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ABSTRACT

A formal model of “secure isolation” between the users of a
shared computer system is presented. Tt is then developed
into a security verification technicue called “Proof of
Ceparability” whose basis 1is to prove that the behaviour
perceived by each user of the shared scystem is ipndistin-
guishable from that whick could be provided by an unshared
machine dedicated to his private use.

Proof of Separability is suitable for the verification of
security kernels which enforce the policy of isolation; it
explicitly addresses issues relating to the interpretation
of instructions and the flow of control (including inter-
rupts) which have been ignored by previous treatments.

*

Reprint (slightly expanded) of a paper presented at the
5th International Symposium on Programming,
Turin, ITtaly, April 4-6 1982.

(Springer-Verlag LNCS No. 137 pp. 352-367)"

SsM/11



TABLE OF CONTENTS

INTRODUCTION ...... B TR |
THE SPECIFICATION OF SECURE ISOLATION .:..cococecccvososccnnssscscsoss 3
THE VERITFICATION OF SECURE ISOLATION .......... cressecennesesesons cees 7
PROOF OF SEPARABILITY ..cccevcccsssccansacssssassoassassasassasssscses 15

REFERENCES S 9 20000000000 DEPEINICITLOLEPIDEOET SISO OENESOONNOLEOESEONSIOEDBNTOEE 16



“Proof of Separability”
A Verification Technique for a Class of Security Kernels

(Revised Version of SSM/8)

J.M. Rushby

Computing Laboratory
University of Newcastle upon Tyne
Newcastle upon Tyne NE1 7RU
England

Tel.: Newcastle (0632) 329233
Arpanet mail: NUMAC at SRI-CSL

INTRODUCTION

Systems with stringent security requirements such as KXS0S [Ber-
son79], KVM/370 [Gold79], and the various “Guards” [Hathaway80, Wood-
ward79] are amongst the very first computer systems to be produced under
commercial contracts that require formal specification and verification
of certain aspects of their behaviour. However, doubts have been
expressed concerning whether the techniques used to verify these systems
really do provide compelling evidence for their security [Ames79,
Rushby8la, Rushby8lc]. The purpose of this paper is to develop and jus-
tify a new and, it is argued, more appropriate technique for verifying
one class of secure systems.

A secure system is one which enforces certain restrictions on
access to the information which it contains, and on the communication of
information between its users. A precise statement of the restrictions
to be enforced by a particular system constitutes its security policy.
Secure systems are needed by the military authorities and by other agen-
cies and institutions which process information of great sensitivity or
value. 1In these environments, it is possible that attempts will be made
to gain unauthorized access to valuable information by penetrating the
defences of any computer system that processes it. It must be assumed
that these attacks may be mounted by skilled and determined users with
legitimate access to the system, or even by those involved in its design
and implementation. Experience has shown that conventional operating
systems cannot withstand this kind of attack, nor can they be modified
to do so [Anderson72, Attanasio76, Hebbard80, Linde75, Wilkinson817].

Accordingly, attention has now turned to the construction of ker-
nelized systems: the 1idea 1is to isolate all (and only) the functioms
which are essential to the security of the system within a security ker-
nel. If the kernel 1is “correct” in some appropriate sense, then the
security of the whole system 1is assured. The enthusiasm for this
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approach is due to the fact that a security kernel can be quite a small
component of the total system (it is essentially an operating system
nucleus) and there 1is, in consequence, some hope of getting it right.
But since the security of the whole edifice rests on this one component,
it 1is absolutely vital that it is right. Compelling evidence is there-
fore required to attest to the security provided by a kernel. Verifica-
tion, that is a formal mathematical proof that the kernel conforms to an
appropriate and precise specification of “secure behaviour”, is the evi-
dence generally considered to be most convincing [Nibaldi79].

Two main approaches have been proposed for the verification of
security kernels. These are access control verification [Popek78b] and
information flow analysis [Feiertag80, Millen76]. The first of these is
concerned to prove that all accesses by users to the stored representa-
tions of information are in accord with the security policy. For mili-
tary systems, however, it is not sufficient merely to be sure that users
cannot directly access information to which they are not authorized; it
is necessary to be sure that information cannot be leaked to unauthor-
ized users by any means whatsoever.

This is the confinement problém. It was first identified by Lamp-
son [Lampson73] who enumerated three kinds of channel that can be used
to leak information within a system. Storage chamnels are those that
exploit system storage such as temporary files and state variables,
while Legitimate channels involve “piggybacking” illicit information
onto a 1legal information channel - by modulating message length, for
example. The third type of channel is the covert one (also called a
timing channel) which achieves communication by modulating aspects of
the system”s performance (for example, its paging rate). Unlike access
control verification, information flow analysis can establish the
absence of storage and legitimate channels and for this reason it has

been the verification technique preferred for certain military systems
[Ford78].

Although the properties established by access control verification
and by information flow analysis are undoubtedly important omes, it is
not clear that they amount to a complete guarantee of security. Both
these verification techniques are applied to system descriptions from
which certain “low 1level” aspects of system behaviour have been
abstracted away. Thus autonomous input/output devices =~ which can
modify the system state asynchronously with program execution and which,
by raising interrupts, can drastically change the protection state and
the sequence of program execution — are absent from the system  descrip-
tions whose security is verified by these methods. This is despite the
fact that penetration exercises indicate that it is precisely in their
handling of these low level details that many computer systems are most
vulnerable to attack - and, consequently, that these are the areas where
verification of appropriate behaviour is to be most desired.

In a companion paper to this [Rushby8la], I have distinguished
between high and 1low level considerations in secure system design and
have proposed that different mechanisms and verification techniques
should be employed for each level.

At the high level, the system should be conceived as a distributed
one where the significant issues are those of controlling access to
information and the communication of information between conceptually
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separate single-user machines. The fact that all users actually happen
to share the same physical machine should be masked at this level. It
is precisely the task of the low level security mechanism to perform
this masking and I have proposed a primitive type of kernel called a
separation kermel to serve this purpose. Its function is to simulate
the distributed environment assumed at the higher level of conceptuali-
zation. To this end it provides each system component with a regime (or
“virtual machine”) whose behaviour is indistinguishable from that of a
private machine dedicated to that component alone.

The fundamental property to be proved of a separation kernel is
that it completely isolates its regimes from one another: there must be
absolutely no flow of information from one regime to another. (In prac-
tice, controlled flow of information will be required between certain
regimes. T will return to this point in the final section of this
paper, but for the present I want to concentrate on the simplest case.)

For the reasons outlined earlier, neither of the established
methods of security verification is adequate to the task of verifying a
separation kernel: we really need a new method. The technique which I
propose 1s a very mnatural one that is in accord with the intuition
underlying the notion of a separation kernel. It is to prove that the
system behaves as if it were composed of several totally separate
machines - hence the name of this verification technique: “Proof of
Separability”.

Although “separability” is a straightforward notion, its formal
definition in terms of a realistic system model is fairly complicated.
Possibly, therefore, its own definition may contain errors. The primary
purpose of this paper 1s to convince the reader that this is not the
case and that the definition given at the end of this paper is correct.
My tactic will be to start off with a specification of “secure isola-
tion” for a very simple system model and then to elaborate it until I
arrive at the definition of Proof of Separability.

THE SPECIFICATION OF SECURE ISOLATION

To begin, we need some formal model of a “computer system”. In
developing a verification technique based on information flow analysis,
Felertag and his co-workers used a conventional finite automaton for
this purpose [Feiertag77]. At each step, the automaton consumes an
input token and changes its internal state in a manner determined by its
previous state and by the value of the input token consumed. At the
same time, it also emits an output token whose value is determined simi-
larly. Each input and each output token is tagged with its security
classification and the specification of security (for the case of isola-
tion) is that the production of outputs of each classification may
depend only on the consumption of inputs of that same classification.

While this is an appropriate model for a computer system viewed at
a fairly high level of abstraction, it is less realistic as a model for
a security kernel. A kernel is essentially an interpreter - it acts as
a hardware extension and executes operations on behalf of the regimes
which it supports. The identity of the regime on whose behalf it is
operating at each instant is not indicated by a tag affixed to the
operation by some external agent, but is determined by the kernel”s own
state. Furthermore, this model does not capture the instruction



sequencing mechanisms that seem, intuitively, to be of vital importance
to the security of a kernel. Accordingly, I shall adopt a slightly dif-
ferent model. I shall suppose that a system comprises a set S of states
and progresses from one state to another under its own internal control.
The transition from one state to the next will be determined by a NEXT-
STATE function solely on the basis of the current state: if s is the
current state, then its successor will be NEXTSTATE(s). Naturally, we
can think of the value of NEXTSTATE(s) as being the result of “execut-—
ing” some “operation” selected by a “control mechanism”~ - although I
want to ignore these details for the moment and keep the initial model
very austere and general.

Not only must a system have some means of making progress (modelled
here by the NEXTSTATE function) but, in order to be interesting, it must
interact with its environment in some way: it must consume inputs and
produce outputs. For outputs, I shall suppose that certain aspects of
the system”s internal state are made continually visible to the outside
world through a “window” - modelled here by an OUTPUT function:
OUTPUT(s) is the visible aspect of state s. Real-world interpretations
of this “window” are provided by the device registers of a PDP-11, for
example.

In contrast to outputs, which are continuously available, I shall
suppose, initially, that inputs are presented to the system just once,
right at the start. The INPUT function takes an input value, say i, as
its argument and returns a system state as its result. The system, once
given this externally determined initial state, thereafter proceeds from
state to state under its own internal control. Because INPUT(i) is the
initial state of the system, the value of i may be considered to
comprise, not merely an input in the conventional sense, but also the
“program” which determines the system”s subsequent behaviour. The idea
that all the input should be presented at one go is clearly artificial
since it precludes genuine interaction between the system and its
environment. Accordingly, I will extend the model later in order to
overcome this objection - but readers should be aware that this exten-
sion causes something of a hiatus in the development.

Collecting the burden of the previous discussion together, and
proceeding more formally, we may now say that a system or machine M is a
6-tuple

M = (S, I, 0, NEXTSTATE, INPUT, OUTPUT)
where: |

S8 is a finite, non-empty set of states,

I is a finite, non—eﬁpty set of inputs,

0 is a finite, non-empty set of outputs, and

NEXTSTATE: S—>S,

INPUT: I->»S and

OUTPUT: S—>0 are total functions. (The reason for assuming total
functions will be explained later.)



The computation invoked by an input i € I is the infinite sequence

COMPUTATION(1) = <8(,51,85, «ov 48, «os >

where s, = INPUT(i) and §441 = NEXTSTATE(s;), V¥ 320.

The result of a computation is simply the sequence of outputs visi-
ble to an observer, that is:

RESULT(1) = <OUTPUT(S(),0UTPUT(S;), ... ,OUTPUT(s, ), ... >. (1)

As a notational convenience, I shall allow functions to take sequences
as their arguments; the interpretation is that the function is to be

applied pointwise ‘to each element of the sequence. Thus, we may rewrite
(1) as

RESULT(1) = OUTPUT(COMPUTATION(i)).

Now, in order to be able to discuss security, we must assume that our
machine 1is shared by more than one user (or else there is no problem to
discuss). I shall identify users with the members of a set C = {1,2,
«ss ,m} of “colours”. Each user must be able to make his own, personal,
contribution to the machine”s input and be able to observe some part of
the output that is private to himself. We can model this formally by
supposing that both the sets I and 0 (of inputs and outputs) are Carte-
sian products of C-indexed families of sets. That is:

T=1'%X12%X ... XI®™ and 0=0!'%X02X ... X oOoN.

A machine whose input and output sets are of this form will be said to
be C-shared. Notice that the components of these products are dis-
tinguished by superscripted elements of C. I shall wuse superscripts
consistently for this purpose; subscripts, on the other hand, will be
used exclusively to identify the components of sequences.

It is convenient to introduce a projection function, called
EXTRACT, to pick out the individual components of members of Cartesian
products of C-indexed sets. Thus, when ¢ €C, 1 €I, and o €0,
EXTRACT(c,i) and EXTRACT(c,0) denote the c—coloured components of the
input 1 and the output o, respectively. When a C-shared machine
operates on an input i € I, each user sees only his own component of the
result. By the convention introduced previously, EXTRACT can be applied
to sequences as well as to individuals and so the component of the out-—
put visible to user ¢ € C is the sequence EXTRACT(c,RESULT(i)).

Now the simplest and most natural definition of secure isolation is

surely that the results seen by each user should depend only on his own
contribution to the input. Thus, we require,

Vecec,¥Vi,jerl:

EXTRACT(c,i) = EXTRACT(c,j) =
EXTRACT(c,RESULT(1)) = EXTRACT(c,RESULT(3)). (2)

Further consideration, however, indicates that this requirement is
too strong for our purposes. The real systems, whose salient charac-
teristics we are trying to capture in these definitions, work in a
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“time-sharing” fashion. That is, they first perform a few operations on
behalf of one user, then a few more on behalf of another and so on.
While the system is operating on behalf of other users, user c should
see no change in the outputs visible to him, but the length of time
which he must wait before processing resumes on his behalf may well
depend upon the activity of those other users. If user ¢” can influence
the rate at which user c is serviced, and user c can sense his rate of
service, then a communication channel exists between ¢~ and c. This is
one of Lampson”s ~covert channels” and while these channels constitute a
security flaw and should be countered, their complete exclusion 1is
beyond the scope of simple security kernel technology. Covert channels
are typically noisy and of low bandwidth and are normally countered by
ad-hoc techniques intended to increase noise and lower bandwidth still
further. The threat which T want to completely exclude is that of
storage channels and the trouble with (2) as a definition of security is
that it requires the absence of covert as well as storage channels.
There is 1little point in demanding the absence of covert channels when
this cannot be achieved by the techniques under consideration. We
should therefore weaken (2) so that only storage channels are forbidden
and this can be done by restricting attention to the sequences of
changes in the values of the outputs, rather than the output sequences
themselves. To this end, I shall introduce a CONDENSE function on
sequences. The CONDENSEd version of a sequence is just the sequence
with every subsequence of repeated values replaced by a single copy of
that value. For example:

CONDENSE(<1,1,2,2,2,3,4,4,3,3,6,6,6>) = <1,2,3,4,3,6>.

I shall give a precise definition of CONDENSE shortly but first I want
to press on with the definition of security. Using CONDENSE, the
revised definition of secure isolation, suggested above, becomes:

YeecC,Vi,je€erI,

EXTRACT(c,i) = EXTRACT(c,j) => :
CONDENSE (EXTRACT( ¢ ,RESULT(1))) = CONDENSE(EXTRACT(c,RESULT(3))).(3)

Unfortunately, this definition is still too strong for our pur-
poses. Suppose that certain inputs cause one of the users to crash the
machine, or to loop endlessly when he gets control. This constitutes a
type of security breach called “denial of service”. Definition (3)
requires the absence of such breaches. Like covert channels, denial of
service should be excluded from a secure system - but, again like covert
channels, the control of this type of security flaw is beyond the scope
of the mechanisms being investigated here, for it concerns the fairness
of scheduling procedures and the guaranteed termination of processes.
Notice, however, that no attempt to defeat denial of service threats
will succeed if any of thée basic machine operations can fail to ter-
minate. It is for this reason that I have required all the functions
that comprise my machine definitions to be total. Clearly, this
requirement must be verified during any practical application of tech-
niques derived from these definitions. Cristian [Cristian81] discusses
these issues In a wider context.

We can weaken the definition given by (3) so that it admits denial
of service while still excluding storage channels if we require only
that the condensed results should be equal as far as they go: we don’t



mind if one of them stops while the other carries on, so long as they
are equal while they both survive. T shall, therefore, define a weaker
form of equivalence on sequences, denoted by =, and defined by:

X =Y if and only if either X = Y or the shorter of

X and Y is an initial subsequence of the other.
My final definition of security is then:
VYecec,Vi,jel,

EXTRACT(c,i) = EXTRACT(c,j) =>
CONDENSE (EXTRACT(c ,RESULT(1))) = CONDENSE(EXTRACT(c,RESULT(3))). (4)

Given that we can accept (4) as a precise specification of secure isola-
tion, our task now is to derive a series of testable conditions that are
sufficient to ensure this property.

THE VERIFICATION OF SECURE ISOLATION

Before embarking on the main development, we need a precise defini-
tion of the CONDENSE function.

let X = <X0,x1,x2, «ee >, be a sequence (either finite or infinite) and
let INDICES(X) denote the set of indices appearing in X. Thus

N if X is infinite, and
INDICES(X) =

{0,1,2, ... ,n} if X is finite and ends with X .

Now define the total function f:INDICES(X) —> N by
£(0) = 0, and, for j>0

f(j) if Xj+1 = xj
f(jtl) =

f(j)+1 otherwise.

£(3j) is the number of changes of value in the sequence X, prior to xj;
it is called the condenser function for X.

The range of f is either the whole of N, or else it is a finite set
{0,1,2, ... ,p} for some p > 0. 1In either case, let R denote the range
of f and let f be a right inverse for F. That {s, any function such
that f£(E(3)) = j, ¥j € R. (At 1least one such T exists - F(j) is the
index of an element of X that is preceded by j changes of value.) Then
define CONDENSE(X) to be the sequence:

CONDENSE(X) = <x

\X s coe D
T(0) E(1)

Notice that this sequence is independent of the choice of F, for if g
and h are any two functions such that :

£(g(3)) = £(h(j)) = j, then

¥g() = *h(3)



even though it is not necessarily true that g(j) = h(j). (Proof by con-
tradiction.)

We shall need the following result concerning condensed sequences:
Lemma 1
Let X = <xg,%;,%y, «. > and Y = <y,¥1,¥9, +-+ >
be sequences (each either finite or infinite) and let
f: INDICES(X) —> INDICES(Y)
be a total function such that

f(O) =0 andV JZO Xj = yf(j) and

either f(j+l) £f(5H

£C3)+1.

or £(3+1)
Then CONDENSE(X) & CONDENSE(Y).

(Intuitively, this states that if Y is a “slightly” condensed version of
X, then X and Y both condense to the same value.)

Proof

Let h and g be condenser functions for X and Y respectively. Pic-
torially, we have:

f J/ l///
" L . L Y h
il/ 4//, Y
f . + CONDENSE(Y) J

and the result is basically a consequence of the fact that
h(j) = g(f(j)). Let h,g,I be any three functions such that:

h(h(3))
g(g(3))

Lo

Y

. + CONDENSE(X)

j, Vi in the range of h,

i, Y3 in the range of g,

£(E(3)) = j, Vi in the range of f.

Notice that for any j in the range of h, the value of x is indepen-
E .
dent of the choice of h. Similarly, the values of x (g%d y are
- (1 g(k)
independent of the precise choice of T and g. Now de%i%e

1(k) = f(h(k)), ¥k in the range of h.
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A straightforward induction on the value of j gives
h(3) = g(£(J)), Vi € INDICES(X)

and consequently,

g(1(k)) = g(£f(h(k)))

h(h(k))

k. (Vk in the range of h).

It also follows from the identity h(j) = g(f(j)) that the range of h is
contained in that of g and hence, for k in the range of h, we have:

g(1(k)) = g(g(k)) = k.

W0 7 Ty

But y = =
1 ™ Yemyy RO

and so x =y and the result follows (since these are the k“th

h(k) g(k)
elements of CONDENSE(X) and CONDENSE(Y), respectively). []

We now return to the main thread of the argument. Given that we
accept (4) as a definition of security, how might we establish the pres-
ence of this property? Essentially, (4) stipulates that each user of a
C-shared machine must be unaware of the activity, or even the existence,
of any other user: it must appear to him that he has the machine to him-
self. It is a mnatural and attractive idea, then, to postulate a
“private” machine which he does have to himself and to establish (4) by
proving that wuser ¢ is unable to distinguish the behaviour of the C-
shared machine from that which could be provided by a private machine.
I shall now make these ideas precise.

Let M = (S, I, O, NEXTSTATE, INPUT, OUTPUT) be C-shared machine where
I=11X12X ... X1 and 0=0'%X02X ... Xon",

and let ¢ € C. A private machine for ¢ € C is one with input set I° and
output set 0%, say

M® = (8¢, 1°, 0%, NEXTSTATE®, INPUT®, OUTPUTC).

Denote the computation and result functions of M by COMPUTATION® and
RESULT®, respectively. Then M® is an M-compatible private machine for ¢
if:

Vie€erl,

CONDENSE(EXTRACT(c,RESULT(i))) = CONDENSE(RESULT®(EXTRACT(c,1i))) (5)
That is (roughly speaking), the result obtained when an M-compatible
private machine 1is applied to the c-component of a C-shared input must

equal the c-component of the result produced by the C-shared machine M
applied to the whole input.
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Obviously, we have:

Theorem 1

A C-shared machine M is secure, if for each ¢ € C, there exists an
M-compatible private machine for c.

Proof Immediate from (4) and (5). []

Let us now consider how we might prove that a given private machine
for ¢ is M-compatible. Direct appeal to the definition (5) is unattrac-
tive since this involves a property of (possibly infinite) sequences and
will almost certainly require a proof by induction. At the cost of res-—
tricting the class of machines that we are willing to consider, we can
perform the induction once and for all at a meta-level and provide a
more convenient set of properties that are sufficient to ensure M-
compatibility.

The restriction on the class of machines considered is a perfectly
natural one: I shall consider only those C-gshared machines which “time
share” their activity between their different users. That 1is, each
operation carried out by the the C-shared machine performs some service
for just ome user. In particular, it simulates one of the operations of
that user”s private machine. The identity of the user being serviced at
any instant is a function of the current state. Consequently I shall
require a function COLOUR which takes a state as argument and returns
the identity (colour) of the user being serviced (i.e. the user on whose
behalf the next state transition is performed). T shall also require
the notion of an “abstraction function” between the states of a C-shared
machine and those of a private one.

Theorenm 2
Let M = (S, I, 0, NEXTSTATE, INPUT, OUTPUT) be a C-shared machine and
COLOUR: S —> C a total function.

Let MC = (s®, 1%, 0%, NEXTSTATE®, INPUT®, OUTPUT®) be a private machine
for ¢ € C and $°: S = S€ a total function such thatV¥ s € S, V¥ i € I:

1) COLOUR(s) = ¢ => $S(NEXTSTATE(s))

NEXTSTATEC($C(s)),

2) COLOUR(s) # c => pC(NEXTSTATE(s))

$(s),
3)  $S(INPUT(i)) = INPUTS(EXTRACT(c,i)), and
4)  OUTPUTS($C(s)) = EXTRACT(c,0UTPUT(s)) »
Then M® is M-compatible.

Proof

Denote COMPUTATION(i) by P and COMPUTATIONC(EXTRACT(c,i)) by Q
where

P = <PO,P1,p2, LI > and Q = <q0,q1,q2’ LI >.
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Next, denote EXTRACT(c,RESULT(i)) by X and RESULT®(EXTRACT(c,i)) by Y
where

X = <XO,X1,X2, * o > and Y = <y0,y1’y2, LI ] >o-

By definition, x; = EXTRACT(c,OUTPUT(p4)) , and

y OUTPUTc(qj)

3
and we need to prove
CONDENSE(X) = CONDENSE(Y).
Define f: INDICES(P) —» INDICES(Q) by
£(0) = 0, and V'j 20

E(3) 1f COLOUR(p.) # e,
E(§+1) = J
E(§)+1 1f COLOUR(p,) = .

By an elementary induction on j, it follows from parts 1), 2) and 3) of
the statement of the theorem that

c —
$°(py) = ag(y)
and hence, by part 4) of the statement, that

OUTPUTc(qf(j)) = EXTRACT(c,O0UTPUT(p;)) .

That is

YE(3) T *y

Thus, f (regarded now as a function from INDICES(X) to INDICES(Y))
satisfies the premises of Lemma 1 and so we conclude

CONDENSE(X) = CONDENSE(Y)
and thereby the theorem. []

Let us take stock of our present position. We can prove that a C-
shared machine M is secure by demonstrating the existence of an M-
compatible private machine for each of its users. How might we demon-
strate the existence of such M-compatible private machines? A highly
“constructive” approach would be to actually exhibit a private machine
for each user and to prove its M-compatibility using Theorem 2. The
conditions of Theorem 2 are straightforward and easily checked - it may
even be possible to automate much of this checking. On the other hand,
the “constructive” aspect of the approach appears rather laborious: the
construction of each private machine must be spelled out to the last
detail.

A totally different approach would be a “pure” existence proof. We
could seek conditions on M which are sufficient to guarantee, 3 priori,
the existence of M~compatible private machines ~ without ever needing to
actually construct these machines at all. The problem here is to find a
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suitable set of conditions: conditions which can be easily checked
without being overly restrictive on the class of machines that can be
admitted. T doubt that these incompatible requirements can be recon-
ciled in any single set of conditions and so conclude that the search
for a “pure” existence proof is not worthwhile.

Since both extreme positions (the fully constructive approach and
the pure existence proof) have their drawbacks, it may prove fruitful to
examine the middle ground. The idea will be to specify just the “opera-
tions® of the private machine constructively and to constrain the
behaviour of the C-shared machine so that we can guarantee that the con-
struction of the private machine could be completed. To do this, we
shall need to elaborate our model once more.

The machines we have considered until now, though very general, are
rather wunstructured. I now want to constrain them a little by adding
more detail to the method by which a machine proceeds from one state to
the next. At present, this happens as an indivisible step, modelled by
the NEXTSTATE function. In any real machine, the process is more struc-
tured than this: first an “operation” 1is selected by some “control
mechanism” and then it is “executed” to yield the next state.

We can model this by supposing the machine M to be equipped with
some set OPS of “operations” where each operation is a total function on
states. That is

OPS€ S = S.

Next we suppose the existence of a total fumnction:

NEXTOP: S —> OPS
which corresponds to the “control mechanism”. In each state s,
NEXTOP(s) is the operation which is applied to s to yield the next
state. Thus

NEXTSTATE(s) = NEXTOP(s)(s).

If machines are constrained to have this (more realistic) form,
then the set OPS and the function NEXTOP may replace the monolithic
NEXTSTATE function in their definition. We then have the following
result (which guarantees the existence of a complete private machine,

given a specification of only its operations and abstraction functions):

Theorem 3

Let M = (s, I, O, OPS, NEXTOP, INPUT, OUTPUT) be a (new style) C-shared
machine and .

COLOUR: S => C a total function.
Let ¢ € C and suppose there exist sets
S€¢ of states, and

oPs® € s¢ = s€ of (total) operations on S°
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together with (total) ;bstraction functions:
$¢: S > s€ and
ABOP®: OPS —> OPSC,
which satisfy, V¥ ¢ € C, V¥s,s” € S, WYop € OPS, Vi,i” € I:

1) COLOUR(s) = ¢ = $S(op(s))

ABOPC(op) ($°(s)),
$(s),

3) EXTRACT(c,1) = EXTRACT(c,i”) => $S(INPUT(i)) = $S(INPUT(i")),

2) COLOUR(s) # ¢ = $%(op(s))

4)  $%(s) = pS(s”) => EXTRACT(c,OUTPUT(s)) = EXTRACT(c,OUTPUT(s”)), and

5) COLOUR(s) = COLOUR(s”) = c and $%(s) = p%(s”) =
NEXTOP(s) = NEXTOP(s”).

Then there exists an M-compatible private machine for c.
Define the function NEXTOP®: S¢ — 0PS® by:
NEXTOP®($S(s)) = ABOP®(NEXTOP(s)), V¥ s € S such that COLOUR(s) = c.

Condition 5) ensures that NEXTOP® is truly a (single-valued) function.
If we define NEXTSTATE: S = S and NEXTSTATE®: S¢ —> 8¢ by

NEXTSTATE(s) = NEXTOP(s)(s) V¥ s € S and
NEXTSTATEC(t) = NEXTOPS(t)(t) V¥ t € S©,

then conditions 1) and 2) above ensure these definitions satisfy condi-
tions 1) and 2) of Theorem 2.

Next, define INPUT®: I® -> S® to be any total function which satisfies
INPUTC(EXTRACT(c,1)) = pS(INPUT(1)), V i € I.

Condition 3) above ensures that such a function exists and that it
satisfies condition 3) of Theorem 2.

Finally, define OUTPUT®: S¢ = 0% to be any total function satisfying
OUTPUT®($ (s)) = EXTRACT(c,OUTPUT(s)), V¥ s € S.

Condition 4) above ensures the existence of such a function and also
that it satisfies condition 4) of Theorem 2.

We have now constructed a private machine
M® = (s%,1%,0°,NEXTSTATES, INPUT® , OUTPUT®)

which satisfies all the conditions of Theorem 2 and so conclude that M®
is M-compatible. []
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We now need to make a final adjustment to the model. The present
model accepts input only once and we really want something more realis-
tic than this. Real I/O devices do not initialize the system state,
they modify it (by loading values into device registers, or by raising
interrupts, for example). It is natural, therefore, that the func-
tionality of INPUT should be changed to:

INPUT: SX I = S.

We now need to decide when input occurs. On real machines, the state
changes caused by I/0 devices occur asynchronously, but not con-
currently, with the execution of instructions. We could model this by
supposing that the INPUT function is applied just prior to the NEXTSTATE
function at each step. But with real machines, input does not always
occur at every step: whether a device is able to deliver input at some
particular instant may depend partly on its own state (whether it has
any input available), partly on that of other devices (which may affect
whether it can become the “bus master”), and partly.on that of the CPU
(which may lock out interrupts). We can model this by allowing the
machine to make a non-deterministic choice whether or not to apply the
INPUT function at each stage. (Actually, this non-determinism does not
influence the choice of security conditions given below.) Thus, the
machine is now understood to start off in some arbitrary initial state
Sy and to proceed from state to state by:

first) possibly accepting input from its environment, and

second) executing an operation.

That is, if the current value of the input available from the environ-
ment is i and the current state of the machine is s, then its next state

will be NEXTOP(s)(§), where s = INPUT(s,i) if the input is accepted, and
s = s if it is not.

The problem with these changes is that the behaviour of the new
model is not a simple variation on that of the old - it really is a new
model altogether. For this reason, it is not possible to deduce the
conditions that ensure secure behaviour of the new model from those that
have gone before; we have to assert them. This is the hiatus in our
orderly progress which I hinted at earlier. However, because the new
model is similar to its predecessor, and because we have now gained con-
siderable experience in formulating conditions of this sort, I believe
that we can be confident of asserting the correct properties.

The conditions that I propose are just those of the statement of
Theorem 3, but with its condition 3) replaced by the following pair of
conditions which reflect the changed interpretation of the INPUT func-

tion (condition 3a is similar to the previous condition 3; condition 3b
is new):

3a) EXTRACT(c,i) = EXTRACT(c,i”) => $S(INPUT(s,i)) = pS(INPUT(s,i”)),
3b) pO(s) = $S(s7) = PS(INPUT(s,i)) = $pS(INPUT(s”,i)).
The reader may wonder why I did not use a model with realistic 1/0

behaviour right from the start. The reason is that I can find no tran-
sparently simple specifications of security (corresponding, for example,
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to equations (2) to (4)) for such a model. The definition of Proof of
Separability would have to be asserted “out of the blue” and the goal of
arguing its correctness would have been worse, rather than better,
served.

PROOF OF SEPARABILITY

We have now derived the formal statement of the six conditions that
constitute the security verificaton technique which I call “Proof of
Separability”. Using “RED” as a more vivid name for the quantified
colour c, these conditions may be expressed informally as follows:

1) When an operation is executed on behalf of the RED user, the
effects which that wuser perceives must be capable of complete
description in terms of the objects known to him.

2) When an operation is executed on behalf of the RED user, other
users should perceive no effects at all.

3a) Only RED I/O devices may affect the state perceived by the RED
user.

3b) I/0 devices must not be able to cause dissimilar behaviour to be
exhibited by states which the RED user perceives as identical.

4) RED I/O devices must not be able to perceive differences between
states which the RED user perceives as identical.

5) The selection of the next operation to be executed on behalf of the
RED user must only depend on the state of his regime.

Interpreted thus, I believe these six conditions have considerable
intuitive appeal as a comprehensive statement of what must be proved in
order to establish secure isolation between a number of users sharing a
single machine. I hope the development that preceded their formulation
has convinced the reader that they are the right conditions.

Of course, even the right conditions will be of no practical use if
they are so strong that real systems cannot satisfy them. From this
point of view, Proof of Separability suffers from a serious drawback: it
is specific to the highly restrictive policy of isolation. Most real
systems must allow some communication between their users and the aim of
security verification is then to prove that communication only takes
place in accordance with a stated policy. It is actually rather easy to
modify Proof of Separability so that it does permit some forms of
inter-user communication: we simply relax its second condition in a con-
trolled manner. For example, if the RED user is to be allowed to com-
municate information to the BLACK user through use of the WRITE opera-
tion, we Jjust delete requirement 2) of Theorem 3 for the single case
where COLOUR(s) = RED, ¢ = BLACK, and op = WRITE. Recent work by Goguen
and Meseguer [Goguen8l], which allows the precise description of a very
general class of security policies, may allow this ad-hoc technique to
be given a formal basis.

An elementary example of the application of this verification tech—
nique (and a comparison with some others) may be found in [Rushby8lc].
Present work is aimed at the verification of a complete security kernel
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described by Barnes [ﬁarnes80]. The work described here actually grew
out of an attempt to formalize the informal arguments used to claim
security for this kernel.
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