Presented at Fundamental Approaches to Software Engineering (FASE)
Barcelona, Spain, March 2004. Springer Verlag LNCS 2984, pp. 229-243.
(©Springer-Verlag

An Operational Semantics for Stateflow™

Grégoire Hamon and John Rushby

Computer Science Laboratory
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025 - USA
{hamon, rushby }@csl.sri.com

Abstract. We present a formal operational semantics for Stateflow, the
graphical Statecharts-like language of the Matlab/Simulink tool suite
that is widely used in model-based development of embedded systems.
Stateflow has many tricky features but our operational treatment yields
a surprisingly simple semantics for the subset that is generally recom-
mended for industrial applications. We have validated our semantics by
developing an interpreter that allows us to compare its behavior against
the Matlab simulator. We have used the semantics as a foundation for
developing prototype tools for formal analysis of Stateflow designs.

1 Introduction

The design process for embedded systems has changed dramatically over the last
few years. Increasingly, designers use model-based development environments,
these allow the system, including its software, the plant that it will control, and
the environment in which it will operate, to be represented in graphical form
at a high level of abstraction. Model-based development environments provide
extensive tools for validation through simulation, and code generators that can
compile an executable controller from its graphical representation. One of the
most widely used environments of this kind is the Matlab suite from Mathworks
which, with more than 500,000 licensees, is widespread throughout aerospace,
automotive, and several other industries, and ubiquitous in engineering educa-
tion.

Stateflow is a component of the Simulink graphical language used in Matlab.
It allows hierarchical state-machine diagrams & la Statecharts to be combined
with flowchart diagrams in a very flexible way. Stateflow is generally used to
specify the discrete controller (i.e., the software) in the model of a hybrid system
where the continuous dynamics (i.e., the behavior of the plant and environment)
are specified using other capabilities of Simulink. As part of the Matlab tool
suite, Stateflow inherits all its simulation and code generation capabilities.

* This material is based on work supported by the National Science Foundation under
Grant No. CCR~0086096 through the University of Illinois and by NASA Langley
Research Center under Contract NAS1-00079.

The evolution to model-based development has been driven by the growing
number of embedded systems, and their increasing complexity. Alongside these
developments has been an increase in the criticality of embedded systems, with
regard to both human safety (e.g., fly-by-wire control systems) and the cost of
faults (e.g., systems deployed in huge quantities in automobiles and domestic
appliances). This increasing criticality creates a need for improved methods of
analysis and verification, and this provides an opportunity for formal methods.
Formal methods can provide tools to check properties of a design and they
can also apply a computational procedure, such as generation of test cases,
systematically and automatically, to all parts of a design. However, notations
like Stateflow were not built with formal methods in mind, and do not appear
to be well suited to formalization.

1.1 Understanding Stateflow

Stateflow is a complex language (its User’s Guide [1] is 896 pages long) with
numerous, complicated, and often overlapping features lacking any formal def-
inition. Its documentation [1, Chapter 4] describes the semantics in informal
operational terms, supported by numerous examples, but the actual definition
of the language is the “simulation semantics” given by its behavior when simu-
lated in the Matlab environment. Proposing formal tools for Stateflow requires
first giving it a formal definition.

This complexity of the language can be seen as an obstacle to formalization.
On the other hand, it makes the need for tools to help programmers clearly
visible, and users of the language are asking for them. For example, a Stateflow
program can fail with a runtime exception for any of several reasons, and it is
desirable to be able to avoid such failures, or at least be able to detect when a
program may be vulnerable to them. One popular way to do this is to rely on
programming guidelines [2, 3] that restrict the language to a safe kernel. These
guidelines have no more formal basis than the language itself and are based
on experience. Precisely identifying the reasons for runtime errors would allow
development of static analysis tools that could guarantee their absence.

1.2 A framework for formal tools

In this work, we propose a formalization of Stateflow that can be used as a start-
ing point for the definition of formal tools. Thus, we choose not to idealize the
language but to follow strictly the simulation semantics given by the Mathworks
documentation and tools, even in its shortcomings. The main result lies in un-
derstanding that although Stateflow is superficially similar to other statecharts
notations, it is in truth a sequential imperative language. As such, the prob-
lems arising when formalizing the language are different in nature than those for
other statechart languages, and different solutions are required. We use a formal
operational semantics as it precisely captures the order of execution of the dif-
ferent components of a Stateflow chart. This operational approach satisfies our

goal and is able to express the more complicated features of the language where
alternative approaches (e.g., denotational) might get lost.

‘We have used this formalization in the development of several tools for State-
flow; it provides a detailed understanding of the language, and readily supports
the construction of static analyzers and translation to formal tools such as model
checkers.

1.3 Overview of the paper

We first introduce Stateflow through an example. Section 3 develops a formaliza-
tion of a subset of the language and gives it an operational semantics. Finally,
in Section 4 we compare our approach with related work and sketch why the
approach proposed here seems to be a good basis for developing formal tools for
the language.

2 Introduction to Stateflow

The Stateflow language provides hierarchical state machines, similar to those of
Statecharts (although these two languages give different semantics to the state
machines). It includes complicated features like interlevel transitions, complex
transitions through junctions (which are portrayed as small circles), and event
broadcasting. Stateflow also provides flowcharts, which are specified using inter-
nal transitions leading to terminal junctions. Describing the whole language is
beyond the scope of this paper, so we present here a simple example program
that includes both kinds of notation and sketch its execution.

2.1 A stopwatch in Stateflow

Stop Run TIC {
cent=cent+1;
— }
Reset| LAP{ . START Running
cc?nt=0; sec=0;‘m1n:0; during: [cent==100] {
disp_cent=0; disp_sec=0; disp_cent=cent; cent0:
disp_min=0; START disp_sec=sec; sec:se;+])
} disp_min=min;) ’
LAP LAP LAP
[sec==60] {
\ START sec=0;
Lap_stop I< START = Lap }min:min+1;
|

Fig. 1. A simple stopwatch in Stateflow

Figure 1 presents the Stateflow specification of a stopwatch with lap time
measurement. This stopwatch contains a counter represented by three variables
(min, sec, cent) and a display, also represented as three variables (disp-min,
disp_sec, disp_cent).

The stopwatch is controlled by two command buttons, START and LAP. The
START button switches the time counter on and off; the LAP button fixes the
display to show the lap time when the counter is running and resets the counter
when the counter is stopped. This behavior can be modeled as four exclusive
states:

— Reset: the counter is stopped. Receiving LAP resets the counter and the
display, receiving START changes the control to the Running mode.

— Lap_Stop: the counter is stopped. Receiving LAP changes to the Reset mode
and receiving START to the Lap mode.

— Running: the counter is running, and the display updated. Receiving START
changes to the Stop mode, pressing LAP changes to the Lap mode.

— Lap: the counter is running, but the display is not updated, thus showing
the last value it received. Receiving START changes to Lap_Stop, receiving
LAP changes to Running.

These four states are here grouped by pairs inside two main states: Run and
Stop, active respectively when the counter is counting or stopped. The counter
itself is specified within the Run state as a flowchart, incrementing its value every
time a clock TIC is received (every 1/100s).

2.2 Executing the stopwatch chart

A Stateflow chart always has one active state. Executing the chart consists in
executing the active state each time an event occurs in the environment. Events
here are either an action on one of the buttons (START or LAP) or a clock tick
(TIC). Executing the active state is done in three steps:

1. See if a transition leaving the state can be taken, else goto step 2.
2. Execute internal actions (internal transitions, then during actions).
3. Execute any internal state that is active.

Transitions can be guarded by events or conditions or both, and they can trig-
ger actions. The internal transition in state Reset for example is guarded by
the LAP event and triggers a series of actions reinitializing the counter and the
display. Supposing that the Run state is active, with the Running substate active,
receiving the START event would trigger the following sequence of reactions:

— there is no transition leaving the state (the transitions guarded by start
belong to its substates),

— the flowchart is executed, but is guarded by TIC, thus does nothing,

— the active substate is executed, it has a transition which can be fired, leading
to Reset, itself substate of Stop; Running then Run are exited, and Stop then
Reset are entered.

This step is completed, and execution will continue from the newly active state
next time an event is received from the environment.

The model contains a flowchart that implements the counter. Flowcharts are
described using transitions between junctions. Unlike states, a junction is exited
instantaneously when entered, and the flowchart executes until a terminal junc-
tion (a junction without outgoing transitions) is reached, or all paths have failed.
Backtracking can occur if a wrong path is tried. In our example, the flowchart
is guarded by the TIC event. If activated under this event, the cent variable is
incremented and the first junction reached. T'wo transitions leave it, the guarded
one is always executed first. If cent is equal to 100, the guarded transition is
taken, cent initialized to 0 and sec incremented, the second junction is reached,
and execution continues. If cent is not equal to 100, the guarded transition fails,
the unguarded one is tried and, being unguarded, succeeds, leading to the third
junction, which is terminal, so execution ends.

This short example does not present all Stateflow features, but it introduces
hierarchical states, interlevel transitions, and mixed design with flowcharts. Our
informal description of the execution of this example is actually close to the
presentation of the language’s semantics in its documentation.

3 Formalizing Stateflow

Studying the language, we came to realize that, although superficially similar
to other statechart notations, Stateflow greatly differs from them. In particular,
all possibilities of non-determinism are avoided by relying on strict ordering
rules, and the scheduling between concurrent components is always statically
known. Thus, we decided to consider Stateflow as an imperative language, and
to use a structural operational semantics (SOS) [4], which is well-adapted to
the description of such languages. This semantics is efficient in dealing with the
complexity of Stateflow, which lies in the intricacy of its constructions, not in
concurrency or non-determinism.

3.1 A Stateflow subset

We now introduce a linear language that is a strict subset of Stateflow. This
language eliminates some difficulties of the graphical notation, by making the
order between components explicit (we describe translation from the graphical
form below). We then give this language a formal semantics.

The language — The language is presented in Figure 2. Its basic components
are states s, junctions j, events e, actions a, and conditions c. We also define
active states s, (nothing or a state), transition events e; (nothing or an event),
and paths (lists of states).

Transitions ¢ are guarded by a transition event and a condition, can execute
two actions and go to a destination d (either a path or a junction). The first

action is executed as soon as the transition is valid; the second one is executed
only if taking the transition leads somewhere.

Transitions are grouped into lists T'. Junction definition lists J associate lists
of transitions to junctions. State definition lists SD associate state definitions
sd to states. A state definition is a triplet of actions, executed respectively upon
entering, executing and exiting the state, an internal composition, a list of inner
transitions, a list of outgoing transitions, and a junction definition list. Finally,
a composition C' is a composition of states, and is either an And or an Or com-
position. An And composition is defined by a boolean (true if the composition is
active) and a state definition list. An Or composition is an active state, a path,
a set of default transitions, and a state definition list.

composition C = 0r(8q,p, T, SD) | And(b, SD)

state definition sd = ((a,a,a),C,T;,To, J)
state definition list SD = {50 : 8do;...; Sn : Sdn}

junction definition list J = {jo : To;..; jn : Tn}

transition t = (et,c,a,a,d)

transition list T=0r|t.T
state s active state Sa =0s|s
junction j
path p=10,]s.p destination d=plj
event e transition event e; = (e | €
action a condition c

Fig. 2. The language

Notes on the language

— Actions a and conditions ¢ are expressions of the action language, which
is distinct from Stateflow itself; we keep this distinction here. The action
language is a very simple imperative language. For the same reason we do
not have variables here, they are part of the action language, not of Stateflow
itself.

— Transition list 7' and state definition lists SD are ordered, and their order
is significant. When using the graphical representation of a program, the
order is determined by the position of the components on the chart: states
are ordered top to bottom and then left to right. Transitions are ordered
following the 12 o’clock rule: they are first ordered using a partial ordering

on the form of their guards (transitions guarded by an event are evaluated
before transitions guarded only by a condition, and unguarded transitions
come last), and when this ordering fails, they are ordered by following their
source clockwise starting from a 12 o’clock position.

— In the following, state definitions will be written (A, C,nT;,T,,J), with A
representing a triplet of actions: the entering, during, and exit actions
will be noted respectively as A.e, A.d, and A.x.

An example — the Stop state from the stopwatch:

Stop: ((¢, ¢, ©),
0r(@s,Stop, (B, ©, ©, ©, Stop.Reset).lr,
{ Reset: ((¢, ¢, ©), 0r(0,,Stop.Reset, 0, { }),
(LAP, o,
(cent « 0; sec «— 0; min « 0;
disp_cent « 0; disp_sec « 0; dispmin « 0), ¢, j).0r,
(START, ¢, ¢, ¢, Run.Running). @7, {j : Or });
Lap_stop: ((¢, ¢, ©), 0r(0s, Stop.Lap_stop, O, { }),07,
(LAP, ¢, ¢, 0, Stop.Reset).
(START, ¢, ¢, o, Run.Lap). 07, { }) }),
(Z)T’ @Tv { })

The ¢ symbol represents both an empty action and an empty condition. The
name j corresponds to the terminal junction found in state Reset (junctions
being anonymous in Stateflow, they are given unique ids during the translation).

We see here that Stop is a state, containing an Or composition made from
states Reset and Lap_Stop. Reset contains an internal transition guarded by
LAP and a transition guarded by START going to state Run.Running; Lap_Stop
contains two transitions, one guarded by LAP going to state Stop.Reset, the
other guarded by START going to state Run.Lap.

3.2 Operational semantics

Executing a Stateflow program consists, on each (discrete) step, in processing
an input event through the program. This processing can modify the value of
variables in the environment, raise output events, and change the program itself
as it may change the active states if transitions occur.

We propose here an SOS semantics for the language. This semantics precisely
expresses the sequence of actions involved in processing an event through a chart.
It is made of rules with the following general form:

e.DFP2 Pt
Processing an event e in an environment D through a program component P

produces a new environment D’, a new program P’, and a transition value tv.
P can here denote any syntactic class of the language. Transition values tv are

used for communication between different parts of the chart. The rules for some
of the particular syntactic classes given below extend and slightly differ from
this general form.

Environments D contain bindings from variables of the action language to
values and the list of output events that are raised in the current instant.

Definition 1 (Environment D).
D =20 : 00} ...; T, : Upj €05 - k]

Transition values indicate if a transition has fired or not. If no transition has fired,
two distinct values, End and No, are necessary to distinguish a failing transition
from the final transition of a flowchart. If a transition has fired, we keep track
of its destination and of an eventual pending action.

Definition 2 (Transition value tv).
tv :=Fire(d,a) | End | No

As for the definition of the language, we do not detail the semantics of actions
and conditions here but consider that we have semantics rules such that

e,DFa— D’ e,DFc—b

Evaluating an action when processing event e in environment D produces a
new environment D’; evaluating a condition when processing e in D produces a
boolean value b.

We now present the semantic rules for the different syntactic classes. For
brevity we only detail rules for transitions, transition lists and parallel compo-
sitions, the full rules are available in an appendix.

Transitions (Figure 3) — A transition (e, ¢, a., at, d) fires to destination d if e
corresponds to the processed event e or is empty, and if the condition c¢ is
true. In this case, the action a. is immediately executed and a; is left pending
in the returned value (rule t-Firg). If ¢ is different from the processed event
and is not empty (rule ¢-Noi) or if the condition is false (rule ¢-No,), the
transition fails and returns No.

Transition lists (Figure 4) — Lists of transitions, together with junctions, are

used to model both flowcharts and complex transitions between states. The
important point here is that a list of transitions is processed sequentially
and the first transition that can fire is taken, as shown by rules T-No and
T-FIRE.
If a transition fires to a junction, the list of transitions associated with this
junction needs to be processed: evaluation continues instantaneously when
reaching a transition. This goes on until we fire to a path (rule T-FIRE-J-F),
we reach a terminal junction (rule T-END) or we fail, in which case we have
to backtrack and try the next transition in our first list (rule T-FIre-J-N).

t-FIRE
(e =e0) V (e0 = 0e) e,Dt c— true e,DFa.— D'

e,DF (eo,c, ac,at,d) D, Fire(d, a:)

t-NO1 t-No2
(e # eo) A (eo # D) (e =e0) V (e0 = 0.) e,DF c— false
e,D (eo,c,ac,at,d)gNo e, Dt (eo, ¢, ac,at,d) L o

Fig. 3. Rules for transitions ¢

T-FIRE T-No-LAST
0 e,DIt D, Fire(p, act) e,D&t D1y
e,D,JF () = End e,D,J - t.T 2 Fire(p, act) e,D,JF t0r 2 No

T-No
T#0r eDFtBNo D, JFT X2ty

e,D,JFt.T 23ty

T-FIRE-J-F
e, DFt = Fire(j,a1) e, Dy, J[j:T;] T e Fire(p,a2)

e,D,Jjj:T;] Ft.T = Fire(p,al;a2)

T-END
e,Dl—tﬂFire(j,al) e,Dl,J[j:Tj]l—TjD—>2End

e,D,J[j: T;] - t.T 22 End

T-FIRE-J-N
e,DFt B Fire(j,a1) e D, J[j T FT; ZNo e Do, Jj:Tj] T 2ty

e, D, J[j: Tj] - t.T 2 tv

Fig. 4. Rules for transition list T’

State definitions — The rules exhibit their order of execution. Different rules
are necessary for entering, executing, and exiting a state. When executing
a state, outgoing transitions are tested first; if they fail, the during code is
executed, then the internal transitions and then the internal composition. If
the composition fires, the transition actions are executed followed by the exit

code. If the outgoing transitions fire, the transition actions are executed, the
internal composition exited, and the exit code executed.

Or compositions — Rules for Or compositions take care of the control changes
between states and handle interlevel transitions. The currently active state
is executed. If this state fires, either it fires to one of its siblings, in which
case this sibling is entered and becomes the active state, or it fires outside
of the composition.

And compositions (Figure 5) — Executing an And composition consists in
sequentially entering/executing/exiting all its parallel substates, each state
being executed in the environment returned by the execution of its prede-
cessor. It is important to notice here that the parallel construction is in fact
completely sequential, and the order of execution statically known: none of
the problems associated with concurrency appears here.

AND
D;
(tv =No) V (tv = End) Vie[0.n], e, Di,JF sd; = sdj No

DTI,
e, Do, J,tv b And({so : sdo;...; Sn : sdn}) gy And({so : sdp;...; sn : sdy, }), No

AND-INIT
Diyq ,
pj =P vz#ﬂvplzmp Vi € [OTL], e, Di,pit-sdi ft sd;

Drny1
e, Do, s;.p F And({so : sdo;...;8n : 5dyn}) 1 And({so : 8dp;...; n : sd })

AND-EXIT
D;

+1
Vie[0.n], e,DiFsdn_; | sd,_;

D1
e, Do - And({so : sdo;...;8n : 5dn}) 1 And({so : sdg;...; s : sd })

Fig. 5. Rule for AND compositions

3.3 Supporting local events

We now extend our treatment to include one of the trickiest features of Stateflow,
the local events mechanism, which the preceding semantics does not consider.
This mechanism allows actions to send an event to a state; when this occurs, the
current processing is interrupted while the sent event is processed through the
receiving state. The receiving state acts here as a function, the action of sending
it an event being the function call. However, this mechanism also introduces some
complicated cases and fully supporting it in the general case appears difficult. We
exhibit a restricted form of this mechanism that is both expressive and supports
a simple semantics.

10

We first try to extend our semantics with a simple interpretation of local
events. The action send(e, s) sends event e to a named state s (broadcasting
an event to the whole chart consists in sending an event to the main state). Its
behavior can be expressed by the following rule:

SEND
e, Dl[s:sd],0;F sd D, sd,tv
e, D[s: sd] - send(€,s) — D'[s : sd']

Sending ¢’ to state s results in processing it through the definition of s. We have
extended environments by the definitions of states:

Definition 3 (Environment D).
D =20 : 09} ...; Ty : Upj €05 - k5 SD)

where SD is a list of state definitions. The notation D(s : sd] denotes the envi-
ronment D in which s is associated to sd.

However, this rule alone does not fully handle event sending; deeper mod-
ifications of the semantics are needed. Processing the local event changes the
definition of the destination state (in the rule, the definition of s is sd’ after
processing the event). The destination state can be an ancestor of the current
state, which might have been modified. It is necessary, whenever an action is
performed, to read the (eventually new) definition of the current state and con-
tinue the execution at the corresponding control point in this new definition. If
the active state has been modified by the call, the return point may even not be
active anymore, which leads in Stateflow to a runtime error.

Investigating this mechanism to understand its behavior and its expressive
power, we distinguished two different usages:

— Describing recursive behaviors. Recursion occurs if the caller sends an event
to itself or one of its ancestors. In practice, those recursions are very difficult
to control (the event sending action might get executed by the recursive call)
and to understand. Providing tools to check that the recursion will stop is
difficult (see [5]). Moreover, these recursions easily lead to runtime errors
and their use is discouraged in industrial applications.

— Explicit scheduling of parallel states. Parallel states are normally ordered
statically given their position on the chart. Local events can be used to
make some explicit, or dynamic, scheduling of parallel states, guarding the
states by local events and having a caller that executes them in the expected
order. This particular use is much simpler to understand.

Our proposition is to limit the use of local events to the definition of sequencing
behaviors. This can be obtained by imposing the following restrictions:

— Local events can be sent only to parallel states.
— Transitions out of parallel states are forbidden (this is already imposed by
Stateflow, see Section 3.4 for more details).

11

— Loops in the broadcasting of events are forbidden (i.e., if state A broadcasts
an event to state B, B cannot in turn broadcast an event to A).

Given those limitations' sending an event can really be seen as a function call.
Forbidding transitions out of parallel states ensures that context modifications
are kept local to the destination. Forcing sending to parallel states and forbidding
loops ensures that no infinite calls will occur. The rule for sending an event is
the rule presented before. In addition to this, we need to change only the rule
for parallel execution:

AND
Dy = DIsg : sdp; ...; Sn : 8dyp]

Vi€ [0.n], e, Di,{}F Di(s;) 2 sd/,No Disy = Dl[s; : sd!]

e, Dt And({so : sdo;...; $n : sdn }) D"“\{i?""’sn}
And({s0 : Dp+1(50); -3 8n : Dny1(sn)}), No

The rule is similar to the original one, with the addition of the state definitions
in the environment, where they are updated during execution.

This definition of local events in our opinion captures the most interesting
of their uses in Stateflow, supports a simple semantics, and does not introduce
new runtime error or infinite loop possibilities. The Ford guideline for Stateflow
[2] makes use of local events in this exact same way.

3.4 Additional and unsupported features

Our subset supports nearly the whole language with the restrictions on local
events presented above. The only interesting feature still missing is the history
junction mechanism that keeps track of the configuration a state was in before
it was last exited, and re-enters it in this configuration. Our semantics easily
extends to support this mechanism; we omitted it here for the sake of simplicity.
The necessary modifications are to add a history component (a boolean) in the
state definitions to determine whether they carry such junctions, and to add rules
to handle this component when entering and leaving states and compositions.

Two restrictions are also imposed on transitions: transitions out of a parallel
compositions and interlevel transitions going to a junction are forbidden. Tran-
sitions directly out of a parallel state are already forbidden in Stateflow, but can
be simulated by taking an interlevel transition from a substate of a parallel state.
The behavior of such transitions is quite unpredictable, and introduces possible
runtime errors (e.g., two states fire simultaneously out of the composition to
different destinations). Forbidding interlevel transitions to a junction allows the
semantics to be local. When taking an interlevel transition to a state, pending
actions can be executed and the state closed before entering the destination. If
the transition goes to a junction, we cannot be sure that it is leading somewhere,
and cannot close the state before opening the destination.

1 To keep equivalence with Stateflow, we further impose that local events can be sent
only to already-visited states; this is due to initialization problems in Stateflow itself.

12

3.5 Equivalence with the simulation semantics

Our language is intended to be a strict subset of Stateflow, so that tools devel-
oped for it will apply to programs designed using Mathworks’ tools—as long as
the programs are within our subset (which is checked by a tool, see Section 4.2).

For this to succeed, the semantics we are using and the simulation semantics
of Stateflow must be equivalent on our subset. Our semantics was conceived with
this goal in mind, precisely following Stateflow documentation but, because the
simulation semantics is not formal, it is not possible to prove this equivalence.
However, our SOS semantics is directly executable and can easily be used to
define a Stateflow interpretor whose outputs can be compared to those from
the Matlab simulator. We have done this and systematically examined many
examples; for all these examples, the traces obtained by the two tools were the
same.

4 Conclusion and related work

We have presented an operational semantics for the Stateflow language. Our se-
mantics covers virtually the whole language, excluding only those features that
are generally discouraged in industrial applications [2]. A formal semantics is the
necessary basis for building formal tools for the language. The operational ap-
proach chosen here leads to a surprisingly simple semantics and thus constitutes
a good starting point for such developments.

4.1 Related work

Little work has directly addressed the semantics of Stateflow. A natural idea
when considering Stateflow is to evaluate work on formalization of Statecharts [6].
However, the two languages have very different semantics (and Stateflow also in-
cludes flowcharts), so denotational approaches proposed for Statecharts seman-
tics do not easily or usefully adapt to Stateflow.

A popular approach to Statecharts semantics is to translate the language
into a simpler formalism for which a semantics is already known. This approach
was followed by Mikk et al. for Statemate [7] by translation to hierarchical au-
tomata. Their semantics was adapted to UML-Statecharts by Gnesi, Latella and
Massink [8]. A similar semantics was proposed for Stateflow by Tiwari, Shankar
and Rushby [5] by translation to push-down automata. However, encoding the
complex Stateflow language constructions requires introduction of a vast number
of control variables that make using the translation by formal tools difficult.

Liittgen, von der Beeck, and Cleaveland [9] have proposed an SOS semantics
for a subset of Statecharts. They wanted to define a compositional semantics
and do not consider interlevel transitions. We can notice the same effect here:
although our semantics is not compositional (the language contains absolute
reference to states), it can be made compositional by forbidding interlevel tran-
sitions. They also need to consider execution on a micro and on a macro level,

13

which is not necessary here due to the completely deterministic nature of State-
flow.

The appeal of the proposed SOS semantics for Stateflow, and what makes it
work, is that it exhibits the sequential behavior of Stateflow: the language does
not have true concurrency nor any kind of nondeterminism. Seeing Stateflow as
an imperative language, the choice for an operational approach is natural, and
has the advantage of scaling well to a rich language allowing a big subset to be
considered.

A similar approach is implicit in the work of Banphawatthanarak, Krogh, and
Butts [10], who describe a translator from Stateflow into the input language of
the SMV model checker. Although they do not construct an explicit semantics,
the considerations that guide their translation are very close to ours and reflect a
similar focus on the sequential nature of Stateflow execution and the importance
of accurately representing its sequencing rules.

4.2 A good basis for formal tools

Our goal was to propose a formalization of Stateflow that would constitute a
good foundation for construction of formal tools for the language. The presented
semantics appears to meet this goal very well: while sometimes large, the rules
of the semantics are simple and syntax directed, which makes them well adapted
to automatic processing.

One kind of tool in which we are interested is static analysis for detecting
flaws in programs and to enforce or enhance programming guidelines such as [2].
The proposed semantics, by giving a low-level view of a program’s execution
makes it possible to understand causes of runtime errors (through missing rules
in the semantics). We have developed such a tool that checks for possible runtime
errors and also detects non fatal flaws, such as possible backtracking or reliance
on the 12 o’clock rule. Having a syntax-directed semantics allows a precise diag-
nosis to be given to the user. This tool also verifies that a program lies within
the subset considered by our semantics.

We are also interested in model checking, which can be used to check proper-
ties of programs and to automate test case generation [11,12]. Our operational
semantics provides a basis for efficiently compiling Stateflow to an imperative
language or to the input language of a model checker. We have developed a
translator to the SAL language used by SRI’s model checkers; the translation
produces efficient code similar in size to the Stateflow model. The SAL transla-
tion can be used to check properties of a design: our example (Figure 1) contains
a bug which the model-checker easily finds (updating the display is only done
when staying at least one instant in the Running state; if several LAP and START
events occur between two TICs, the display can show an erroneous value). We are
currently using this translation to do automatic test-case generation for State-
flow.

In future work, we plan to investigate the formalization of the whole
Simulink /Stateflow environment. One possible direction is to combine this work
with existing work on Simulink [5, 13].

14

References

10.

11.

12.

13.

The Mathworks: Stateflow and Stateflow Coder, User’s Guide. Release 13spl edn.
(2003)

Ford: Structured analysis and design using Matlab/Simulink/Stateflow - model-
ing style guidelines. Technical report, Ford Motor Company (1999) Available at
http://vehicle.me.berkeley.edu/mobies/papers/stylev242.pdf.

Buck, D., Rau, A.: On modelling guidelines: Flowchart patterns for Stateflow.
Softwaretechnik-Trends 21 (2001)

Plotkin, G.: A structural approach to operational semantics. Technical Report
DAIMI-FN-19, Aarhus University (1981)

Tiwari, A., Shankar, N., Rushby, J.: Invisible formal methods for embedded control
systems. Proceedings of the IEEE 91 (2003) 29-39

Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8 (1987) 231-274

Mikk, E., Lakhnech, Y., Petersohn, C., Siegel, M.: On formal semantics of State-
charts as supported by Statemate. In: 2nd BCS-FACS Northern Formal Methods
Workshop, BCS-EWIC (1997)

. Gnesi, S., Latella, D., Massink, M.: Modular semantics for a UML Statechart dia-

grams kernel and its extension to Multicharts and branching time model checking.
The Journal of Logic and Algebraic Programming 51 (2002) 43-75

Littgen, G., von der Beeck, M., Cleaveland, R.: A compositional approach to Stat-
echarts semantics. In Rosenblum, D., ed.: Eighth International ACM Symposium
on Foundations of Software Engineering, San Diego, California (2000) 120-129

Banphawatthanarak, C., Krogh, B.H., Butts, K.: Symbolic verification of exe-
cutable control specifications. In: Proceedings of the Tenth IEEE International
Symposium on Computer Aided Control System Design, Kohala Coast—Island of
Hawai’i, HI (1999) 581-586

Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from re-
quirements specifications. In Nierstrasz, O., Lemoine, M., eds.: ESEC/FSE ’99:
Seventh European Software Engineering Conference and Seventh ACM SIGSOFT
Symposium on the Foundations of Software Engineering. Volume 1687 of Lecture
Notes in Computer Science., Toulouse, France, Springer-Verlag (1999) 146-162

Rayadurgam, S., Heimdahl, M.P.E.: Coverage based test-case generation using
model checkers. In: 8th Annual IEEE Conference and Workshop on the Engineering
of Computer Based System (ECBS ’01). (2001)

Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S.: Translating discrete-
time Simulink to Lustre. In: Third International ACM Conference on Embedded
Software. Volume 2855 of Lecture Notes in Computer Science., Springer-Verlag
(2003) 84-99

15

A The complete semantics

We give here the complete operationnal semantics, with rules for all syntactic
classes of the language:

— transitions and transition lists in figure 6.
state definitions in figure 7.

or compositions in figures 8 and 9.

— and compositions in figure 10.

t-FIRE
(e=-eo)V (eo = 0c) e,Dt c— true e,DFa.— D’

e,DF (eo,c, ac,at,d) D, Fire(d, a)

t-NOy t-NO2
(e # eo) A (eo # D) (e =e0) V (e0 = 0e) e,Dt ¢ — false
e,DF (eo7c7ac7at,d)2>No e,DF (eo,c, ac,at,d) L No
T-FIRE) T-No-LAsT
0 e, D+t D, Fire(p, act) e,DFt 21 No
e,D,J+ 2 End e,D,J+-t.T D, Fire(p, act) e,D,J+ t.0r 2o
T-No

T#0r eDFtZNo eDi,JFT Bty
e,D,JFtT %3 tv

T-FIRE-J-F
e, DFt = Fire(j,a1) e, D, J[j: T;]+ T; 22 Fire(p,as2)

e,D,J[j:T;]+¢t.T bz Fire(p,al;a2)

T-END
e,D+t 2 Fire(j,a1) e, Dy, Jj: Tj] + T; 23 End

e, D, J[j : Tj] - t.T 23 End

T-FIRE-J-N
e, Dt 2 Fire(j,a1) Dy, J[j T FT; BNo e Dy, Jjj T T 2 tv

e,D,Jlj : Tj] - t.T 2% tv

Fig. 6. Rules for transitions and lists of transitions

16

SD-NO
e, Do, Jo T, 2 tv (v =No) V (tv = End)
e,DiFAd— Dy eDy, JFT, 2ty e D3, JtvFC24C Vo

e, Do, Jo - (A, C, T, Ti, J) 24 (A, C", T,, T}, J), No

SD-INT-FIRE
e, Do, Jo - To 2 tv
(tv =No) V (tv = End) e,Di - A.d— D> e,Ds - T; Ds tv
e,Ds, Jitv - C 24 ' Fire(d,a) e,DitFa< Ds e D5k Ax < Dg

e, Do, Jo & (A,C,T,,Ts, J) 22 (A,C", Ty, Ts, J), Fire(d,)
SD-FIRE
e,Do, Jo F T, ! Fire(d,a)
D
e.DiFa—Ds eDs-C | C eDsk Az Dy
€, D07 JO F (A7 07 TO7Ti7 J) % (Avc/7T07Ti7 J)7 Fire(d7<>)

SD-INIT
D
e,Dob Ae D, e, Di,pkC 1 C'

Do

67D01p = (A7C, ToaTi7J) ﬂ (Avc,7ToyTi7J)

spD-ExiT

D
e,Do-C I €' e,DiF Az < Do

D
e,Do - (A,C,To,T;,J) | (A,C'\ T, T, J)

Fig. 7. Rules for state definitions

17

OR-EXT-FIRE
Do D3
e,DoFa— D; e,D1 F sdy | sdj e,Da,p' F sdy 1 sdi
e, Do, J,Fire(p.sl.p', a) F Or(so,p, T, SD[so : sdo; 51 : sd1])
Ds Or(s1,p, T, SD[so : sdy; 51 : sdy]), No

OR-EXT-FIRE-OUT
D-
—prefix(p’,p) e,DotFa— D e,Dit sd lf sd’
e, Do, J,Fire(p’,a) - 0x(s,p, T, SD]s : sd)) b3 0r(@s,p, T, SD[s : sd']), Fire(p',o)

ORr-No
(tv = No) V (tv = End) e, Do, J F sdp ! sdp, No

e, Do, J,tv F 0r(so, p, T, SD[so : sdo]) 2} 0r(s,p, T, SD[so : sdg)), No

OR-INT-FIRE
(tv = No) V (tv = End)

D Da
e, Do, J F sdy = sdy,Fire(p’, act) p =p.si.p” e,D1,p" Fsdi v sdi

e, Do, J,tv F 0r(so,p, T, SD[so : sdo; s1 : sdi]) D2 0r(s1,p, T, SD][so : sdg; s1 : sdi]), No

OR-FIRE
(tv = No) V (tv = End) e, Do, J F sd 23 sd, Fire(p',a) —prefix(p’, p)

e, Do, J,tv + 0r(s,p, T, SDJs : sd]) ! 0r(@s,p, T, SD]s : sd']), Fire(p',a)

Fig. 8. Rules for Or-compositions

18

OR-INIT-NO-STATE
D
67 D7 01) }_ Or(@57p7 ®T7 H) ﬁ Ur(@s,p, ®T7 [])
OR-INIT-0,

Do
e,Do,JI—Tli%Fire(s.p,a) e,Di,pt sd {4 sd e,DaFa— D3

D-
¢, Do, 0, F 0z(Ds, po, T, SD[s : sd]) 1 0z(s,p0, T, SD[s : sd])

OR-INIT
D,y
e,Do,pt sd { sd'

D1
e, Do, s.p - 0r(0s, po, T, SD[s : sd]) {+ 0x(s,po, T, SD[s : sd'])

OR-EXIT
Dy
e,DoFsd || sd

D1
e,Do - 0r(s,p,T,SD[s : sd]) |} 0r((s,p,T,SD]s: sd’])

Fig. 9. Rules for entering and exiting Or-compositions

AND
tv = No) V (tv = End Vi e [0.n], e, D;, J+ sd; fag sd; No
() ()) b 7 b

Dn,
e, Do, J,tv F And({so : sdo;...; Sn : sdn}) ot And({so : sdy; ...; 85 : sdy,}), No

AND-INIT
i+1

D
pj =P vz#.?vpl:@p Vi € [On]7 e, Di,pi - sdi Sd;

Dypt1
e, Do, s;.pF And({so : sdo;...;Sn : 5dy}) 1 And({so : 8dp;...; n : sd })

AND-EXIT
D11

Vi € [On], e,D'L Fsdn—; ‘U Sd;Lfi

Dyt
e, Do - And({so : sdo;...;8n : 8drn}) | And({so : sdg;...; 8 : sd})

Fig. 10. Rule for AND compositions

19

