12] and
bounded model checking can be generalized to use these solvers, yielding infinite
bounded model checkers, abbreviated as inf-BMC [13] (“infinite” because SMT
includes theories of infinite cardinality such as the integers and rationals).

Inf-BMC blurs the line between model checking and theorem proving and
is widely used for verification of models that use linear arithmetic, arrays, and

10



other theories decided by SMT. It would also be very attractive to incorporate
uninterpreted functions into inf-BMC models, but we must then find a way to
convey any axioms about the functions to the underlying SMT solver. By now,
readers will not be surprised to learn that synchronous observers provide a way
to do this. The method is basically the same as that described in the previous
section.

For example, suppose we have a system with one integer-valued state vari-
able called count and that the behavior of the system is simply to apply an
uninterpreted function f to this variable at each step. This can be specified in
SAL as follows.

f(x: int): int;
system: MODULE =
BEGIN
OUTPUT
count: int
INITIALIZATION
count = 0
TRANSITION
count’ = f(count)
END;

Now suppose we wish to assert the axiom Vx : £f(x) > x and then prove
that count is always non-negative. We introduce a synchronous observer called
constraints that does nothing as long as the axiom about f is satisfied, but
sets the flag variable cok to false when it is violated.

constraints: MODULE =
BEGIN
INPUT
count: integer
OUTPUT
cok: BOOLEAN
INITIALIZATION
cok = TRUE
TRANSITION
L
f(count) >= count -->
(1
ELSE --> cok’ = FALSE
]
END;

We then synchronously compose the system and the observer and state the
theorem that count is non-negative provided the axiom flagged by cok is satis-
fied.

nonneg: THEOREM (system || constraints) |- G(cok => count >= 0);

11



The SAL inf-BMC can prove this by 1-induction.

’ sal-inf-bmc increments.sal nonneg -i -d 1

If we modify the guard encoding the axiom to read as follows, so that f (x)

’ f(count) >= count - 375 -—> ‘

can be less than x, then the SAL inf-BMC constructs a 1-step counterexample
in which £(0) = -1.

This ability of SMT solvers, and hence of inf-BMC, to construct witnesses
for uninterpreted functions is very useful: it helps us to discover necessary con-
straints, as described in the following section.

2.5 Discovering Assumptions

The previous sections have described how synchronous observers can be used to
specify assumptions, axioms, and constraints. The descriptions assume we know
these beforehand and merely need to formalize them in a way that is feasible and
effective for model checking. A variant problem is that of discovering suitable
assumptions and constraints. Synchronous observers are very convenient for this
purpose. We can start with an “empty” assumptions observer of the following
form, where aalarm is a flag for “assumption alarm” and is set true when the
assumptions are violated. (It is “empty” because the command with guard FALSE
can never be taken.) Incidentally, we are using a “negative” flag variable here
simply for variety.

assumptions: MODULE =

BEGIN

OUTPUT

aalarm: BOOLEAN
INPUT

<state variables>

INITIALIZATION

aalarm = FALSE
TRANSITION
L

assumption_violation:
FALSE --> aalarm’ = TRUE
assumptions_ok:
[] ELSE -—>
]
END;

Then we model check for the property of interest p when aalarm is false.

learn_assumptions: LEMMA (system || assumptions) |- G((NOT aalarm) => p)‘

If this formula is violated, the counterexample should suggest a missing assump-
tion, which we add to the assumptions module (below the FALSE guard).

12



[] NOT <new assumption> --> aalarm’ = TRUE

We proceed in this way until all necessary assumptions have been discovered.
The use of counterexamples to guide discovery of assumptions can be employed
no matter how the assumptions are represented. But this form of synchronous
observer is a particularly attractive representation because it allows each newly
discovered assumption to be added as a new guard: it is truly incremental. By
contrast, a more tightly integrated representation of the assumptions might re-
quire substantial revision at each step.
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Fig. 1. “Box and Arrow” Diagram of a Self-Checking Pair

This approach combines very well with that of the previous subsection. Un-
interpreted functions are very attractive for the highly abstract modeling that
is appropriate for the upper levels of system design, where systems are often
represented by “box and arrow” diagrams. Flaws at this level of design are a
major cause of incidents in aircraft software [14]. Traditionally, it has been diffi-
cult to apply any mechanized analysis to this level of description, so often they
are prematurely “prototyped” in a simulation environment like Simulink and the
prototype then becomes the requirement. However, uninterpreted functions can
be used to provide suitably abstract semantics for a box and arrow diagram and
the methods of this and the previous subsection can then be used to analyze it
and to discover its properties and required assumptions.
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An example, taken from [15] and shown in Figure 1 illustrates this. Here,
the goal is to deduce the assumptions under which a “self-checking pair” works
correctly. Self-checking pairs are used quite widely in safety-critical systems to
provide protection against random hardware faults: two identical controllers per-
form the same calculations and their results are compared; if they differ the pair
shuts down (thereby becoming a “fail-stop” processor [16]) and some higher-
level fault management activity takes over. Obviously, this does not work if
both controllers become faulty and compute the same wrong result. We would
like to learn if there are any other scenarios that can cause a self-checking pair
to deliver the wrong result; we can then assess their likelihood (for example, the
double fault scenario just described may be considered extremely improbable)
and calculate the overall reliability of this architecture.

In the SAL model corresponding to the box and arrow diagram shown in Fig-
ure 1, the controllers simply compute some uninterpreted function f of their
inputs, unless they are faulty—in which case the produce some nondeterministic
(but incorrect) output. The components shown in red are synchronous observers
(the arrows represent the state variables that they observe). The ideal box
serves as a correctness specification: it computes the same function f as the real
controllers but never fails. The requirement is that if the (as yet undetermined)
assumptions are not violated, and if the checker component does not signal a
fault, then the output of the self-checking pair should be the same as that of the
ideal controller.

Among the assumptions discovered (see [15] or [17] for fuller descriptions) is
one that says a faulty distributor component must not relay different, incorrect
values x and y to the two controllers such that £(x) = f£(y) (x and y correspond
to c_.data and m_data in the diagram). This would be a Byzantine fault on the
part of the distributor (this can occur—even when the implementation of the
distributor is as simple as a solder joint—if voltages or timing are close to their
boundaries) and is unlikely to be discovered in simulation experiments. This is
because we would first have to anticipate the possibility of Byzantine faults and
build this into the simulation model for the distributor, and would also have to
supply some concrete instantiation for £ (x) (e.g., x+1) and are unlikely to choose
one that can produce the same output for different inputs. In contrast, the SMT
solver underneath inf-BMC synthesizes whatever behavior of the distributor and
whatever instantiation of f are needed to construct a counterexample.

2.6 Test Cases

All the applications of synchronous observers that we have seen so far concern
their use in verification. A quite different application is their use in test genera-
tion. It is well-known that model checkers can be used to construct test cases: if
we seek a test characterized by a property p then we model check for G(NOT p)
and the counterexample provides a test case.

One difficulty in exploitation of this idea is to decide what properties p cor-
respond to good test cases, and how to specify such p. Often, tests are based
on structural coverage of the source program or specification: that is, we aim
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to find a suite of tests that exercises each statement or branch (or visits each
state or transition). This can be accomplished by adding “trap variables” that
are set true when some coverage target is encountered, and then using these
variables in definition of p [18]. Unfortunately, model checkers are so good at
finding counterexamples that the tests produced by this method are often short
and very similar to each other [19].

A better approach uses a synchronous observer to indicate whether the trace
seen so far satisfies some “test purpose.” The observer merely has to recog-
nize tests satisfying its purpose, then raise a flag tok (for “test OK”). We then
model check for G(NOT tok) and the model checker effectively performs con-
straint satisfaction to generate tests satisfying that purpose. This approach is
very effective. Several examples are given in the manual for the SAL test gener-
ator sal-atg [20]. One concerns the “shift scheduler” for the automatic gearbox
of a car.

The inputs to this component are torque, velocity, and gear; its outputs
drive actuators that change clutch pressures and thereby influence the gearbox
to select a different gear. The goal of test generation in this example is to find
sequences of inputs that drive the state machine of the shift scheduler through
all its transitions and this is easily accomplished by sal-atg. However, the
test cases have many “discontinuities” in the gear input: that is, the currently
selected gear may go from 2 to 4 to 1 in successive inputs. We might suppose that
a more realistic test sequence would not have these discontinuities, and therefore
propose a test purpose in which the gear input changes by at most one at each
step. We can implement this purpose by adding the following observer to the
SAL specification of the shift scheduler.

purpose: MODULE =
BEGIN
INPUT
gear: [1..4]
OUTPUT
continuous: BOOLEAN
INITIALIZATION
continuous = (gear=1);
TRANSITION
continuous’ = continuous AND (gear - gear’ <= 1)
AND (gear’ - gear <= 1);
END;

monitored_system: MODULE = (scheduler || purpose);

Here, the purpose module takes gear as input and produces the Boolean
output continuous: this output remains TRUE as long as the sequence of in-
puts changes by at most 1 at each step (and starts at 1). The purpose mod-
ule is then synchronously composed with the existing scheduler to yield the
monitored_system. We then repeat test generation, but indicate to sal-atg
that the flag continuous, representing the test purpose, must remain true. It
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turns out that the test generated holds the gear input constant for long periods
(e.g., the first ten inputs that it generates are 1, 1, 1, 1, 1, 1, 2, 3, 3, 3) so we
might adjust the test purpose to additionally require that the gear input always
changes value from one step to the next. It is easy to add this to the purpose
module and we then obtain a single test of length 51 that discharges all the cov-
erage goals while satisfying the enlarged test purpose (the first ten gear inputs
are 1,2, 3,2,3,2,3, 2,3, 2).

3 Discussion and Conclusion

I hope the examples in this paper serve to alert readers to the utility and versatil-
ity of synchronous observers. The first examples that we considered were focused
on the use of observers to specify properties and assumptions. The main advan-
tage that we claim for this application of synchronous observers is convenience:
it is generally easier and less error-prone to specify properties and assumptions
in this way than to write temporal logic formulas. But convenience aside, do we
give up any expressiveness in using synchronous observers rather than temporal
logic?

In the “hybrid” case where we use observers to define flag variables and tem-
poral logic to combine them, the answer is obviously “no,” because we have the
full resources of both methods at our disposal. So let us focus on the case where
flag variables are used only in formulas of the form G(ok) and G(aok => ok),
and compare these to general temporal logic formulas over “natural” state vari-
ables (i.e., state variables that are intrinsically part of the system model, not
those introduced as observers). The main loss with synchronous observers is that
they are restricted to safety properties and therefore cannot specify general live-
ness properties. However, most applications are not concerned with possibilities
in the indefinite future (e.g., “every request eventually receives a response”), but
with explicit bounds (e.g., “every request receives a response within 8 steps, or
returns an error”), and these are safety properties.

On the other hand, synchronous observers can specify properties that LTL
cannot (an example is “p is true on every alternate state”). Industrial specifi-
cations languages such as the Accellera/IEEE Property Specification Language
(PSL) [21] and SystemVerilog Assertions (SVA) [22] extend LTL with regular
expressions and thereby achieve approximate expressive parity with synchronous
observers.! CTL and LTL are mutually incomparable and some properties that
are in CTL but not LTL may also be beyond the reach of synchronous observers
(because CTL can specify nondeterministic possibilities whereas synchronous
observers monitor single threads).

In general, it is safe to assume that synchronous observers have approxi-
mately the same expressive power as industrial assertion languages based on

1 We say “approximate” because, although regular expressions are equivalent to finite
automata, the comparison here is complicated by the presence of state variables
ranging over possibly infinite types and constrained by theories and, in the case of
SVA, local variables.
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LTL, when the latter are restricted to safety properties. Hence, selecting be-
tween the two approaches can be based on user preferences, tool capabilities,
and overall workflows, rather than fundamental limitations.

The later examples that we considered focussed on the use of observers to
enhance the class of system models that can be defined conveniently. These
include models where updates to state variables must maintain some constraint,
and those where axioms are applied to uninterpreted functions. The methods
used in these examples were later used to facilitate the discovery of suitable
constraints, and the specification of test purposes.

The idea underlying these applications is that the basic system model gener-
ates more behaviors than are desired, the synchronous observer recognizes those
that are “good” (or “bad,” depending on the parity) and raises a flag appropri-
ately, and the model checker is constrained to scenarios where the flag is raised.
The value in this approach derives from the fact that it is usually much easier
to specify systems that recognize desired behavior than those that generate it.
Of course, the approach is “inefficient” in that the basic system model gener-
ates many scenarios that are rejected and “thrown away” by the observer and
this may make it unsuitable for explicit-state model checkers, which really do
have to enumerate all behaviors. But there is no comparable penalty when using
symbolic model checkers, whether based on BDDs, SAT, or SMT: the observer
simply adds to the constraints that must be solved by the underlying symbolic
method.

Despite their versatility, synchronous observers are intuitive and easy to use:
the system, its requirements, assumptions, axioms, and test plans are all written
using the same state-machine notation, and this reduces the learning burden
for verification and test engineers. Furthermore, it eliminates the need to use a
property specification language (apart from “canned” formulas such as G(p)):
in traditional model checking, the need to learn a property language based on
temporal logic is often a major obstacle to adoption and effective use.

Synchronous observers closely correspond to runtime monitors for executable
programs, and this also is a familiar concept to most engineers. Furthermore,
assumptions for high-level models, possibly discovered in the manner described
in Section 2.5, can provide the basis for runtime monitors that deliver signif-
icant benefit in system reliability [23]. These monitors could even be formally
synthesized directly from the model and this is an attractive direction for future
research.
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