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Summary
We describe the design of a tlktributedgeneral-purpose

computingsystemthatenforcesa multilevel security policy.
The system is composed of standard UNIX systems and small
trustworthy security mechanisms linked together in such a way

as to provide a total system which, is not only demonstrably
secure, but also highly efficient and cost effective. Despite the
heterogeneity of its components, the system as a whole appears
to be a single multilevel secure UNIX system,sincethefactthat
itisactuallya distributedsystemiscompletelyhiddenfromits
usersandtheirprograms.Thisisachievedthroughtheuseof
the.“NewcastleConnection”,a softwaresubsystemthatlinks
togethermultipleUNIX or UNIX-look-alike systems, without
requiring any changes to the source tiode of either the operating
system or any user programs. Construction of a prototype
implementation is in progress.

1. Introduction
Attempts to construct secure general-purpose operating

systems have not been notably successful so far. The
performance of those systems that hove been built is poor, they
often lag many versions behind the conventional operating
systems from which they are derived, and doubts have been
expressed concerning the extent t[~ which their verification
really does provide compelling evidence for their security [9].

We believe that these problems are mainly due to refiance
on a security kernel as the primary mechanism for enforcing
security. Because it provides an addkional level of
interpret at ion, a security kernel necessarily imposes some
performance degradation - and this degradation is likely to be

greater when general-purpose, rathev than specific, applications
must be supported. Also, the division of a conventional
operating system into untrusted and trusted (security kernel)
components is a complex and expensive task which cannot
easily accommodate changes and enhancements to its base
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operating system. Finally, and as we have argued
elsewhere [10], security kernels for general-purpose operating
systems tend to be complex in themselves, and to have complex
interactions with non-kernel “trusted processes” - with the
result that the verification of their security properties is neither
as complete, nor as convincing, as might be desired. None of
these difficulties are arguments against security kernels per ee;

they are arguments against using a security kernel = the sole
security mechanism in a general-purpose system.

In this paper we propose a system design which uses a
number of different mechanisms in order to provide a secure,
general-purpose, distributed computing system. Our proposal

involves interconnecting some small, specialized, provably
trustworthy systems with a number of larger, untrusted “host”
machines in t way that provides a total system which is not
only demonstrably secure, but also highly efficient, cost-
effect ive, and convenient to use. The untrusted host machines
will each provide services to a single security partition and wiIl
continue to run at their full speed. The trusted components
will mediate communications between the untrusted hosts and
will also provide specialized services such as multilevel secure

file storage.

In short, we propose to finesse the problems that have
caused difficulty in the past by aiming to build a distributed
secure sustern, rather than a secure operating qMnn.

This paper is derived from one which will appear in a
forthcoming special issue of IEEE Computer. A much more
extensive treatment of thk material is available as a technical

report [12].

2. Principles and Mechanisms for Secure and
Distributed Systems
The structure of all secure systems constructed or designed

recently has been influenced by the idea of a rejerence monitor
a concept first described in the Report of the Anderson

Panel [1]:
“ ... the reference monitor mediates each reference
made by a program in execution by checkhg the
proposed access against a list of accesses authorized
for that user.”

It is implicit in this idea,

appreciation and application,

but utterly fundamental to its
that information, programs in
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execution, and users belonging to different security

classifications should he kept totally separate from one
another. That is to say, there must be no channels for the flow
of information between, or among, users and data of different
security classifications - except those mediated by reference

monitors. For their own protection, reference monitors must
also be kept separate from untrusted system components.

Our approach to the design of secure systems is b=ed on
the twin key notions identified above - separation and
mediation:

it is necessary to separate entitie8 of dij~erent
security classification, and to mediate and control
the communication channels between entities oj
different classifications.

Separation and mediation represent distinct logical concerns.
In the interests of intellectual manageability, not to mention
ease of development and verification, the mechanisms which
realize them are best kept distihct also. We consider it a
weakness of many previous secure system designs that they
have confused these two issues and have used a single
mechanism - a security kernel - to handle them both.

When separation is recognized M a dktinct issue, it becomes
possible to consider a number of alternative mechanisms for

providing it. It seems clear that the fewer the physical

resources that are shared between security levels, the simpler it
should be to achieve separation between those levels.

Unfortunately, the structure of conventional, centralized
systems is antithetical to this very natural requirement: they
comprise a single resource which must be shared between a
number of users and functions. For secure operation, a security
kernel is needed to synthesize separate “virtual” resources from
the shared resources actually available. The mechanisms that
perform this “synthetic separation” are not only inimical to the

efficiency of the system, but are generally complex - making it
difficult to guarantee their own correctness.

In contrast to traditional, centralized systems, modern
distributed systems seem rather well matched to at least one of
the requirements for secure operation: they necessarily comprise
a number of physically separated components, each of which
can, potentially, be dedicated to a single security level or to a
siugle function. In order to achieve security, it is then only
necessary to control communications between the dktributed
components and to provide trustworthy reference monitors for

security-critic al operations. The real challenge here is to find
ways of structuring the system so that the separation naturally

provided by physical distribution is fully exploited to simplify

the mechanisms of security enforcement without destroying the
coherence of the overall system.

It is costly to provide physically separate systems for each
security partition and reference monitor - consequently we use
physical separation only for the main computing resources
(“hosts”) of the system and for the “security processors”.
Hosts may be used for activities in different security partitions
provided those activities are separated in time, and are
memory less, while cryptographic techniques can be used to

separate different uses of shared communications and storage
media. Each security processor may support a number of

different separation and reference monitor functions, and also
some untrusted support functions, by using a separation

kernel [10] to provide rugged separation between those
functions. Experience indicates that separation kernels (simple
security kernels whose only function is to provide separation)
can be relatively small, simple, and fast [2], and their
verification seems simpler and more complete than that for
general-purpose security kernels [11].

We term the four separation mechanisms identified above

the physical, temporal, cryptographical, and logical
techniques, respectively. Whereas existing secure system
designs tend to exploit only one technique (the logical - kernel
based - one), our proposal incorporates all four and uses each
wherever it is the most appropriate,

The most significant feature of this approach to the
provision of secure computing is that it allows the (untrusted)
host machines to provide their full functionality and
performance. Another benefit is that it enables the mechanisms
of security enforcement to be isolated, single-purpose, and
simple. We therefore believe that with this approach it possible
to construct secure systems whose verification is more
compelling, and whose performance, cost, and functionality are
more attractive, than is the case at present.

To be truly useful, such a heterogeneous network
(comprising both untrusted general-purpose systems and trusted
specialized components) must operate as a single coherent

system rather than as a network of systems. We have chosen
to locate our mechanisms for providing security within the
context of a distributed system called “UNIX UNITED” that

has been developed in the Computing Laboratory at the
(University of Newcastle upon Tyne [3]. A UNIX UNITED

system is com~*ed of a (possibly large)set of inter-linked
standard UNIX systems (or systems that can masquerade as
UNIX at the kernel interface level), each with its own storage
and peripheral devices, accredited set of users, system
administrator, etc. The naming structures (for files, devices,
commands and directories) of each component UNIX system are
joined together into a single naming structure, in which each
UNIX system is, to all intents and purposes, just a directory.
The result is that, subject to proper accreditation and

appropriate access control, each user, on each UNIX system,
can read or write any file, use any device, execute any
command, or inspect any directory, regardless of which system

it belongs to. The simplest possible case of such a structure,
incorporating just two UNIX systems, named as ‘‘unixl” and

“unix!l’, is shown below.

***
UNIX is aTrademark of Bell Laboratories.
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A

A
current ‘.’8 --> brien

working directory b
brian

a quicks&t

From nnixl, with the root (“/”) and current working
directory (“.”) as shown, one could copy the file “a” into the
corresponding directory on the other machine with the shell
command

a I.. /unix2/ueer/brienAi

(For %ose unfamiliar with UNIX, the initial “/” symbol

indicates that a path name starts at [the root directory, rather
than the current working directory, al~d the “..” symbol is used
to indicate a parent directory.)

This command is in fact a perfectly conventional use of the
standard “shell” command interpreter, and would have exactly
the same effect if the naming structure shown had been set up
on a single machine, with “unixl” and “unix2” actually being
conventional directories.

AH the various standard UNIX facilities (whether invoked
viashellcommands,or by systemcallswithinuserprograms)

concernedw kb the naming structurecarryoverunchangedin

form and meaning to UNIX UNITED, causinginter-machine

communicationto take place as necessary.It is therefore
possible for a user to specify a dkectory on a remote machine
as being his current working directory, to request execution of a
program held in a file on a remote machine, to redirect input
and/or output, to use files and perip lreral devices on a remote
machine, and to set up “pipeline$” which cause parallel
execution of communicating processes on different machines. It
is worth reiterating that these are completely standard UNIX
facilities, and so can be used without conscious concern for the
fact that several machines are involved.

UNIX UNITED has been implemented without changing the
standard UNIX software in any way; we have not
reprogrammed the UNIX kernel, nor :any of its utility programs

not even the shellcommand interpreter.This has been

achievedby incorporatingan additio!tlallayerofsoftware- the

“NewcastleConnection”- in each of the component UNIX
systems. This layer of software sits on top of the resident

UNIX kernel; from above, it is functionally indistinguishable

from the kernel, while from below, it appears to be a normal
user process. Its role is to filter out system calls that have to
be re-directed to another UNIX system, and to accept system

calls that have been directed to it from other systems.
Communication between the Newcastle Connection layers on

the various systems is based on the use of a remote procedure
call protocol [13], and is shown schematically below.

H
User programs,
non-resident
UNIXeof tware

Newcastle Connection +

UNIXKernel

recmte
proceduve

calls

User progreme,
non-resident
UNIXeof tsame I
Newcastle (%rmeetion I

UNIXKernel I

UNIxl UNIX2

All requests for systcm-supported objects (such es files)
ultimately result in proeednre calls on the UNIX Kernel
interface. If the service or object required is remote, rather
than local, then the local procedure call is simply intercepted by

the Newcastle Connection and replaced with a remote one. The
substitution of remote for local procedure calls is completely
invisible at the user or program level. Thk provides a
powerful, yet simple way of putting systems together - but,
equally, it provides a means of partitioning a single system into

a number of distributed components.

This is the crucial property of UNIX UNITED from our
perspective, since it enables a large insecure system to be
broken into a number of physically separate components with
no visible change at the user level. In the following sections we
will explain how we exploit thk physical separation in order to
construct a secure system. We will begin with a very simple

system that merely isolates different security classifications

from one another.

3. A Securely Partitioned Distributed System
We assume the environment of a UNIX UNITED system

composed of standard UNIX systems (and possibly some
specialized servers that can masquerade as UNIX) inter-
connected by a local area network (LAN) and we suppose that
all these component systems are untrustworthy: the security of
the overall system may make no assumptions about their
behavior - except that the LAN provides their only means of
inter-communication.

The consequenceof not trustingthe individualsystemsk

thatthe unitof protectionmust be thesesystemsthemselves:

we willdedicateeach one to a fixedsecurityclassification.

Thus,we could ailocate three systems to the SECRET level, two
more to the CONFIDENTIAL level, and the rest to
UNCLASSIFIED use. Limitedneed-to-knowcontrolscan be

provided by dedicatingindividualmachines to different

compartmentswitbina singlesecuritylevel:thusone of the
SECRET systems could be dcdlc ated to the ATOMIC
compartment and another to NATO. In a commercial

environment, some systems could be dedicated to FINANCE and
others to PERSONNEL and to MANAGEMENT. Users are
assigned to hosts with due regard to the fact that no security is
guaranteed within those individual systems. Notice that since
the hosts are not trusted, they cannot be relied upon to

authenticate their users corrcetly. Thus, access to each system
must be controlled by physical or other external mechanisms.
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Although there is no security within an individual system,
the key to our proposal is to enforce security on the
communication of information between systems. To thk end,
we place a trustworthy mediation device between each system

and its network connection. We will call these devices

“Trustworthy Network Interface Units”, or “TNIUS” for short.

The initial purpose of TNIUS is very restrictive: it is to
permit communication only between machkies belonging to the
same security partition (machines are in the same partition if
they have the same security level and belong to the same

compartment). The single UNIX UNITED system is therefore

divided into a number of disjoint subsystems; we will describe
later how our system can be extended to move information
across partitions securely - thereby providhg true multilevel
security.

Controlling which hosts may communicate with each other
is a reference monitor function. But because the LAN may be
subject to both passive and active wire-tapping, the TNIUS
must also provide a separation function in order to isolate and
protect the legitimate host to host communications channels.
This separation function will be provided cryptographically:
TNIUS will encrypt all communications sent over the LAN.
Since the host machines are untrusted, it is necessary to
manage the encryption very carefully in order to prevent
clandestine communication between a host machine and a wire-
tapping accomplice. Some details of the cryptographic
techniques which we employ are given in the full version of thk
paper [12]. Since the basic principles are well known [6], we

only summarize them here.

We use the Cipher Block Chaining (CBC) mode of DES
encryption [4] to pre~ent patterns planted in the plaintext being
visible in the ciphertext and we prepend a time-stamp or
sequence number to each message prior to encryption in order
to cause plaintexts that share a common prefix to yield
dissimilar ciphertext. The timestamps or sequence numbers
are also used to detect message replays (“spoofs”). Checksums
(protected by encryption) are used to prevent message
modification and forgery and care is taken
bandwidth of clandestine communication
modulate message lengths and destinations.

to reduce the
channeis that

The reference monitor function of the TNIUS is distinct
from their separation function and need not interact with it:
each TNIU could simply embed the identifier for its own
security partition into each outgoing message and refuse to
accept incoming messages bearing identifiers different to its
own. However, since encryption is being used anyway, it is
more attractive to associate the various security partitions with
the use of different encryption keys. Each TNIU then needs
only a single security-critical item of information: its key.
Incoming messages from a different security partition than their
receiver will fail to checksum (since they will have been
encrypted and decrypted under different keys) and can be
discarded.

Any system which uses encryption must contain mechanisms
for generating and distributing keys securely. However, and
unlike connection-oriented (virtual circuit) schemes in which it
is necessary to manufacture and dktribute a unique key every
time a new circuit is opened up, our system imposes no
requirement for frequent or rapid key distribution: the key
allocated to a TNIU is a function of the (fixed) security
partition to which its host belongs. This, combined with the
fact that a LAN-based system is presumed to be geographically
compact, makes manual key distribution perfectly viable. If the

fear of cryptanalysts causes key changes to be desired more
frequently than is convenient for manual distribution, then
either a set of keys ean be installed on each occasion, or else a

single rrmuter key from which the TNIU can manufacture a
whole set of communications keys. in either of these cases, the
TNIUS must contain mechanisms for synchronizing their
current encryption keys. Similar mechanisms are also needed
for synchronizing their time-stamps or sequence numbers.

The Remote Procedure Call protocol of the Newc~tle

Connection requires the protocol layer immediately below it to

provide a “fairly reliable” datagram service [13]. This
datagram service forms the interface between host machines
and and their TNIUS. This arrangement is desirable for the
clean and secure integration of encryption into the protocol
layering hierarchy, and provides the additional benefit of
relieving the host machines of all the low-level network load
- thereby improving their overall performance. TNIUS of the
required sophktication are not simple, but their design and
verification may be based on established techniques employed
for the “secure front-ends” of wide-area networks [2, 5]. A
separation kernel will be used to enforce plaintext/ciphertext

(so-called “red/black”) separation within each TNIU. Modern
I&bit microprocessors and DES encryption chips provide
suitable hardware for the construction of TNIUS and should
enable them to be manufactured quite cheaply,

4. A Multilevel Secure File Store
The design introduced so far imposes a very restrictive

security policy: the security partitions are isolated from one
another with no flow of information possible across different
levels or compartments. We now show how to extend thk
design to permit information to cross security partitions in a
controlled “multilevel secure” (MLs) manner. This will allow
information to flow from the SECRET to the TOP SECRET
levels, for example, but not vice-versa.
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Itmightseem thatmultilevelsecureinformationflowcanbe

providedby simplymodifyingthepolicyenforcedattheTNIUS

sothat,for example, TOP SECRET machines are able to receive
communications from SECRET machines as well as TOP
SECRET ones. TOP SECRET TNIUS would be provided with
the SECRET as well as the TOP SECRET encryption keys and
would permit incoming but not outgcting communications with
SECRET level machines. The flaw i]~ this scheme is that the
communication cannot be truly one-way: a SECRET machine
cannot reliably send information to a TOP SECRET one without
first obtaining confirmation that the TOP SECRET machine is
able to accept it and, later, that it has reeeived it correctly.
The SECRET machine must therefore be able to receive
information from the TOP SECRET machine as well as send to

it - and this conflicts with the multilevel security policy.
Notice, too, that this scheme would oIIdy provide for unsolicited
communications: a SECRET machine could send information to
a TOP SECRET machine of its OWIII volition, but the TOP

SECRET machine could not request that the information be
sent - since the mere fact of its request would constitute an
inset ure information flow.

P.

JVe consid~r that the best way to provide secure information

flow across security boundaries is through a trustworthy
intermediary that acts as a staging post. The complexity of
such an intermediary will depend ~m the generality of the
services which it provides. For simplicity, combined with the

most useful functionality, we select ~ifes as the only objects
that will be allowed to cross security boundaries and we choose
the mcsltilevel secure storage and retrievai of files as the service
to be provided by the trustworthy intermediary. We do this by
adding a (Multilevel) Secure File Store to the system with the
ability to communicate with miwchlnes of all security
classifications. The idea is that whenl a SECRET level machke
wishes to make one of its files available to higher levels, it
“publishes” it by sending it to the Secure File Store. A TOP
SECRET mac~lne may then subsequellltly request a copy of thk

file from the Secure File Store.

Before describing the mechanism of the Secure File Store,
we need to outline its logical posil~ion and role within the
overall UNIX UNITED system. Conceptually, the Secure File
Store is just an ordinary UNIX system that returns exceptions
to all system calls except certain ones concerned with files. As
with any other component, it will be associated with a
dhectory, say “SFS”, in the UNIX UNITED directory structure.

The SFS directory will contain subdirectories for each security
partition in the overall system. A simple UNIX UNITED
directory structure containing just the Seeure File Store and
two ordinary hosts is shown below.

The ordinary hosts are associated with the directories
“TSUNIX”and “SUNIX” and are allocated to the TOP SECRET
and SECRET security partitions respectively. Of course, from
within SUNIX,the TSUNIXbranch of the directory tree is invisible
(and vice-versa). Even if the Newcastle Connections within

TSUNXXand SUNTXare aware of each others’ existence, any
attempted inter-communication will toe stopped by their TNIUS.

If the SECRET level user ‘Ljohu” of SUNIXwishes to make his
“paper” file available to the TOP SECRET user “brian”, he
does so by simply copying it into a dhectory which is
subordinate to the SFS directory. For example:

publish paper 1.. /SFS/SM!RET/john/paper.
(lVe will explain later why this command uses “publish” - and

user

a b pepr

a later one uses “acquire” - instead of the standard UNIX
command “cp”.) This command will cause the Secure File
Store machine to receive a remote procedure call from SUNIX,
request ing it to create and write a file called “paper” located as
a sibling of the file “c”. The Secure File Store will consult its
record of the security policy in order to determine whether such
a machine is allowed to create SECRET level files. Since we

may assume that it is, the requested file operation will be
allowed to proceed and the copy of the file will be created.
Similarly,when the TOP SECRET user“briau”attemptsto

obtaina copyofthepaperby issuing the command
acquire 1.. /SFS/SFCRR/ jobrdpeper

the Secure File Store will receive a remote procedure call from
the machine TSUNIX. Once again, it can apply the security
policy and see that the request may be allowed to proceed. The
Secure File Store would, however, refuse requests from TSUNIX
to write into this “paper” file, or to delete it, since these
contravene the requirements of multilevel security [7].
Similarly, “john” would not be allowed to read the “salaries”

file held under the TOPSECREIdirectory.

Having described the services which the Secure File Store is
to provide, we must now explain how it will be constructed.
The services required are those of a multilevel secure UNIX file
system and may seem to demand a substantial quantity of
provably trustworthy mechanism - virtually a secure UNIX.
Wkh careful design, however, we can reduce the amount of
trusted mechanism considerably.

The basic idea is to partition the Secure File Store into

trusted and untrusted components housed in physically separate
machines. The trusted component, called the “Secure File
Manager” (SFM) will be concerned with enforcing the security
policy, while its file storage will be provided by the untrusted—.
components. These untrusted components will comprise
(conceptually) a number of separate, standard UNIX systems
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each dedicated to a single security partition and identified
with one of the subdirectories of the SFS dkectory. The TNIUS
of the file storage machines will be provided with encryption
keys that isolate them from each other and from the rest of the
system and permit them to communicate only with the SFM.
The TNIU of the SFM will have access to all encryption keys,
so that the SFM may communicate with hosts in all security

partitions as well as with the machines providing its file store.

The internal structure of a TNIU with multiple encryption
keys will be slightly more complex than one with just a single
key, particularly if communications using different keys can be
in progress simultaneously. Cleartext belonging to logically
separate channels should be managed by separate regimes, and
temporal separation must be provided for dtfferent uses of its
single DES chip. These are not significant complications,
however, and the responsibility for correctly managing more
than one encryption key is a small additional burden to place
on the trusted mechanism of a TNIU.

Host machines requiring access to “secure” files will send
Remote Procedure Calls (RPCS) to the SFM. The TNIU of the
SFM will know the security partition to which the sender of
each RPC belongs (by virtue of the encryption key used in the
communication) and will pass this information to the SFM

along with the decrypted RPC. The SFM can then inspect the
RPC in order to check that the requested operation complies
with itssecurity policy. If it does, then the SFM will simply

forward the RPC to the appropriate file storage machine for
processing and will relay the results back to the original caller.

There is an obvious flaw in this scheme: because the UNIX
file storage machines cannot be trusted, they constitute a
security weakness. A host machine in the TOP SECRET
partition could modulate its (Iegitimatc) requests for reading
secure files belonging to the SECRET partition in order to
convey TOP SECRET information to the SECRET level file
storage machine. This machine could then encode the
information received into a file that cordd subsequently be
(legitimately) retrieved by a SECRET level host.

The solotion to this problem is to recognize that although it
is impossible to prevent TOP SECRET information getting in to
the SECRET level file store, it is possible to prevent it getting
back out again.

Since the only objects which leave file storage machines are
the files which they retrieve in response to external requests,

any clandestine information which is to reach the outside world
must be encoded into those files. But all movement of files into
and out of the file storage machines is mediated by the SFM

so security will be maintained if the SFM can prevent the file

storage machines from encodhg information into (i.e.
modifying) outgoing files. In other words, security depends
upon the SFM being able to guarantee the integrity of files
stored by the file storage machines.

This can be achieved if an unforgeable crypto-checksum is
added to each file by the SFM before it is stored in one of the
untrusted file :. cmage machines. Any attempt by a file storage

machine to modify a file will be detected on its subsequent
retrieval by the SFM when the recomputed checksum fails to
match the one stored with the file.

Once clandestine information has been prevented from
leaving a file storage machine, there is no longer any need to

provide separate file storage machines for each security
partition: the integrity checks performed by the SFM constitute
a separation mechanism on their own. Accordingly, all the file
storage machines can be replaced by a single UNIX system
called the “Isolated File Store” (IFS).

The revised SFM is required to perform two security-critical
tasks and is therefore split into two logically separate
components: the “File Access Reference Monitor” (FARM) and
the “File Integrity Guarantor” (FIG). The task of the FARM
is to ensure that all file access requests comply with the security
policy; the FIG is responsible for computing and checking the
checksums on files sent to, or received from, ~he IFS.

SFM

F
FARM FIG .---.-

TRIU

I ILAR
1 I

SITJ = Secure File Marseger
IFS = Isolate@ File System
FARM= File Access Reference Mmitor
FIG = File Integrity Guarantor

--- = Logical charmel between FIG and IFS
(physical chamrel is via TNIUs and LAN)

The FIG achieves its purpose by employing checksum
techniques which are very similar to those used, for LAN
messages, by the Trustworthy Network Interface Units. We
therefore suggest that the FIG can be constructed by minor
modifications and extensions to an ordinary TNIU. The FARM
function of the SFM is also straightforward, requiring only the

imposition of simple access control rules determined by a
security policy. This function could be performed inside a

separate regime provided by the separation kernel of the
machine which supports the TNIU/SFM functions.

We therefore conclude that all the functions of a complete
SFM can easily be integrated into the TNIU which connects it
to the LAN. The development and verification costs of an
integrated TNIU/SFM should be little more than those for a
TNIU alone, and production costs should be about the same
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just a few hundred pounds.

The FIG checksum mechanism only allows files to be read or

written in their entirety. This is different to the standard

LINIX file system interface (which permits incremental reading

and writ ing, and also the repositioning of the file “pointer”).

For this reason, “secure” files cannot be accessed through the

normal UNIX file system interface but must use a special

extension to that interface provided by the Newcastle

Connection. This extension adds new system calls to

“publish”, “acquire”, and “delete” secure files, and to “list”

the secure files belonging to a given security partition. We

consider that the minor inconvenience caused to users by thk

non-standard interface (which is certainly no worse than that

imposed by the “file transfer” programs used in conventional

network architectures) is more than outweighed by the

simplicity of the trusted mechanisms needed to implement it.

Extensions to this scheme which do provide the full, standard

LINIX file system interface aredescrit]ed inonr report [12], but

the difficulties of providing secure access to “i-node”

information and to directories do rather compromise the

attractive simplicity of the basic scheme. Completely different

mechanisms are known and are probalbly to be preferred in this

case.

5. The Accessing and Allocation of Security
Partitions
A system such as the present one in which terminals are

attached to machines of fixed securily level can be somewhat

inconvenient to use. A SECRET level user can send mail to a

TOP SECRET one via the Secure File System, but the recipient

can only reply by leaving his TOP SECRET machine and logging

in to one at the SECRET level or lower. We can avoid this

inconvenience, and also make possible the provision of

additional services, by connecting terminals to “Trustworthy

Terminal Interface Units” rather than to hosts dkectly.

hforeover, we can then include provisions for dynamically

changing the allocation of machines to, security partitions.

5.1, Acceseing Different Security Partitions

What we term a Trustworthy Terminal Interface Unit

(TTIU) is basically a Trustworthy Network Interface Unit

(TNILI ) enhanced w itb some addi (,ional trusted fnnctions.

These comprise a terminal driver, some very limited Newcastle

Connection software, and an authentication mechanism. These

are all logically separate mechanisms and will each run in

individual partitions provided by the; separation kernel which

supports the TTIU.

A TTIU in the “idle” state simply ignores all characters

reaching it from the LAN or from its terminal - until a special

character sequence is typed at the keyboard. Thk will cause

the TTIU to connect the terminal to its authentication

mechanism, which will then interrogate the user in order to

determine his identity. Once the user has been authenticated,

he can be asked for the security partition to which he wishes to

be connected. If the requested partition is within h:s clearance

and all other requirements of the security policy are satisfied

(for example, a terminal located in a public place may not be

permitted a TOP SECRET connection, even if its user is

authorized to that level), then the TTKJ will load the

encryption key of the partition concerned into its DES chip.

The Newcastle Connection software in the TTIU will then be

able to establish contact with its counterpart in a host machine

belonging to the appropriate security partition and the user will

thereafter interact with that remote machine exactly as if he

were connect ed to it directly.

The Newcastle Connection component in the TTIU must be

able to respond to remote procedure calls directed to it by the

Newcastle Connection of the remote machine. The only calls

that require a non-error response are those appropriate to

terminals, namely “read from the keyboard”, “write to the

screen”, and a couple more concerned with status information.

Thus only a fraction of the full Newcastle Connection software

is required for a TTRJ and, just like the similar software in a

convent ional host, it need not be trusted.

None of the additional trusted mechanisms which are

required to upgrade a TNIU into a TTIU should present an

undue challenge in either construction or verification. Nor,

given that TNIUS are constructed on top of a separation kernel,

should the presence of these additional mechanisms affect the

construction or verification of the TNIU components

themselves. In fact, the presence of a separation kernel makes

it perfectly feasible to support multiple terminals, each with a

sepzrate set of TTILJ and TNIU components, on a single

processor.

5.2. Changing Security Partition Dynamically

Trustworthy Terminal Interface Units enable users to

connect to machines in different security partitions and

therefore allow them to perform each of their activities at the

most appropriate level within their clearance. However, if a
security policy with a fine granularity of need-to-know

compartrnentation is supported, then the number of different

security classifications may well exceed the number of physical

hosts available. Et-en when the number of distinct security

classifications is small, the demand for resources within each

classiflcat,ion may vary with time. Furthermore, some users

may possess personal workstations which they wish to use for

all their activities at many different security levels. In all these

cases, some pro~-ision for reallocating host machines to different

security partitions is needed.

With untrusted hosts, this can only be accomplished by

“temporal separation” which, in its simplest form, is “periods

processing”. This requires manual intervention to perform the

exchange of all remountable storage and the re-initialization of

all fixed storage in order to remove every trace of information

from the old security partition before the machine can be

brought up again at its new level - either “clean” or reloaded

with the suspended state of some previous activation at that

level.
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Manual periods processing requires very rigid administrative

controls and is slow and expensive to perform. We will

therefore propose a mechanism for automating the process so

that it becomes both rapid and secure.

As well as a means for causing the TNIU of the host

concerned to load the encryption key of a new security

partition, we require a temporal separation mechanism to

ensure that the host machine is memoryless across its

activations in different security partitions. The system state of

a host machine is contained in its writable storage: CPU

registers, RAM, and disks. The disks of a UNIX system are

used for two purposes: they provide swap space, and they

contain the local file system.

With the exception of its file system, all the local

information available to a host may be considered “transient”

and can simply be erased and re-initialized when the host

changes security partitions. This can be arranged by causing

the host to boot-load a trusted stand-alone “purge” program

from ROM on power-up, or on command from its TNIU. This

program will systematically clear and re-initialize all temporary

storage available to the host processor. Unlike temporary

storage, however, the local file system cannot simply be erased

but must be retained (inaccessibly) for later activations of the

host in the same security partition. Since UNIX UNITED

provides transparent access to remote files, this requirement

can be achieved by holding files remotely.

Hosts will be configured without a local file system and all

references to apparently local files will be intercepted by a

“Local File Relocation Process” in the Newcastle Connection.

This will redirect them as remote procedure calls to a file

system held in a remote machine that is permanently assigned

as a file server to the security partition which the host

currently occupies. For example, if the host is known as “F%’5”

(Personal Workstation number 5) and is currently operating in

the (SECRET, NATO) partition, then the remote procedure call

sent out in response to a request for the local file /bin/shell

might actually name the file /. ./8NSERVER/PWS/bin/ehell, where
I$SNS~VER” iS the name of the machine that maintains the

(SECRET, NATO) file system. This transformation is perfectly

straightforward and does not need to be trusted - since an

attempt to name a machine in the wrong security partition will

be caught by the standard TNIU mechanisms (the local and

remote machines will have incompatible encryption keys).

Running host machines with absolutely no local file storage

is likely to be inefficient and is infeasible if the host’s file

system is actually held by the Secure File Store (since thk uses

a nonstandard interface). We therefore propose the following
refinement tothebasicscheme. The purge program will create

a local file system on its host’s dkk and will initialize it to

contain the standard utility programs. (These can be obtained

from a local read-only floppy disk, or from a “boot-server”

accessed over the LAN.) All references to local files will be

intercepted by the Local File Relocation Process, which will

check to see if they are already present in the local file system.

If they are, then the access may be allowed to proceed

normally. If they are not, then the Relocation Process must

first obtain a copy of the file from the machine that maintains

the permanent version of the host’s file system for the security

partition concerned. Files which are modified or created during

a session must, of course, be written back to this permanent file

system at the end of the session.

In outline, the complete scenario for automatically changing

the security partition in which a host operates is therefore the

following. A user at a terminal attached to a TTIU is

authenticated and asked for the security partition in which he

wishes to work. If this partition is within h]s clearance, a signal

will be sent to the TNIU of a vacant host machine instructi~g it

to switch to the indicated security partition. Thk signal will be

protected against forgery or spoofing by the standard

encryption techniques employed between TNIUS. On receipt of

the signal, the host’s TNIU will load the encryption key

appropriateh the new security partition, inform its host’s
Local File Relocation Process of the identity of that partition,

and initiate the purging and re-initialization of its host

machine.

6. Conclusions
We have described a distributed system that provides a

limited, but useful form of multilevel secure operation. Our

account has illustrated how each of four distinct methods for

achieving separation (physical, temporal, cryptographical and

logical) can be used appropriately within such a system in order

to provide security without undue inefficiency and with a very

limited quantity of trusted mechanism. Moreover, our trusted

mechanisms are relatively simple and within the current state

of the art. Indeed, a number of them have previously been

proposed (and some implemented) by others - though usually =

stand-alone systems. The full version of this paper [12]

describes our mechanisms in more detail and discusses some

enhancements to the basic system (e.g. access to “downgraders”

or “guards” [14], and support for “multilevel objects” [8]).

A project to develop an implementation of the system

described here is being sponsored by the Royal Signals and

Radar Establishment (RSRE) of the UK Ministry of Defence,

and carried out by System Designers Ltd. of Camberley, in

conjunction with the Microelectronics Applications Research

Institute and the Computing Laboratory of the University of

Newcastle upon Tyne. The first stage of this project calls for

the delivery of a prototype in the Spring of 1983. The security

mechanisms of the prototype will be provided by ordhary user

processes in a standard UNIX UNITED system, This will not,

of course, be secure, but it will allow the operation of the

various mechanisms to be studkd in practice, it will enable the

overall performance of the system to be evaluated, and, most
importantly, it will permit the impact of a mechanically

enforced security policy to be observed in a realistic

environment.
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