sejepdn
10339040

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 10 no 4 Aug 1985 Page 41

The Enhanced HDM System
for Specification and Verification

Michael Melliar-Smith and John Rushby

Computer Science Laboratory
SRI International

1. Introduction

The Hierarchical Development Methodology (HDM) and its associated tools and specification
language (known as SPECIAL), which SRI developed during the 70’s, have been quite widely used
for the specification and verification of secure systems and found useful for that purpose.

SRI is currently developing a new specification and verification environment that is
substantially different from the old HDM, but builds on the experience gained with the previous
system. Notable features of the new system include

* Specifications in first order predicate calculus with second order capability
¢ Strong type checking with overloading

¢ Parameterized modules with semantic constraints

¢ User interface based on multi-window screen-editor

» Theorem proving by reduction to propositional calculus, with decision procedures for
common theories

o Hoare sentences and code proof

o Multilevel] security (MLS) checking by information flow analysis

2. Man-Machine Interaction

In contrast to systems that seek to largely automate the theorem proving process, our
verification system is based on ar interaction between the human and the computer that utilizes
what we believe to be the strengths of each. Rather than build an intelligent (or “expert’)
system, we have attempted to construct a system to provide support for an intelligent and expert
user. We believe that our users have a comprehensive understanding of the reasons why their
theorems are true, and of how to construct their proofs; the computer is excellent at reasoning in
decidable domains and at recording what has been done. Over the next year or so, we hope to
demonstrate the effectiveness of this approach in practice.

Since the user is an integral component of our system, the interface presented to him must be
particularly convenient. The user’s interaction with our system is conducted entirely in terms of
his own specifications, and the system does not expose the user to formulae generated internally
(such as “‘vertfication conditions’). On the mechanical level, our system interface is based on a
full screen editor: the user composes and edits his specification on the screen, and invokes various
system functions by means of extended editing commands. Proofs, for example, are accomplished
by pointing at the appropriate proof statement amd pressing the “‘prove” key. The system
similarly returns error and status information by placing the cursor at the specification text
concerned and displaying a message in a system window. The functions available to the user
inciude parsing, prettyprinting, typechecking, and proving. Various status and information
commands are also available.

The initial implementation uses a customized EMACS as its editor interface, and thereby
provides a familiar environment with support for many terminal types. A more sophisticated
display using an IBM PC with bit-map graphics and mouse is currently under development. This
will provide a multi-window environment with structure editing and will be appropriate for
remote access to conventional mainframes. This interface, and indeed the entire system, will also
be supported on a Symbolics 3600.

3. Specification Language

The specification language is based on multi-sorted first-order predicate calculus and is
intended to support an axiomatic rather than a constructive specification style. Such property-
oriented (and possibly partial) specifications facilitate the description of just those properties
relevant to the level of abstraction under consideration and are well suited to requirements
definition and to specification and verification at the design level.

This is not the place to describe the language in detail, though we believe it is sufficiently
perspicuous that the reader will find it easy to understand the examples given below. The
language provides types, variables and comstants of those types, the connectives of propositional
calculus, the quantifiers of first-order predicate calculus, and also a first-order encoding of second-
order expressions. Thus, functions of a particular signature are constants of a functional type.
Free variables are implicitly universally quantified over the formulae in which they occur.

Specifications are structured into modules with explicit import and export lists (the USING
and EXPORTING clauses, respectively). Module definitions may be parameterized by types and
constants (including function constants), but must be instantiated for use elsewhere. Inside a
module definition, its parameters are uninterpreted — so that generic theorems may be stated and
proved. These proofs will be valid in all instantiations of the module. Actual parameters must,
of course, match the type of their corresponding formal, but in many situations it is necessary
that they should satisfy additional semantic constraints. These constraints may be stated in the
ASSUMING clause of a module definition; when the module is instantiated, the formulae of the
ASSUMING clause are also instantiated and comstitute proof obligations in that context. The
module inductions shown in the examples has three such zssumptions, which are discharged when
1t 18 instantiated in module sum.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F1012497.1012511&domain=pdf&date_stamp=1985-08-01

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 10 no 4 Aug 1985 Page 42

4. Proof Support

In order to prove a theorem. the user cites instapces of axioms and previously-proved
{heorems from which the result follows by propositional reasoning. The user s expected to
provide appropriate substitutions for the existentially quantified variables of the conclusion and
for the universally quantified variables of the formulae cited as premisses. The prover reduces
the user's proof from first (or even second) order into propositional calculus. Skolemizing as it
does so. The reduced formula, which is never exposed to the user, is submitted to the underlying
prover (a decision procedure for propositional calculus, linear arithmetic, and equality on
uninterpreted function symbols).

The benefit of this approach is that the prover is very fast, and completely deterministic iz its
behavior: the outcome does not depend on how 2 formula is presented but only on its content -
logically equivalent formulee always yield the same result. The disadvantage is in the quantity
and detail of the information which must be supplied by the user. We are currently starting to
develop proof comstruction and debugging aids to assist the user in these tasks. The speed of the
prover is important here, since it allows the user to maintain a continuous high level of
concentration.

5. Program Verification

Our conviction that the user should only be expected to reason about formulae that he himself
created led us to reject the use of verification conditions for code proof, in favor of an approach
based on Hoare sentences. By exploiting the module parameterization features of the language,
we are able to introduce state objects {program variables), operations with side effects, and Hoare
semtences into the specification language. Programming language copstricts are treated as
operations and their semantics are described in terms of Hoare semtences. Support for code proof
in a subset of Pascal has been provided in this way, and is described in a companion paper by
Friedrich von Henke.

8. MLS Flow Analysis

SRI's information-flow analyzer for SFECIAL has been widely used in analysis of the security
of certain systems. The new system includes a similar tool for the new language. Both the tool
and the language were designed to avoid certain flaws and inadequacies found in the earlier
system. The flow-analyzer {known as the MLS checker) takes a specification module and
generates a new module containing a set of formulae sufficient to establish the security (in a
certain, limited, but well-defined sense) of the original specification. This automatic generation of
formulae is, of course, contrary to our proclaimed intention of allowing the user to reason entirely
with his own formulae. However, the derivation of the generated formulae is straightforward
{and the MLS checker provides extensive commentary om their construction) and they are
generated mechanically only to emsure completeness and relizbility. The user is required, as
always, to guide the proofs of the formulae that are generated, but these are invariably trivial
and the mechanically generated proof clauses included in the module usually suffice.

7. Current Status

The present, experimental, versionm of the system is coded in Maclisp, uses 2 customized
EMAGS as its user-interface, and runs on DEC-20 type hardware under TOPS-20 and TENEX. All
the features described here are supported, though development work continues.

The system was conceived and developed by Judith Crow, Dorothy Denning, Peter Ladkin,
Michzel Melliar-Smith, John Rushby, Richard Schwartz, Rob Shostak, and Friedrich von Henke.

8. Examples

THe module sum employs proof by induction to establish that the sum of the first » natural
pumbers has its well known closed-form. The induction scheme is provided by the module
inductions and serves to demonstrate the second-order capabilities of the specification language.
The module morenats merely serves to introduce some required functions on the natural numbers.

inductions: MODULE [dom: TYPE, first: dom, next: function(dom -> dom]]
(x Defines an induction principle for domain dom,
with successor function next ¥)
ASSUMING
a, d1, d2: VAR dom

measura: VAR function{dom -> nat]

dom_well_founded: FORMULA
(EXISTS measura : (FORALL a : measure(a) < measure{next(a))))

firat has no_pred: FORMULA KOT (EXISTS a : tirst = next(a))
nontirst_has_pred : FORMULA d2 ~= first IMPLIES (EXISTS d1 : 42 = next(d1))
THEORY
p: VAR function[dom -> bool]
induction: AXIDM
p(firat) AND (FORALL di : p(d1) IMPLIES p(next(d1)))

IMPLIES (FORALL d2 : p(d2))

END inductions




ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 10 no ¢ Aug 1985 Page 43

morenats: MODULE (% Defines some properties of the natural basis step: PROVE basis FROX signa zero, square zero

numbers additional to the interpreted theory =)
inductive step: LEMMA
2 = sigma(i) = square(i) + i

EXPORTING succ
IMPLIES 2 * sigma(succ(i)) = square(succ(i)) + succ(i)

THEORY
induction_step: PROVE inductive step FROM sigma i, sgquare _succ {n <- i}
n: VAR nat

natnonnegative: AXIOM n >= 0

succ: function{nat -> nat] = (LAMBDA n -> nat : 1 + 1)
pred: function{nat -> nat]

natminus: AXIOM (n ~= 0) IMPLIES pred(n) ==n - 1

closed_form: THEOREX 2 * sigma(i) = square(i) + i

the_result: PROVE closed form FROX
pl: induction {p <- (LAMBDA n -> bool : 2 = sigma(n) = square(n) + nj,

square: function[nat -> natl d2 <- i},
squara_zero: AXIOK square(C) = 0 basis,
square_succ: AXIOM square(succ(n)) = square(a) + 2 * n + 1 inductive_step {i <- di€pi}
natsuccpred: LEMMA n “= O IMPLIES n = succ(pred(a})

END sum

PROOF

natproof: PROVE natsuccpred FROM natminus

END morenats

sum: XODULE (#* Proves the closed-form formula for the
sum of the first n naturzl numbers *)

USING morenats, iaductioms{nat, 0, succl]

EXPORTING sigma (¢ sigma(n) is the sum of first n natural numbers #)
THEORY
i: VAR nat

sigme: function[nat -> nat]

sigms zero: AXIOM sigma(0) = 0

sigme i: AXIO¥ sigra(succ(i)) = sigma(i) + suce(i)
PROQF

n: VAR nat

dischargsl: PROVE
dom well founded {measure <- (LAMBDA n -> nat : n}}

discharge2: PROVE first_has no pred FROM natnonnegative {m <- a@#}

discharge3: PROVE nonfirst has pred {di <- pred(d2%s)}
FRO¥ natsuccpred {n <- d20s}

basis: LEMMA 2 * sigma(0) = square(0) + 0



