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Abstract

Airplanes are certified as a whole: there is no established basis for separately certifying
some components, particularly software-intensive ones, independently of their specific ap-
plication in a given airplane. The absence of separate certification inhibits the development
of modular components that could be largely “precertified” and used in several different
contexts within a single airplane, or across many different airplanes.

In this report, we examine the issues in modular certification of software components
and propose an approach based on assume-guarantee reasoning. We extend the method
from verification to certification by considering behavior in the presence of failures. This
exposes the need for partitioning, and separation of assumptions and guarantees into normal
and abnormal cases. We then identify three classes of property that must be verified within
this framework: safe function, true guarantees, and controlled failure.
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Chapter 1

Introduction

Software on board commercial aircraft has traditionally been structuriedl@ratedarchi-
tectures, meaning that each “function” (such as autopilot, flight management, yaw damp-
ing) has its own computer system (with its own internal redundancy for fault tolerance)
and software, and there is relatively little interaction among the separate systems. The sep-
arate systems of the federated architecture provide natural barriers to the propagation of
faults (because there is little sharing of resources), and the lack of interaction allows the
certification case for each to be developed more or less independently.

However, the federated architecture is expensive (because of the duplication of re-
sources) and limited in the functionality that it can provide (because of the lack of inter-
action among different functions). There is therefore a move toward integrated modular
avionics (IMA) architectures in which several functions share a common (fault tolerant)
computing resource, and operate in a more integrated (i.e., mutually interactive) manner.
A similar transition is occurring in the lower-level “control” functions (such as engine and
auxiliary power unit (APU) control, cabin pressurization), where Honeywell is developing
a modular aerospace controls (MAC) architecture. IMA and MAC architectures not only
allow previously separate functions to be integrated, they allow individual functions to be
“deconstructed” into smaller components that can be reused across different applications
and that can be developed and certified to different criticality levels.

Certification costs are a significant element in aerospace engineering, so full realization
of the benefits of the IMA and MAC approach depends on modularization and reuse of
certification arguments. However, there is currently no provision for separate or modular
certification of components: an airplane is certified as a whole. Of course, the certification
argument concerning similar components and applications is likely to proceed similarly
across different aircraft, so there is informal reuse of argument and evidence, but this is
not the same as a modular argument, with defined interfaces between the arguments for the
components and the whole.

The certification requirements for IMA are currently under review. A Technical Stan-
dard Order (TSO) for hardware elements of IMA is due to be completed sharth(



and committees of the US and European standards and regulatory bodies have been formed
to propose guidance on certification issues for IMA. In particular, RTCA SC-200 (Require-
ments and Technical Concepts for Aviation Special Committee 200) and the corresponding
European body (EUROCAE WG-60) have terms of reference that include “propose and
document a method for transferability of certification credit between stakeholders (e.g.,
aircraft manufacturer, system integrator, multiple application provides, platform provider,
operators, regulators).”

In this report we examine issues in constructing modular certification arguments. The
examination is conducted from a computer science perspective and we hope it may prove
helpful to the deliberations of the bodies mentioned above.



Chapter 2

Informal Examination

The basic idea that we wish to examine is portrayed in Figuteln this diagram, X repre-
sents some function, and Y the rest of the aircraft. In the traditional method of certification,
shown on the right, certification considers X and Y as an indivisible whole; in modular
certification, shown on the left, the idea is to certify the whole by somehow integrating
(suggested by the symbel) properties of X considered in isolation with properties of Y
considered in isolation.

Figure 2.1: Modular vs. Traditional Certification

Many benefits would accrue if such a process were feasible, especially if the function
were reused in several different aircraft, or if there were several suppliers of X-like func-
tions for a single aircraft. In the first case, the supplier of the function could develop the
certification argument for the function just once, and then contribute to the integration ar-
gument for each of its application; in the second case, the aircraft manufacturer has only to
develop the integration argument for the X-like function from each different supplier. Of
course, this assumes that the integration argument is less expensive, but no less safe, than
the integrated argument for “X with Y” employed in the traditional method.

There is hope that modular certification should be feasible: first because there is infor-
mal reuse (i.e., modularization) of arguments concerning a function from one application to
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the next, and second because it corresponds to the way systems are actually developed—as
separate components with interfaces between them. Unfortunately, the hopes engendered
by these observations become lessened on closer examination. It is true that systems are
constructed from components and that we are used to reasoning about the properties of
composite systems by considering the properties of the components and the interactions
across their interfaces. The problem is that conventional design, and the notion of an in-
terface, are concerned with normal operation, whereas much of the consideration that goes
into certification concerns abnormal operation, and the malfunction of components. More
particularly, it concerns the hazards that one component may pose to the larger system,
and these may not respect the interfaces that define the boundaries between components in
normal operation.

To give a concrete example, suppose tHas Concorde X is Concorde’s tires. The
normal interfaces between the tires and other aircraft systems are mechanical (between
the wheels and the runway), and thermodynamic (the heat transfer from hot tires when
the undercarriage is retracted after takeoff). The normal properties considered of the tires
include their strength and durability, their ability to dispell water, and their ability to handle
the weight of the airplane and the length and speed of its takeoff run and so on. These
requirements of the tires flow down naturally from those of the aircraft as a whole, and they
define the properties that must be considered in normal operation.

But when we consider abnormal operation, and failures, we find new ways for the tires
and aircraft to interact that do not respect the normal interfaces: we now know that a dis-
integrating tire can penetrate the wing tanks, and that this poses a hazard to the aircraft.
In a different aircraft application, this hazard might not exist, but the only way to deter-
mine whether it does or not is to examine the tires in the context of their application: in
other words, to perform certification in the traditional manner suggested by the right side of
Figure2.l

It seems that the potential hazards between an aircraft and its functions are sufficiently
rich that it is not really feasible to consider them in isolation: hazards are not included in
the conventional notion of interface, and we have to consider the system as a whole for
certification purposes.

This is a compelling argument; it demonstrates that modular certification, construed
in its most general form, is infeasible. To develop an approach that is feasible, we must
focus our aims more narrowly. Now, our main concern is software, so it might be that
we can develop a suitable approach by supposing that the X in Figliis the software
for some function that is part of Y (e.g., X is software that controls the thrust reversers).
Unfortunately, it is easy to see that this interpretation is completely unworkable: how can
we possibly certify control software separately from the function that it controls.

It seems that we need to focus our interpretation even more narrowly. The essential
idea of IMA and MAC architectures, which are the motivation for this study, is that they al-
low software for different functions or subfunctions to interact and to share computational
and communications resources: the different functions are (separately) certified with the



aircraft, what is new is that we want to conclude that they can be certified to operate
getherin an IMA or MAC environment. This suggests we reinterpret our notion of modular
certification along the lines suggested in Figare

X1 Y

X1 !
+ [T Y VS. E};Z" Y

Figure 2.2: Reinterpretation of Modular Certification

The question now is: how can we certify; for operation in Y without some knowl-
edge ofX, andvice vers® SupposeX; is the controller for the engine anki, is that for
the thrust reverser: obviously these interact and we cannot examine all the behaviors and
hazards of one without considering those of the other. But perhaps we coudgsisap-
tions about.X; when examiningX, and similarly could use assumptions abdiit when
consideringX». Of course we would have to show th&j truly satisfies the assumptions
used byX,, andvice versa This type of argument is used in computer science, where it
is called Assume-Guarantee reasoning. Figufeportrays this approach, whery( X;)
and A(X») represent assumptions aboXf and X, respectively, and the dotted lines are
intended to indicate that we perform certificationof, for example, in the context of Y,
and assumptions aboiit,.

AXD) + -,\—_IX2 Y VS.

Figure 2.3: Assume-Guarantee Modular Certification

As mentioned, assume-guarantee reasoning is known and used in computer science—
but it is used forverification not certification Verification is concerned with showing
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that things work correctly, whereas certification is also concerned with showing that they
cannot go badly wrong—even when other thirage going wrong. This means that the
assumptions abouwt’, that are used in certifying; must include assumptions about the

way X, behaves when it has failed! This is not such an improbable approach as it may
seem—in fact, it corresponds to the way avionics functions are actually designed. Avionics
functions are designed to be fault tolerant and fail safe; this means, for example, that the
thrust reverser may normally use sensor data supplied by the engine controller, but that it
has some way of checking the integrity and recency of that data and will do something
safe if that data source ceases, or becomes corrupt. In the worst case, we may be able
to establish that one function behaves in a safe way in the absence of any assumptions
about other functions (but it behaves in more desirable ways when some assumptions are
true). There are applications and algorithms that can indeed operate under such worst-
case assumptions (these are called “Byzantine fault-tolerant” algorithms). Notice that “no
assumptions” does not mean “does nothing”: rather, it allows any behavior at all, including
that which appears actively malicious. Many avionics functions do require some minimal
assumptions about other functions (for example, the thrust reverser may need to assume
that the engine controller does not lose control of the engine) but we can expect that the
certification of those other functions will need to ensure such minimal assumptions anyway
(an engine should not go out of control, quite independently of whether the thrust reverser
needs this assumption).

This analysis suggests that we can adapt assume-guarantee reasoning to the needs of
certification by breaking the various assumptions and guaranteeadnual and (possi-
bly several)abnormalelements. We then establish th&t delivers its normal guarantee,
assuming thafXs does the same (andce versd, and similarly for the various abnormal
assumptions and guarantees. It will be desirable to establish that the abnormal assumptions
and guarantees do not have a “domino effect”. that isyifsuffers a failure that causes
its behavior to revert from guaranté& X; ) to G’ (X1 ), we may expect thak’,'s behavior
will revert from G(X2) to G'(X3), but we do not want the lowering ofy’s guarantee to
cause a further regression &% from G’(X;) to G”(X;) and so on. In general, there will
be more than just two components, and we will need to be sure that failures and consequent
lowering of guarantees do not propagate in an uncontrolled manner. One way to achieve
this is to arrange abnormal assumptions and guarantees on a series of levels, and to show
that assumptions at levelare sufficient to establish the corresponding guarantees at the
same level.

There is an implicit expectation here that we need to make explicit. It is the expectation
that failure of X1, say, can impacKk, only through their respective assumptions and guar-
antees. NowX; and X, are software systems, so their assumptions and guarantees concern
the values and relationships of various shared state variables (including those that represent
real-world quantities such as time); not represented in these assumptions and guarantees
are expectations thaf; will respect interfaces even after it has failed,$gis private state
variables will not be affected by the failure, nor will its ability to perform its computa-



tions, to access its sensors, actuators, and other private resources, and to communicate with
X3, X4 ... X,. These expectations are thoseaftitioning.

We have previously examined partitioning in some detail, and refer readers unfamiliar
with the topic our reportff ]. The salient point is that architectural mechanisms exter-
nal to aX, Xy, ...are required to enforce partitioning—for we cannot expect a féiled
to observe its obligations not to tamper witih’s private variables. There might appear to
be an inconsistency here: if we cannot trust a fail§dto observe its obligations t&s’s
private variables (for example), how can we expect it to satisfy any of its abnormal guar-
antees? The answer is th&f may have several subcomponents: one failed subcomponent
might (in the absence of partitioning) damage, but other subcomponents will deliver
suitable abnormal guarantees (for example, the software for an engine controller could fail,
but a mechanical backup might then control the engine, or at least shut it down safely).
In fact, partitioning is a prerequisite for this subdivision of a function into subcomponents
that fail independently and therefore are able to provide fault tolerance and/or fail safety.
In traditional federated systems, partitioning is ensured by physical architecture: differ-
ent functions run on physically separate computer systems (e.g., autopilot and autothrottle)
with little communication between them, and the subcomponents of a single function are
likewise physically disjoint (e.g., the separate primary and backup of a fault-tolerant sys-
tem). In an IMA or MAC system, functions and their subcomponents share many resources,
so the physical partitioning of a federated architecture must be replaced by “logical” parti-
tioning that is enforced by the IMA or MAC architecture. Constructing and enforcing this
logical partitioning is the primary responsibility of the “bus” that underlies IMA and MAC
architectures (e.g., SAFEbus, or TTA). Issues in the design and assurance of these safety-
critical buses, and the ways in which they provide partitioning, are described in detail in
another reportff }. The important point is that a safety-critical bus ensures that soft-
ware in a nonfaulty host computer will continue to operate correctly and will receive correct
services (e.g., sensor and other data) from other nonfaulty nodes and correct services (e.g.,
membership and time) from the bus despite faults (software or hardware) in other nodes and
hardware faults in some of the components of the bus itself. The exact types and numbers
of faults that can be tolerated depend on the bus and its configur&tici] j.

We have now identified the elements that together create the possibility of modular
certification for software.

Partitioning: protects the computational and communications environment perceived by
nonfaulty components: faulty components cannot affect the computations performed
by nonfaulty components, nor their ability to communicate, nor the services they pro-
vide and use. The only way a faulty component can affect nonfaulty ones is by sup-
plying faulty data, or by performing its function incorrectly. Partitioning is achieved
by architectural means: in IMA and MAC architectures it is the responsibility of the
underlying bus architecture, which must be certified to construct and enforce this
property, subject to a specified fault hypothesis.



Assume-guarantee reasoningallows properties of one component to be established on
the basis of assumptions about the properties of others. The precise way in which
this is done requires care, as the reasoning is circular and potentially unsound.

Separation of properties into normal and abnormal: allows assume-guarantee reason-
ing to be extended from verification to certification. The abnormal cases allow us
to reason about the behavior of a component when components with which it inter-
acts fail in some way.

We say that a component is subject tceaternal failurewhen some component with
which it interacts no longer delivers its normal guarantee; it suffenstamal failure
when one of its own subcomponents fails. Its abnormal assumptions recceg-the
ternal fault hypothesifor a component; itsternal fault hypothesis a specification
of the kinds, numbers, and arrival rates of possible internal failures.

Certification of an individual component must establish the following two classes of
properties.

Safe function: under all combinations of faults consistent with its external and in-
ternal fault hypotheses, the component must be shown to perform its function
safely (e.g., if it is an engine controller, it must control the engine safely).

True guarantees: under all combinations of faults consistent with its external and
internal fault hypotheses, the component must be shown to satisfy one or more
of its normal or abnormal guarantees.

Controlled failure: avoids the domino effect. Normal guarantees are at level 0, abnormal
guarantees are assigned to levels greater than zero. Internal faults are also allocated
to severity levels in a similar manner. We must show that if a component has inter-
nal faults at severity level and if every component with which it interacts delivers
guarantees on levelor better (i.e., numerically lower), then the component delivers
a guarantee of levélor better. Notice that the requirement for true guarantees can be
subsumed within that for controlled failure.

Whereas partitioning is ensured at the architectural level (i.e., outside the software
whose certification is under consideration), safe function, true guarantees, and controlled
failure are properties that must be certified for the software under consideration. Controlled
failure requires that a fault in one component must not lead to a worse fault in another. It
is achieved by suitable redundancy (e.g., if one component fails to deliver a sensor sam-
ple, perhaps it can be synthesized from others using the methods of analytic redundancy)
and self-protection (e.g., timeouts, default values and so on). Many of the design and pro-
gramming techniques that assist in this endeavor are folklore (e.g., the practice of zeroing
a data value after it is read from a buffer, so that the reader can tell whether it has been
refreshed the next time it goes to read it), but some are sufficiently general that they should
be considered as design principles.



One important insight is that a component should not allow another to control its own
progress nor, more generally, its own flow of control. Suppose that one of the guaran-
tees by one component is quite weak: for example, “this buffer may sometimes contain
recent data concerning parametet Another component that uses this data must be pre-
pared to operate when recent data abéus unavailable (at least from this component in
this buffer). Now, it might seem that predictability and simplicity would be enhanced if
we were to ensure that the flow of data abduis reliable—perhaps using a protocol in-
volving acknowledgments. But in fact, contrary to this intuition, such a mechanism would
greatly increase the coupling between components and introduce more complicated failure
propagations. For example, ¥; supplies data toX,, the introduction of a protocol for
reliable communication could causg to block waiting for an acknowledgment frofi,
that may never come X has failed. Kopetzi{ ] defines such interfaces that involve
bidirectional flow of control as “composite” and argues convincingly that they should be
eschewed in favor of “elementary” interfaces in which control flow is unidirectional. Data
flow may be bidirectional, but the task of tolerating external failures is greatly simplified by
the unidirectional control flow of elementary interfaces.

The need for elementary interfaces leads to unusual protocols that are largely unknown
outside the avionics field. The four-slot protocol of Simpsem{9(, for example, provides
a completely nonblocking, asynchronous communication mechanism that nonetheless en-
sures timely transmission and mutual exclusion (i.e., no simultaneous reading and writing
of the same buffer). A generalization of this protocol, called NBW (nonblocking write) is
usedin TTA | ]

There is a rich opportunity to codify and analyze the principles and requirements that
underlie algorithms such as these. Codification would be undertaken in the context of the
assume-guarantee approach to modular certification outlined above. That approach itself
requires further elaboration in a formal, mathematical context that will enable its soundness
and adequacy to be analyzed.



10



Chapter 3

Conclusions

We have examined several ways in which the notion of modular certification could be inter-
preted and have identified one that is applicable to software components in IMA and MAC
architectures. This interpretation is based on the idea that these components can be certi-
fied to perform their function in the given aircraft context using caggumptionabout the
behavior of other software components.

We identified three key elements in this approach.

e Partitioning
e Assume-guarantee reasoning
e Separation of properties into normal and abnormal

Partitioning creates an environment that enforces the interfaces between components;
thus, the only failure modes that need be considered are those in which software compo-
nents perform their function incorrectly, or deliver incorrect behavior at their interfaces.
Partitioning is the responsibility of the safety-critical buses such as SAFEbus and TTA that
underlie IMA and MAC architectures.

Assume-guarantee reasoning is the technique that allows one component to be verified
in the presence of assumptions about another,véaceglversa This approach employs a
kind of circular reasoning and can be unsound. McMillafc{/199] presents a sound rule
that seems suitable for the applicaitons considered here. Its soundness has been formally
verified in PVS | .

To extend assume-guarantee reasoning from verification to certification, we showed
that it is necessary to consider abnormal as well as normal assumptions and guarantees.
The abnormal properties capture behavior in the presence of failures. To ensure that the
assumptions are closed, and the system is safe, we identified three classes of property that
must be established using assume-guarantee reasoning.

e Safe function
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e True guarantees
e Controlled failure

The first of these ensures that each component performs its function safely under all condi-
tions consistent with its fault hypothesis, while the second ensures that it delivers its appro-
priate guarantees. Controlled failure is used to prevent a “domino effect” where failure of
one component causes others to fail also.

For this approach to be practical, components cannot have strong or complex mutual
interdependencies. We related this issue to Kopetz’s notion of “composite” and “elemen-
tary” interfaces. In his classic book, PerroWwdr84 identified two properties that produce
systems that are susceptible to catastrophic faills#eng couplingandinteractive com-
plexity. It may be feasible to give a precise characterization of these notions using the
approach introduced here (one might correspond to difficulty in establishing the property
of controlled failure, and the other to excessively numerous and complex assumptions).

Interesting future extensions to this work would be to expand the formal treatment from
the single assumption-guarantee for each component that is adequate for verification to
the multiple (normal/abnormal) assumptions required for certification. This could allow
formalization and analysis of the adequacy of the properties safe function, true guarantees,
and controlled failure.

It will also be useful to investigate practical application of the approach presented here.
One possible application is to the mutual interdependence of membership and synchroniza-
tion in TTA: each of these is verified on the basis of assumptions about the other. Other
potential applications may be found among those intended for the Honeywell MAC archi-
tecture.

Finally, we hope that some of this material may prove useful to the deliberations of
RTCA SC-200/EUROCAE WG-60, which is considering certification issues for IMA.
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