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Abstract

This report is a tutorial on formal specification and verification using Ehdm.
The Ehdm specification language is very expressive, based on a strongly-
typed higher-order logic, enriched with elements of the Hoare (relational)
calculus. The type system provides subtypes, dependent types, and certain
forms of type-polymorphism. Modules are used to structure large specifica-
tions and support hierarchical development. The language has a complete
formal semantic characterization and is supported by a fully mechanized
specification and verification environment that has been used to develop
large specifications and perform very hard formal verifications.

The tutorial uses simple examples to describe the Ehdm language,
methodology, and tools. The first examples illustrate the basic ideas of
specification and theorem proving in Ehdm. We then introduce the ideas
of testing specifications, of horizontal and vertical hierarchy, and of con-
sistency and conservative extension. Later chapters cover more advanced
topics including subtypes, higher-order logic, proofs by induction, and pro-
gram verification using Hoare logic. The tutorial is illustrated throughout
with self-contained examples of Ehdm specifications and proofs, all of which
have been mechanically checked.
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How to get EHDM

Note 2024: this report and the Ehdm system are 33 years old. Ehdm is no longer
available, but it was quite similar to PVS which is actively developed and supported
and is available at pvs.csl.sri.com.

The following is retained for historical interest.

Ehdm is being developed by the Computer Science Laboratory (CSL) of SRI Inter-
national for the US Government and is in the Public Domain. SRI International has no
wish to restrict the availability of Ehdm, but distribution of the Ehdm system and its
documentation [4–6,27] is subject to controls imposed by the US Government. Permis-
sion to obtain copies of the Ehdm system and its documentation is generally routine for
Agencies of the US Government, and for US Corporations working on US Government
contracts. Policies on wider distribution are unclear at present.

The present report and some of those describing applications of Ehdm [20–22] can
be distributed without restriction. Those interested in using Ehdm should contact John
Rushby at the address below.

John Rushby
Computer Science Laboratory
SRI International
333 Ravenswood Avenue
Menlo Park CA 94025 USA

Tel. (415) 859-5456
FAX (415) 859-2844
Email: Rushby@csl.sri.com
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Chapter 1

Introduction

Welcome to Ehdm! Ehdm is a formal specification and verification environment that
provides a specification language and comprehensive mechanized support for syntactic
and semantic analysis, theorem proving, and report generation. You can use Ehdm
to state, develop, prove, and document properties about specifications and abstract
programs. This short tutorial will introduce you to writing specifications in the Ehdm
language and using the Ehdm system.

A specification language for use in mechanical verification must strike a delicate
balance between the expressiveness and convenience required for effective communica-
tion among its human users, and the austere and strict logical foundation required for
mechanical analysis and effective theorem proving. We think Ehdm strikes this balance
better than most. Attractive specification languages, such as Z [24, 25] and VDM [12],
have little mechanical support; systems that support effective verification, such as the
Boyer-Moore prover [2], typically require specifications to be written in a raw logic.
Ehdm, on the other hand, has an expressive specification language and is supported
by a fully mechanized specification and verification system that has been used to per-
form some substantial and hard formal verifications [20–22]. We hope you will find that
Ehdm enables you to write specifications that are clear and useful, and also to prove
the theorems required to gain confidence in them.

Before we introduce Ehdm, let’s review the background knowledge that is assumed,
and the documents and facilities you should have available. First of all, note that this
report is not a primer on formal specification and verification; it is an introduction to
a particular system that supports these activities. Readers who require a more general
introduction are referred to texts such as [9,11,14]. Next, the specification language of
Ehdm is based on first-order predicate calculus, enriched with elements of richer logics
such as higher-order logic (which is also known as type-theory), lambda-calculus, and
the Hoare, or relational, calculus. As a minimum, therefore , you should be familiar
with first-order predicate calculus and its model-theoretic semantics. The first volume
of the book by Manna and Waldinger [15] provides an introduction to these topics
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2 Chapter 1. Introduction

that is especially suitable for computer scientists. The second volume [16] provides
good coverage of more specialized topics (such as Skolemization) that are needed for
really productive use of Ehdm, but which are not covered in the usual logic texts.
Another overview oriented towards computer scientists is the recent book by Davis [7].
Standard textbooks on Mathematical Logic include Shoenfield’s [23] and Enderton’s [8];
Andrews [1] gives a more recent treatment, including a good discussion of higher-order
logic.

Ehdm implementations are available for Sun-3 and Sun-4 (Sparc) workstations.
To use Ehdm, you need to have a basic understanding of the UNIX operating system
and of the keyboard, mouse, and file-naming conventions. You should also ask the
person who installed Ehdm to tell you the names of the directories where the Ehdm
examples and libraries have been installed: all the Ehdm modules described in this
tutorial are supplied on the system distribution tape. The Ehdm language and system
are described in two manuals [4,5] and you should have copies of these available.1 When
you are ready to make serious use of Ehdm, you should also obtain a copy of its formal
semantic description [27].2

The interface to the Ehdm system is provided by the Gnu Emacs screen editor, and
you will find it very frustrating if you are not already familiar with this editor before
you attempt to use Ehdm. At the very least, you must know how to type a command
like C-M-P or M-X pp. The Ehdm system manual includes a brief overview of Emacs;
complete details can be found in the Gnu Emacs manual [26].

A general caveat is in order before we start our introduction to Ehdm. It must be
understood that writing formal specifications and performing verifications that really
mean something is a serious engineering endeavor. And although formal specification
and verification are often recommended for systems that perform functions critical to
human safety or national security, it should be recognized that formal analysis alone
cannot provide assurance that systems are fit for such critical functions. Certifying
a system as “safe” or “secure” is a responsibility that calls for the highest technical
experience, skill, and judgment—and the consideration of multiple forms of evidence.
Other important forms of analysis and evidence that should be considered for critical
systems are systematic testing, quantitative reliability measurement, software safety
analysis, and risk assessment. A companion document [18] provides an introduction to
these topics and techniques. Also, it should be understood that the purpose of formal
verification is not to provide unequivocal evidence that some aspects of a system design
and implementation are “correct,” but to help you the user convince yourself and others
of that fact; the verification system does not act as an oracle, but as an implacable

1This tutorial describes Ehdm System Version 5.2. The system version number is displayed on the
welcome screen when Ehdm starts up. The User Guide [4] has not yet been updated to reflect the system
changes between Versions 4.1 and 5.2; these are currently documented in a supplementary volume [6].

2All the system documents mentioned above are supplied on the Ehdm distribution tape.
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skeptic that insists on you explaining and justifying every step of your reasoning—
thereby helping you to reach a deeper and more complete understanding of your design.

So much for the general introduction, now let’s get started.



Chapter 2

First Steps

In this chapter we will develop a simple specification, introduce some of the Ehdm tools,
and prove our first theorem.

2.1 Writing Specifications in EHDM

The specification language of Ehdm is based on first-order predicate calculus. We will
introduce the language by means of a simple example, namely the “family” theory from
Manna and Waldinger [15, page 191]. The following description of the theory is taken
almost verbatim from Manna and Waldinger.

The intent of this example is to define a theory of family relationships.
The intended domain is the set of people (or “persons” as we shall call them),
and the theory is defined in terms of two functions and three predicates over
this domain. Intuitively:

f(x) is the father of x
g(x) is the mother of x
p(x, y) means y is a parent of x1

q(x, y) means y is a grandfather of x
r(x, y) means y is a grandmother of x

Thus the vocabulary of the theory consists of the function symbols f and
g, the predicate symbols, p, q, and r, and no constant symbols at all. The
axioms of the theory are the following closed sentences:

1Note, the arguments here are reversed from their “usual” order: p(x, y) means y is a parent of x,
not that x is a parent of y.

4



2.1. Writing Specifications in Ehdm 5

F 1: (∀x) p(x, f(x))
(Everyone’s father is their parent.)

F 2: (∀x) p(x, g(x))
(Everyone’s mother is their parent.)

F 3: (∀x, y) [ if p(x, y) then q(x, f(y))]
(The father of one’s parent is one’s grandfather.)

F 4: (∀x, y) [ if p(x, y) then r(x, g(y))]
(The mother of one’s parent is one’s grandmother.)

Now let’s turn this into a specification in Ehdm. Unlike the first-order predicate calculus
used by Manna and Waldinger, Ehdm uses a typed (or multisorted) logic. The advan-
tages of a typed logic for specification are similar to those of user-defined types in pro-
gramming languages. Ehdm has several “built-in” or interpreted types, such as number
(the rational numbers), integer (which can be abbreviated to int), naturalnumber
(which can be abbreviated to nat), and boolean (which can be abbreviated to bool),
and it also allows the user to introduce new uninterpreted types. An uninterpreted
type introduces a new domain of values (which, unless the user explicitly indicates oth-
erwise, is assumed to be disjoint from any other domain). For the family example,
it is appropriate to introduce “person” as a new type, which is accomplished by the
declaration

person: TYPE

In this declaration, TYPE is a keyword; by convention, Ehdm keywords are written in
uppercase, but the system recognizes them no matter how they are written—TYPE,

Type, type, and even tYpE, will all be recognized as the same keyword. Identifiers,
however, are case-sensitive: person and Person are different identifiers. Ehdm identi-
fiers consist of a letter (upper or lower case), followed by any sequence of letters, digits,
and underscore characters. As with many programming languages, adjacent Ehdm
keywords and/or identifiers must be separated from each other by whitespace charac-
ters (space, tab, newline, or formfeed). Unlike most programming languages, however,
Ehdm declarations and expressions are not terminated by semi-colons.

Next, we need to declare the “signatures” of the functions and predicates that we
will use. The “father” function is one that takes a value of type person and returns a
value of the same type. In Ehdm this is expressed as:

f: function[person -> person]

It is generally inadvisable, however, to use short, meaningless identifiers in specifications,
just as it is in programs; we should try and choose longer, mnemonic names. In this
case, a much better declaration would be
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father: function[person -> person]

It’s clear that we need a function mother of the same signature, and we can combine
the two declarations into one:

father, mother: function[person -> person]

Next, we need the predicates corresponding to p, q, and r. Ehdm does not use a special
notation for predicates: a predicate is simply a function with return type bool. It’s often
a good idea to use identifiers beginning with is for predicates—simply as a mnemonic
convention. Thus we have the following declaration:

is parent, is grandfather, is grandmother:

function[person, person -> bool]

Before we can state the axioms of our family theory, we need to introduce some variables
of type person. Unlike constants and functions (and we will learn later that functions
are simply a special kind of constant) it is often appropriate to use short identifiers for
variables:

x, y: VAR person

The keyword VAR indicates that the identifiers being declared are variables, as opposed
to constants. Now we can state the first axiom:

F 1: AXIOM (FORALL x: is_parent(x, father(x)))

The keyword AXIOM introduces an axiom; the name of the axiom (F 1) appears to the
left, separated by a colon, and a boolean-valued expression appears to the right. The
keyword FORALL introduces a universally quantified expression; the variable(s) being
quantified over appear after the keyword and are separated by a colon from the ex-
pression in the scope of the quantification. The whole quantified expression is enclosed
in parentheses. Existentially quantified expressions have exactly the same form, but
use the keyword EXISTS. Notice that the function and predicate applications appear-
ing in the expression use ordinary round parentheses (e.g., father(x)), whereas the
declarations that introduced the functions and predicates used square brackets (e.g.,
function[person -> person]). There is a perfectly logical reason for this apparent
anomaly, but the explanation will have to wait until you have learned more of the
language.

Ehdm provides a shorthand for universally quantified formulas that reduces typing
and makes formulas easier to read: all formulas are implicitly universally quantified
over their free variables. (That is, formulas denote their universal closure.) Thus, the
formula given above can be replaced by the simpler one:
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F 1: AXIOM is_parent(x, father(x))

This form is generally preferred. Similarly, the second axiom is expressed in Ehdm as:

F 2: AXIOM is_parent(x, mother(x))

To convert the third and fourth axioms into Ehdm, note that the if...then notation
used by Manna and Waldinger is rather non-standard. These axioms would normally be
expressed as logical implications, generally denoted by the symbol ⊃ . Thus the third
and fourth axioms would normally be written as follows:

F 3: (∀x, y) p(x, y) ⊃ q(x, f(y))

F 4: (∀x, y) p(x, y) ⊃ r(x, g(y)).

In Ehdm, the propositional connectives are spelled out as keywords: AND, OR, NOT etc.
In particular, implication is indicated by the keyword IMPLIES. Thus the axioms above
become:

F 3: AXIOM (FORALL x, y:

is_parent(x, y) IMPLIES is_grandfather(x, father(y)))

F 4: AXIOM (FORALL x, y:

is_parent(x, y) IMPLIES is_grandmother(x, mother(y)))

These can be rewritten, using the universal closure convention, as

F 3: AXIOM is_parent(x, y) IMPLIES is_grandfather(x, father(y))

F 4: AXIOM is_parent(x, y) IMPLIES is_grandmother(x, mother(y))

We can now put all this together into the Ehdm module called “family” shown in
Figure 2.1.

An Ehdm module is rather like a module or package in some modern program-
ming languages: it serves to group related things together into a unit that can be used
many times over, and it serves to delimit the scope of identifiers. By default the identi-
fiers declared in a module are not visible outside the module unless they are explicitly
“exported.” Only types and constants may be exported (this includes functions and
predicates, which are constants of a certain “higher” type). The EXPORTING construct
is used to list the identifiers that are to be visible outside the module, while the THEORY
keyword introduces the types, variables, constants, and axioms that make up the theory
defined by the module.

In order to introduce as much of the language and system as possible, we will em-
bellish this example by adding a “theorem” that can be proved from the family theory.
The theorem concerned can be stated informally as “everybody has a grandmother.”
In Ehdm, this becomes:
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family: MODULE

EXPORTING person, father, mother, is_parent,

is_grandfather, is_grandmother

THEORY

person: TYPE

father, mother: function[person -> person]

is_parent, is_grandfather, is_grandmother:

function[person, person -> bool]

x, y: VAR person

F_1: AXIOM is_parent(x, father(x))

F_2: AXIOM is_parent(x, mother(x))

F_3: AXIOM is_parent(x, y) IMPLIES is_grandfather(x, father(y))

F_4: AXIOM is_parent(x, y) IMPLIES is_grandmother(x, mother(y))

END family

Figure 2.1: The “Family” Example
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F: THEOREM (FORALL x: (EXISTS y: is_grandmother(x, y)))

Note that by the universal closure convention this is equivalent to:

F: THEOREM (EXISTS y: is_grandmother(x, y))

but very different from

F: THEOREM (EXISTS y: (FORALL x: is_grandmother(x, y)))

(this latter expression can be expressed informally as “there is a person who is every-
body’s grandmother”).

The syntactic form of a THEOREM is identical to that of an AXIOM and the two
constructs are treated almost identically by the Ehdm system. The main differ-
ence is that an AXIOM introduces something we wish to take as primitive, whereas
a THEOREM introduces something that we intend to prove from other THEOREMS and
AXIOMS. Ehdm contains a tool called the “Proof-Chain Checker” that checks whether
we have discharged our obligation to ultimately justify all THEOREMS on the basis of
AXIOMS alone. For improved readability, Ehdm allows a number of synonyms for the
keyword THEOREM. These include CLAIM, CONJECTURE, COROLLARY, FACT, FORMULA,

LEMMA, PROPOSITION and SUBLEMMA. Theorems that are intended to be visible outside
a module should be included in its theory part, whereas those that are purely “internal”
appear in its proof part, which is separated from the theory part by the keyword PROOF.
The proof part of a module is similar to the theory part, except that it may not contain
axioms, and it may contain proofs (which are not allowed in the theory part). A proof
declaration instructs the Ehdm theorem prover to prove the named theorem. Thus, the
declaration

F proof: PROVE F

is a minimal proof declaration that instructs the system to prove the theorem F. (The
identifier F proof is simply the name of this particular proof declaration and can be
chosen arbitrarily).

A mechanical theorem prover must be given some base set of facts (axioms and other
theorems) that it may use in trying to find a proof. This base set could be indicated
implicitly (e.g., all axioms and theorems in the current context), but Ehdm actually
requires it to be stated explicitly. Consequently, an Ehdm proof declaration must also
include a list of the other theorems and axioms that are needed to construct the proof
(these axioms and theorems are called the premises of the proof). In the case of theorem
F, it should be fairly clear that this can be proved from the axioms F 2 and F 4, so an
adequate proof declaration is the following:

F proof: PROVE F FROM F 2, F 4
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In general, the Ehdm theorem prover cannot prove theorems without help from you, the
user. This help indicates the explicit instantiations that are required for the premises
and conclusion. We will cover this in a later chapter. For the time being, we will
restrict ourselves to theorems that are sufficiently simple that the theorem prover can
prove them without help.

We have now assembled all the parts of the expanded specification that is shown in
Figure 2.2 and the next step is to sit down at a workstation and use this example to
gain some experience with the Ehdm system.

2.2 Using the EHDM System

Now that we have developed a specification, let’s try it out on the Ehdm system. Begin
by logging in to the workstation of your choice. It’s recommended that you create a
fresh directory for your Ehdm specifications. Next, you need to choose which version
of Ehdm to start up. Ehdm comes in two incarnations: the “tool” version runs under
SunView and allows pointing and selection from pop-up menus using the mouse, but can
only be used when you are directly logged in on the workstation console; the “nontool”
version lacks mouse support and can be used when you are logged into a workstation
remotely (or are using X-Windows). Type the command ehdmtool if you are using
the workstation directly and want to use the “tool” version, or ehdm if you are logged
in remotely. (You may need to prefix these commands by the pathname of the Ehdm
system directory if this is not in your search path. You will have to ask the person who
installed Ehdm for this information). Wait a minute or so while the system starts up.
It keeps you informed of its progress as it loads, and finally displays a welcome screen.
The Ehdm system uses a heavily customized version of Gnu Emacs as its user interface.
Because it might contain commands that interfere with its customizations, Ehdm does
not load the .emacs initialization file from your home directory. If you are certain that
this file will do no harm, you can load it (or some other file) manually at this point with
the command M-X load-file. The welcome screen reminds you that you can always
get help using the command C-X C-H. You might want to try this before going further.

The SunView version of Ehdm can be “driven” using the mouse (use the right
button to bring up a menu and then select entries in the way natural to the system
you are using), whereas the non-tool Sun version must be controlled from the keyboard.
Since the other version can also be controlled from the keyboard, and all use exactly
the same keyboard commands, unless otherwise noted we will describe the use of the
system in terms of this “lowest common denominator” keyboard command set. If you
are fortunate enough to be using a mouse-sensitive version and wish to avoid typing
commands, just experiment with the menus until you find the command you need. You
should find that the menus are organized very logically.

Now that Ehdm is ready for action, your next step should be to establish your
context in the directory you created for this purpose. Do this using the reset-context
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family: MODULE

EXPORTING person, father, mother, is_parent,

is_grandfather, is_grandmother

THEORY

person: TYPE

father, mother: function[person -> person]

is_parent, is_grandfather, is_grandmother:

function[person, person -> bool]

x, y: VAR person

F_1: AXIOM is_parent(x, father(x))

F_2: AXIOM is_parent(x, mother(x))

F_3: AXIOM is_parent(x, y) IMPLIES is_grandfather(x, father(y))

F_4: AXIOM is_parent(x, y) IMPLIES is_grandmother(x, mother(y))

F: THEOREM (EXISTS y: is_grandmother(x, y))

PROOF

F_proof: PROVE F FROM F_2, F_4

END family

Figure 2.2: The “Family” Example—Expanded



12 Chapter 2. First Steps

command (M-X rc)2 and entering the name of the directory concerned. (You can omit
this step if you started the system from the directory concerned). Next, you should
obtain a copy of the “family” example module that we developed in the previous section.
This is done using the import-module command (M-X im) and giving it the module
name family and the pathname of the file containing the “family” example. You will
have to ask the person who installed Ehdm which directory this file is in; its name
should be family.spec. If you cannot locate the file, use the new-module command
(M-X nm) to create a new module with the name family, and type in the text from
Figure 2.2.

The analysis of an Ehdm specification involves four main steps: parsing, typecheck-
ing, proving, and proof-chain analysis. Let’s try the first one: parsing. To parse the
specification displayed in the current window, use the parse command (M-X ps, or C-X
C-P). Try it now. The system should tell you that it is parsing the specification and
then display the message parsed. Now let’s see what happens when errors are present.
Introduce an error into the specification (delete the keyword MODULE, for example), and
parse again. You should see the system move the cursor to the location of the error and
open up a second window containing an error message. Correct the error and parse once
more. The error window will disappear and the specification should parse successfully.
(You can get rid of the error window manually by C-X 1. If you need to get an error
window back again, do M-X replay.) Now give the parse command once more. The
system will tell you that the module is already parsed. You can discover the state of a
module (whether it has been parsed etc.) manually by the module-status command
(M-X stat). Try it.

Now that the module is parsed, we can typecheck it. Typechecking performs a
semantic analysis of the module and is invoked by the typecheck command (M-X tc, or
C-X C-T). Try it now. This usually takes a little longer than parsing, but interacts in
the same way. Next, introduce a semantic error into the specification by changing the
spelling of “father” in axiom F 1 to fathr and start the typechecker again. Notice that
the system realizes that the module has changed and automatically invokes the parser
first. Just like the parser, the typechecker places the cursor at the point where the
error was discovered and prints its error message in a second window. Since misspelled
identifiers are a common source of errors, the typechecker performs a limited search for
plausible misspellings and offers suggested alternatives in its error display. Correct the
deliberate misspelling and invoke the typechecker again to ensure everything is correct.

Before we start the next step—proving—we need to make a short digression to learn
about the Ehdm variables. These variables (there are about 30 of them) control some of

2Each Ehdm command has a full name and one or more short names. It can be invoked by M-X

followed by either its full name or one of its short forms. In addition, some very frequently used
commands are also bound to special key combinations. We give all the alternative forms when we
introduce a command; the help command provides the same information. When using the mouse to
issue commands, the correct menu item should normally be obvious.
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the fine points of the system’s behavior and allow you to establish your own preferences.
The variables can be examined and set using the variable-status command (M-X vs).
This opens a new window and displays a list of all the variables, together with their
current and possible values. The current values are indicated by asterisks (the standard
default values are the first ones in each list). You can find out what a variable does by
moving the cursor to its line and hitting the h key. To set a variable, position the cursor
on its line, just in front of the value you want to select, and type the s key (for numeric
values, you will be prompted to enter a value). To exit this mode, use the q key.3

Use the variable-status command to set the following values of the variables
affecting the theorem prover (prover variables all begin with pr):

prbetareduce *yes no
prchain *terse verbose
prdefaultsubs *no yes
prhalt *error yes no
prlambdafree *everywhere yes no
prmode checking interactive *automatic heuristic
prrecordsubs ask yes *no
prsave *no yes
prsavesubs ask yes *no
prsavesubsversion *new same
prtrace *mixed terse verbose no
prtried *ask report continue repeat

Don’t worry at the moment about what these variables actually do; the purpose of the
settings given is to put the theorem prover into its most automatic mode.

Now that the prover is set up to our liking (don’t forget to type q at the end), we
can attempt the proof of theorem F. Move the cursor until it is somewhere earlier in the
specification text than the end of the line containing F proof and start the prover with
the prove command (M-X pr, or C-X P). The display will switch to a different buffer
in which a commentary on the progress of the proof will appear (probably much too
fast for you to read), then the display should switch back to the original buffer, place
the cursor in front of the prove command that has just been attempted, and display
the result (and the time taken) at the bottom of the screen. This proof should succeed.
You can take a more leisurely look at the prover commentary by manually switching to
the buffer *ehdm-instantiator*.

Before we end this first exercise, try invoking the prover again. It should tell you
that this proof has already been done. You can check up on the status of proofs with
a variety of status commands. Try module-status (M-X stat), proof-status (M-X
prs), and moduleproof-status (M-X mprs).

3Setting variables is much easier using the mouse—you don’t need to remember any of what you’ve
just been told if you have a mouse.
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To exit Ehdm, type C-X C-C. Your working “context” (including settings of all
specification variables) will be saved and restored when you revisit the context, either
by restarting Ehdm in the same directory or by using the reset-context (M-X rc)
command.



Chapter 3

Hierarchies

An Ehdm specification generally comprises many modules. These modules are linked
together “horizontally” to form a theory, and “vertically” to construct refinements. In
this chapter we’ll learn how to link modules together in both vertical and horizontal
hierarchies. Once again, we take our examples from Manna and Waldinger [15] so that
you can relate the points that they make about logic to the points we make about Ehdm.
This does mean that our examples are rather far removed from any specifications one
might reasonably want to write—we remedy this in later chapters.

3.1 Horizontal Hierarchy

A horizontal hierarchy is a set of modules that elaborate some large theory from a
collection of smaller theories, in much the same way as a large program is built from
smaller modules.

The Ehdm construct that links modules in horizontal hierarchy is the USING clause.
We will use this construct to embellish the “family” theory with the notion of “sibling.”
The module siblings shown in Figure 3.1 imports the “family” theory by means of
the statement

USING family

This makes all the types and constants that are explicitly exported from family vis-
ible inside the THEORY part of siblings.1 The module siblings adds a new predi-
cate is sibling to the “family” theory, and makes it visible outside by means of the
EXPORTING clause. This clause also re-exports everything imported from family by
means of the additional qualifier

1Although we will not demonstrate it in this example, all the types and constants of an imported
module, whether explicitly exported or not, are visible inside the PROOF part of the module doing the
importing. Types and constants declared inside a PROOF clause, however, are never visible outside that
module.

15
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siblings: MODULE

USING family

EXPORTING is_sibling WITH family

THEORY

a, b, c: VAR person

is_sibling: function[person, person -> bool] ==

(LAMBDA a, b :

father(a) = father(b) AND mother(a) = mother(b))

reflexive: THEOREM is_sibling(a, a)

symmetric: THEOREM is_sibling(a, b) IMPLIES is_sibling(b, a)

transitive: THEOREM

is_sibling(a, b) AND is_sibling(b, c) IMPLIES is_sibling(a, c)

PROOF

r_proof: PROVE reflexive

s_proof: PROVE symmetric

t_proof: PROVE transitive

END siblings

Figure 3.1: The “Siblings” Example
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WITH family

This causes modules that import siblings to automatically import family as well.
The declaration of is sibling begins in the manner we have seen already:

is_sibling: function[person, person -> bool]

but then continues in an unfamiliar manner:

== (LAMBDA a, b : father(a) = father(b) AND mother(a) = mother(b))

What we are doing here is providing a literal definition for a constant by using ==. It
is similar in effect and meaning to a declaration such as

dozen: nat == 12

that assigns a value to an “ordinary” constant, but is more complex because is sibling

is a function and we must give it a value that denotes a function. We do this with the
LAMBDA construct, which is used to introduce values denoting functions. In syntactic
form, a LAMBDA expression is rather like a quantified expression, with parentheses sur-
rounding the whole expression, the keyword LAMBDA following the open parenthesis, and
a colon separating the bound variable part from the body. The bound variable part
consists of a list of variables, whose types determine the domain of the function being
defined. The body of the lambda definition is an expression (whose type must agree
with the return type of the function being defined2) composed of constants and the
variables from the bound variable list. Notice that the literal definition of a constant is
introduced by a double equals sign ==; you can also use a single equals here, but this
has slightly different pragmatic effects (the logical meaning is the same) and should be
avoided for now.

An alternative to specifying the interpretation for is sibling as part of its decla-
ration would be to provide it as an axiom: for example:

is_sibling: function[person, person -> bool]

sib_def: AXIOM: is_sibling(a, b) =

(father(a) = father(b) AND mother(a) = mother(b))

There are two advantages in using literal definitions rather than axioms. The first is
that definitions are guaranteed not to introduce inconsistencies into the theory being
specified; the second is that literal definitions are used automatically in proofs. If we had
instead used the axiom given above, we would have to cite it (and possibly instantiate
it explicitly) in proofs involving the is sibling predicate. On the other hand, this

2The bound variable list may optionally be followed by an arrow -> and the name of the return type,
but this is necessary only for subtype coercions—a rather advanced topic.
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automatic use of literal definitions can often be a nuisance. A theorem may follow from
certain properties that have been established for a function, and replacing the function
by its interpretation will only complicate the expression that the theorem prover has to
work on. The decision whether a function should be defined by literal definition or not
is a subtle one learned only by experience.

The rest of the siblings module consists of theorems that state the properties
of reflexivity, symmetry, and transitivity for the is sibling predicate (and thereby
establish that it is an equivalence relation). The PROOF part simply consists of proof
declarations for these theorems.

Now that we understand the siblings module, let’s try it out. First of all, we must
create a fresh module using the new-module (M-X nm) command. This command will
prompt for a module name, to which you should reply “siblings.” Then type the text
from Figure 3.1 directly into this module. Don’t worry much about layout, nor about
putting the keywords in uppercase—we’ll use the Ehdm prettyprinter to sort that out.
When you have finished typing the module in, use the parse command to check that
you haven’t introduced any syntactic errors in typing. Correct them if you have. Notice
that there is no need to explicitly save the text into a file, the system takes care of
that for you. Then use the prettyprint command (M-X pp, or C-M-P) to reformat
the module text in the approved fashion. There are several variables that fine-tune the
behavior of the prettyprinter; you might want to experiment with changing them (their
names all begin with pp). When you have the module formatted as you like, use the
typecheck and prover commands you learned in the previous chapter to perform all the
proofs in the module. If this fails and the system tells you that the family module has
not been parsed or typechecked, don’t worry—read on.

Since siblings depends on family, it is important that the latest version of family
is available in a parsed and typechecked form before analysis of siblings is performed.
Ehdm contains a version checker that automatically keeps track of this. To try it out,
switch to the family module using the find-module command (C-X C-F)3, and make
a semantically neutral change to its buffer (e.g., add a space and take it out again).
Then switch back to the siblings module (use find-module again, or use the fact
that it was the previous buffer and just type C-X B and return), and then tell the
system to try one of the proofs in siblings. You should get an error message telling
you that family has not been parsed since it was changed. You could then go back to
family and parse and typecheck it, then return to siblings and do the same there,
but there is a simpler way: the typecheckall command (M-X tca) will descend the
using-chain from the current module and automatically bring everything up to date.
The provemodule command (prm) automatically does a typecheckall if it finds that
it is necessary, and then does all the proofs in the current module. There is an even

3This command supports module-name completion. Simply type in the beginning of the module-
name and hit the space-bar; the system will complete as far as it can uniquely. If you hit the space bar
again the set of possible completions will be displayed. Most of the Ehdm commands have this facility.
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more muscular command called proveall (M-X pra) that not only does all the proofs
in the current module, but all the proofs in all the modules that it uses as well. Try out
these commands, and also the status commands you learned in the previous chapter.
Also try the using-status (M-X us) and usedby-status (M-X ys) commands to look
at the “using-chain” that links siblings and family.

A more complex status check is performed by the Proof-Chain Checker. To demon-
strate this, we need to construct another example. This example, called grandparents

is shown in Figure 3.2 and should be self-explanatory.

grandparents: MODULE

USING family

THEORY

x, y: VAR person

is_grandparent: function[person, person -> bool] ==

(LAMBDA x, y :

is_grandfather(x, y) OR is_grandmother(x, y))

G: THEOREM (EXISTS y : is_grandparent(x, y))

PROOF

G_proof: PROVE G FROM F

END grandparents

Figure 3.2: The “Grandparents” Example

The proof of the formula G (“everybody has a grandparent”) from F (“everybody
has a grandmother”) is trivial, and the theorem prover will prove it instantly. The
proof-status command will then tell us that the theorem has been proved. But this
notion of “proved” is a local one: it means only that the conclusion of the proof fol-
lows from the premises. We do not know whether the premises are axioms or other
theorems—and if the latter, we do not know whether they have been proved or not.
Consequently, we cannot be sure, without a lot of manual checking, whether a theorem
and all the theorems it depends upon have been proved down to base axioms. This
is where the Proof-Chain Checker comes in. Move the cursor to point to G proof in
the grandparents module and invoke the proofchain-status command (M-X pcs).
When prompted for the “name of the module at the top of the proof tree,” just type
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a return. If both the necessary proofs have been performed, you will be told that the
proof-chain is sound and all the necessary proofs have been done. If you change the
value of the prchain system variable to verbose and repeat the proofchain-status

command, you will see a more elaborate display that chases the proof of G through its
dependence on the theorem F, and its dependence, in turn, on the axioms F 2 and F 4.
Experiment with the output when one of the proofs have not been done, and when
F proof is actually deleted from its module. There is a more muscular command called
allproofchain-status (M-X aprs) that checks the proof-chains of all the proofs in a
module. Try it.

Instead of asking for the proof-chain status of a proof, you can also ask for the
status of a formula (i.e., AXIOM, FORMULA, THEOREM, or LEMMA). Use the cursor to
point to a formula and use the formula-status command (M-X fs). There is also an
allformula-status command (M-X afs). Try them.

3.2 Testing Specifications

The generally accepted notion of program correctness is consistency between the pro-
gram and its specification. But then how do we know that the specification is right?
And what does it even mean for a specification to be right? There are no easy answers
to those questions. In some cases, the correctness of a specification can be interpreted
in the same way as for programs: a specification is correct if it is consistent with a yet
higher-level specification. This is the notion of vertical hierarchy and is discussed in the
next section. At the top of any specification hierarchy, however, must come the spec-
ifications whose only superior specifications are informal statements of requirements.
How can we know that these top-level specifications capture the real requirements ac-
curately and completely? The answer is that we cannot expect to justify or prove the
appropriateness of these top-level specifications in any formal way: we must rely on
peer review and the social process to provide the assurance we need. We should also
apply good software engineering practice to our specifications—making extensive use of
horizontal hierarchy to build our top-level specifications so that just a few, simple con-
cepts are introduced in each module, and then gradually combined to yield the overall
specification. In this way we can reduce the complexity of the task of comprehending
the overall specification.

There is something else we can do to help our understanding of specifications: we
can test them. Because Ehdm uses a very rich logic, it is not an executable specifica-
tion language, and so we cannot “run” our specifications4; however, we can test them
indirectly by posing and attempting to prove putative theorems. In effect, we say: “if
I’ve formalized this concept correctly, then the following ought to be true” . . . then we

4High-level specifications are generally (deliberately) incomplete, and so it is infeasible to directly
execute them anyway. However, there is some support for generating Ada code from Ehdm specifications;
see Chapter 7.
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write it down and try to prove it. If we succeed, then our confidence in the specification
is increased. If we fail, then we will probably have gained insight into some inadequacy
in our specification. A contrary form of test would take the form: “if I’ve formalized
this concept correctly, then the following ought not to be true.”

Let’s try this out with our “family” example. If we’ve formalized the notion of family
relationships correctly, then surely it shouldn’t admit theorems like the following (from
Manna and Waldinger [15, Problem 4.1, page 212]):

“If Alice is the parent of her own father, then Alice’s father is his own
grandfather.”

This example is so artificial and simple that you can probably see it through in your
head, but it will be a useful exercise to express it in Ehdm. First, we need to introduce
“Alice” as an uninterpreted constant of type person:

Alice: person

Then we need to express the putative theorem (which we’ll call X):

X: THEOREM is_parent(father(Alice), Alice)

IMPLIES is_grandfather(father(Alice), father(Alice))

Notice that father(Alice) appears three times in this expression. It might be nice to
introduce a name for Alice’s father, so that we can abbreviate things a little. Let’s call
him William:

William: person == father(Alice)

X: THEOREM is_parent(William, Alice)

IMPLIES is_grandfather(William, William)

A little thought should convince you that this result is indeed a theorem of our “family”
example, and that all that is needed to prove it is the F 3 AXIOM. Putting it all together,
we construct the module california (so called because families such as these are only
found in California) shown in Figure 3.3.

Notice that there is no THEORY part in this example. We could have put the first
three declarations (but not the PROVE) into a theory part if we so wished, but there
would have been little point since we do not expect to make them publicly available.
Notice also that there is a USING clause following the PROOF part. Any modules imported
through a USING clause at the head of the module are available throughout the module,
but additional modules can be imported into just the proof part by a USING clause
immediately following the keyword PROOF.

What does the fact that X is provable tell us? Since X could not be true of family
relationships in the real world, our axiomatization in the family module must be wrong
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california: MODULE

PROOF

USING family

Alice: person

William: person == father(Alice)

X: THEOREM is_parent(William, Alice)

IMPLIES is_grandfather(William, William)

X_proof: PROVE X FROM F_3

END california

Figure 3.3: The “California” Example

or incomplete—right? Actually this is partly right and partly wrong. Certainly our
family theory is very incomplete (we haven’t identified the gender distinction between
mother and father, nor the fact that nobody can be their own parent, to name but a
few deficiencies), but the truth of X doesn’t necessarily invalidate our axiomatization
since X is an implication and an implication is true when its antecedent is false. So
it’s possible that X could be true even in a formulation of family that did agree with
our intuition. What should worry us is the possibility that we could have a consistent
theory in which Alice is the parent of her own father—for then we would know that our
theory has unintended models. We will see how to check this in the next section.

“Alice” and theorem X raise the possibility that our family theory has too many
models—the theory is incomplete since it does not uniquely characterize the properties
of real families. Sometimes such incompleteness is intended and desirable: we need to
axiomatize only the properties that matter to our particular application.

The “opposite” possibility—too few (i.e., zero) models—is never a good thing since
it indicates an inconsistent theory. And from an inconsistent theory you can prove any-
thing . We will demonstrate this using another example from Manna and Waldinger [15,
page 197]. This example invites us to consider the case of the Biblical Adam, who had
no father:

Adam: person

y: VAR person
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a: AXIOM NOT (EXISTS y: is_parent(Adam, y))

Incidentally, by a first-order transformation, the axiom could also be written as:

a: AXIOM NOT is_parent(Adam, y)

The problem, of course, is that the negation of this axiom can easily be proved from
the F 1 axiom of the family module. Once we have established both a formula and its
negation, we can prove anything—including true = false as shown in Figure 3.4.

eden: MODULE

USING family

THEORY

Adam: person

y: VAR person

a: AXIOM NOT (EXISTS y : is_parent(Adam, y))

PROOF

b: LEMMA (EXISTS y : is_parent(Adam, y))

b_proof: PROVE b FROM F_1

inconsistency: THEOREM true = false

ouch: PROVE inconsistency FROM a, b

END eden

Figure 3.4: The “Eden” Example

Try typing this module into the system and performing the proofs. You should
find that the system detects the inconsistency in the premises of the proof ouch and
reports an error. (If you look at the *ehdm-instantiator* buffer, you will see that the
theorem prover succeeded in proving the theorem before it detected the error.) While
it is comforting to know that Ehdm performs this safety check, it is not a complete
safeguard. The theorem prover of Ehdm is a refutation-based prover: that is, it tries
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to prove a theorem by showing that the conjunction of its premises and its negated
conclusion is unsatisfiable. If it finds that the conjunction of the premises alone is
unsatisfiable, then it raises the error message as in the eden example. Because of the
incomplete heuristics employed, it may be possible for the prover to prove a theorem
but not the inconsistency in its premises. More importantly, one may derive all sorts
of conclusions from an inconsistent theory without doing anything so gross as to prove
an outright contradiction. The only ways to ensure that a theory is consistent are to
severely limit the forms of axioms employed (e.g., all Horn clauses, or all equations,
with no interpreted functions), or to demonstrate the existence of a model. We consider
this latter alternative in the following section.

Before concluding our brief discussion of hazards in specifications, there is one final
point that is worth considering. The eden module extended the theory introduced
in the family module. If we accept that the family theory is consistent, it must be
that the inconsistency was introduced by eden. How do we know that the california
module doesn’t also introduce an inconsistency? The answer is that because california
contains no axioms, it must be a conservative extension of family: anything that is true
in family+california is also true in family alone.5 The Ehdm definition constructs
(including the recursive definitions and constrained subtypes introduced in Chapter 6)
are carefully designed to ensure conservative extension. For this reason, it is usually
best to introduce new concepts by means of definitions rather than axioms whenever it
is possible to do so.

3.3 Vertical Hierarchy

Horizontal hierarchy is used to incrementally build a specification from small, mind-
sized chunks; vertical hierarchy, on the other hand, is the hierarchy of refinement . In
vertical hierarchy we refine (or “implement”) a specification at one level of abstraction
in terms of objects and operations from a more detailed, concrete specification. The
intent is not to add functionality, but to bring the description closer to an efficient,
practical realization. An example is the implementation of a stack by means of an array
and a pointer—we will actually carry out this example in the next chapter. The “H”
in Ehdm stands for “hierarchy” and it is the vertical form that is meant here. Ehdm’s
ability to support true vertical hierarchy is one of its unique strengths.

The notion of refinement used in a vertical hierarchy of specifications is somewhat
similar to the concept of model in logic. It is probably worth recapitulating the ter-
minology of logic in this context. A model for a theory is an algebra whose objects
and operations can be placed in correspondence with the individuals, functions, and
predicates of the theory (this correspondence is called an interpretation) in such a way

5A theory A is an extension of a theory B if its language includes that of B and every theorem of B
is also a theorem of A; A is a conservative extension of B if, in addition, every theorem of A that is in
the language of B is also a theorem of B.
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that the axioms of the theory are true statements of the model. A logical sentence is
valid if it is true in every model of the theory; a logic is sound if only valid sentences
are provable, it is complete if every valid sentence is provable. A theory is inconsistent
if it has no models.

In a specification language like Ehdm, we can only describe theories, and hence can-
not directly address models and interpretations. However, there is a notion of theory
interpretation that connects two theories in much the same way as a standard interpre-
tation connects a theory to a model. A theory interpretation, or mapping as it is called
in Ehdm, is an association between the types, constants and functions of one theory
and another. The mapping describes how to interpret the concepts of the higher, or
more abstract theory, in terms of those of the lower or more concrete theory. In order
to establish that the mapping is sound, we must prove that the (mapped) axioms of the
higher theory become theorems of the lower theory. If these theorems can be proved,
then we know that the lower theory correctly implements the higher one. In addition,
if we know that the lower theory is consistent, then the higher one is also.

Let’s do an example to see how this works. We will show that the family theory is
consistent by mapping it onto a fragment of integer arithmetic. As before, this example
is taken directly from Manna and Waldinger [15, page 192].

To perform the mapping, we need to construct a theory with which the types, con-
stants and functions of family can be placed in one-to-one correspondence (actually
many-to-one will do). Thus, we need an interpretation for the type person, and the
functions father, mother, is parent, is grandfather and is grandmother. The
signatures of these new functions must correspond exactly to those of the family the-
ory. The interpretation given by Manna and Waldinger associates the integers with
person, the function that multiplies by two with father, the function that multiplies
by three with mother, and so on (thus it is probably not the intended model for this
axiomatization of families). To remind ourselves of the connection to be established
between this new theory and family, we will use the same identifiers as in family, but
with interp added at the front.

Our first job is to define the type interp person, but we want this to be the same
as the integers. We do this with the declaration

interp_person: TYPE IS int

The keyword IS indicates that the new type interp person is simply a synonym for
the built-in type int: everywhere interp person appears, it will be just as if we had
written int instead. Next, since the signature of father is person -> person, we need
a function interp father of signature interp person -> interp person and we will
give it the interpretation of multiplying its argument by two:

x: VAR interp_person

interp_father: function[interp_person -> interp_person] ==
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model: MODULE

EXPORTING ALL

THEORY

interp_person: TYPE IS int

x, y: VAR int

interp_father:

function[int -> int] ==

(LAMBDA x : 2 * x)

interp_mother:

function[int -> int] ==

(LAMBDA x : 3 * x)

interp_is_parent:

function[int, int -> bool] ==

(LAMBDA x, y : y = 2 * x OR y = 3 * x)

interp_is_grandfather:

function[int, int -> bool] ==

(LAMBDA x, y : y = 4 * x OR y = 6 * x)

interp_is_grandmother:

function[int, int -> bool] ==

(LAMBDA x, y : y = 6 * x OR y = 9 * x)

END model

Figure 3.5: The “Model” Example
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(LAMBDA x : 2 * x)

Proceeding in this fashion, we arrive at the module model shown in Figure 3.5. This
module also introduces a new variant of the EXPORTING clause: EXPORTING ALL simply
indicates that all types, constants and functions declared in the theory part of the
module are to be made visible outside.

Next, we need to construct the mapping module that connects family to model.
In this module we must establish the associations between the types, constants, and
functions from family and the corresponding entities of model. The mapping module
(which is called interpretation) from family to model is shown in Figure 3.6.

interpretation: MODULE

MAPPING family ONTO model

person -> interp_person

father -> interp_father

mother -> interp_mother

is_parent -> interp_is_parent

is_grandfather -> interp_is_grandfather

is_grandmother -> interp_is_grandmother

END interpretation

Figure 3.6: The “Interpretation” Mapping Module

The interpretation module begins with a MAPPING clause that tells the system
that this module is a mapping module that provides an interpretation of family in
terms of model. Instead of a theory part, a mapping module lists associations such as

person -> interp_person

This indicates that the “source” type person from the module family is to be inter-
preted by the “target” type interp person from the module model. The remaining
associations establish the interpretations for the functions defined in the family mod-
ule. Associations can be omitted when source and target names are the same.

When you typecheck the interpretation module, the system will tell you that it
has generated a MAPPED module called interpretation map. This module is shown in
Figure 3.7.

Ehdm creates a mapped module whenever it typechecks a mapping module. Each
axiom from the source module(s) is translated according to the associations specified
in the mapping module and the resulting “mapped axiom” is recorded as a formula in
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interpretation_map: MODULE

USING model

EXPORTING ALL WITH model

THEORY

y: VAR integer

x: VAR integer

F_1: FORMULA interp_is_parent(x, interp_father(x))

F_2: FORMULA interp_is_parent(x, interp_mother(x))

F_3: FORMULA interp_is_parent(x, y)

IMPLIES interp_is_grandfather(x, interp_father(y))

F_4: FORMULA interp_is_parent(x, y)

IMPLIES interp_is_grandmother(x, interp_mother(y))

PROOF

F_1_PROOF: PROVE F_1

F_2_PROOF: PROVE F_2

F_3_PROOF: PROVE F_3

F_4_PROOF: PROVE F_4

END interpretation_map

Figure 3.7: The Mapped Module “Interpretation Map”
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the mapped module under the same name as the axiom from which it was derived. If
you can prove all the formulas generated in a mapped module, then the interpretation
specified by the mapping module is sound. Ehdm automatically places an elementary
proof declaration for each formula in the mapped module itself. These suffice in the case
of interpretation map, but in general you will need to construct more sophisticated
proofs that cite any necessary axioms and lemmas. You must construct such proofs in
a different module; Ehdm will not allow modification to a mapped module, since the
soundness of the analysis could be compromised thereby. You will notice that Ehdm
displays mapped modules in read-only buffers (indicated by %% at the left of the Emacs
mode line); if you override this protection and alter a mapped module, Ehdm will
henceforth treat the module as a user-written module and it will lose its special status
as a mapped module (as indicated by the module-status command).



Chapter 4

More About Theorem Proving

Ehdm contains four components that perform theorem proving functions: the Skolem-
izer , the Ground Prover , the Instantiator , and the Hoare Sentence Prover .1 The last
of these is concerned with proving properties about operational programs and specifica-
tions and is described in a later chapter; this chapter is concerned with the Skolemizer,
Ground Prover and Instantiator. We will explain these by example, using a modified
version of the siblings module shown in Figure 4.1, that differs from the earlier one
in that here the is sibling function is defined axiomatically.

If we consider the first proof, we see that we are seeking to prove a formula whose
full form is

(FORALL a: is_sibling(a, a))

from another formula whose full form is:

(FORALL a, b: is_sibling(a, b) IFF

father(a) = father(b) AND mother(a) = mother(b))

where IFF is the propositional connective “if and only if.”2

Now the basic theorem proving strategy in Ehdm is based on seeking a refutation
of the negation of the theorem. That is, we conjoin (i.e., “and” together) the premises
and the negated conclusion and seek to show that the resulting formula is unsatisfiable.
In the present case, this means we are trying to refute the following formula:

(NOT (FORALL a: is_sibling(a, a)))

AND (FORALL a, b: is_sibling(a, b) IFF

father(a) = father(b) AND mother(a) = mother(b))

1Versions of Ehdm later than 5.1.1 contain an experimental Heuristic Instantiator in addition to
the regular one. This second instantiator, which is used when the Ehdm variable prmode has the
value heuristic, is generally the most effective way to do “production” proofs. It is documented
in [6, Appendix A].

2The “equal” symbol on the booleans is translated internally to IFF.

30
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alt_siblings: MODULE

USING family

EXPORTING is_sibling

THEORY

a, b, c: VAR person

is_sibling: function[person, person -> bool]

sib_def: AXIOM

is_sibling(a, b)

= (father(a) = father(b) AND mother(a) = mother(b))

reflexive: THEOREM is_sibling(a, a)

symmetric: THEOREM is_sibling(a, b) IMPLIES is_sibling(b, a)

transitive: THEOREM

is_sibling(a, b) AND is_sibling(b, c) IMPLIES is_sibling(a, c)

PROOF

r_proof: PROVE reflexive FROM sib_def

s_proof: PROVE symmetric FROM sib_def, sib_def

t_proof: PROVE transitive FROM sib_def, sib_def, sib_def

END alt_siblings

Figure 4.1: The Alternative “Siblings” Example
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The next step is to get rid of the quantifiers by Skolemization. There is a description of
Skolemization in the User Guide [4, Section 5.1.1], but for our present purposes it suffices
to say that all variables inside the scope of an odd number of negations or existential
quantifiers are replaced by constants, and all quantifiers are deleted.3 If we use *a to
denote the Skolem constant corresponding to variable a, then our formula becomes the
following:

(NOT is_sibling(*a, *a))

AND (is_sibling(a, b) IFF

father(a) = father(b) AND mother(a) = mother(b))

The next task is to provide constants as substitutions for the variables that remain in
this quantifier-free formula, so that the resulting ground expression is propositionally
unsatisfiable. It is fairly easy to see that if we substitute the constant *a for both the
variables a and b, then we obtain the propositionally unsatisfiable formula:

(NOT is_sibling(*a, *a))

AND (is_sibling(*a, *a) IFF

father(*a) = father(*a) AND mother(*a) = mother(*a))

The (un)satisfiability of propositional calculus is a decidable problem—i.e., it can be
done by a computer program.

Summarizing:

Skolemization reduces quantified formulas to unquantified ones.

Substitution of constants for variables reduces unquantified formulas to ground ones.

Decidability of propositional calculus ensures that we can tell whether the resulting
ground formula is unsatisfiable. If it is unsatisfiable, then the original theorem
is proved. Otherwise, either the theorem is false, or it is true but we chose the
wrong substitutions.

The three steps above are performed by the three theorem proving components
identified earlier: namely, the Skolemizer, the Instantiator, and the Ground Prover
respectively. It should be clear that both the first and last steps are algorithmic—they
cannot affect our ability to perform a proof (providing they are implemented correctly).
All the “skill” is in the middle step, in the choice of the right substitutions to make for
the free variables in the Skolem form. By the Herbrand-Skolem-Gödel theorem, there
must be some set of substitutions that will do the trick, but by the semi-decidability of
first-order predicate calculus (another one of Gödel’s theorems), there is no algorithm

3There are several gross simplifications in this description. For a more precise explanation, see
the description in the User Guide, in particular, the discussion of “Skolem Functions” (they are not
constants, in general), “parity,” and “governing variables.” See also [16, Chapter 10].
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that can be guaranteed to find them. Since the Instantiator of Ehdm is a program,
it cannot always find the correct substitutions to complete a proof. Consequently,
Ehdm provides two methods by which you, the user, can help the system to find the
right substitutions. The first of these methods requires you to indicate the required
substitutions directly in the PROVE declaration; the second method involves interaction
with the Instantiator. This latter method is available only when the Instantiator is
in interactive mode (which is controlled by the variable prmode). Interactive mode
is available only in the SunView version of the system (i.e., it is not available in the
non-tool version), and is not described here.

When the Instantiator succeeds in finding a successful set of substitutions (possibly
found through interaction with the user), it can write the appropriate substitutions back
into the specification text. This means that if the theorem needs to be proved again
(e.g., because we have changed some—hopefully irrelevant—part of the specification),
the proof will go much faster, since there will be no need to search for the substitutions.
In fact, it is then possible to turn the Instantiator off altogether, which results in much
increased prover speed. Some experts always use Ehdm in this mode, since they find it
easier or faster to provide the substitutions themselves.

Now let’s try some of this out. First of all, we need to change the settings of some
of the Ehdm variables to the asterisked values shown below:

prbetareduce *yes no
prchain *terse verbose
prdefaultsubs *no yes
prhalt *error yes no
prlambdafree *everywhere yes no
prmode checking interactive *automatic heuristic
prrecordsubs ask *yes no
prsave *no yes
prsavesubs ask *yes no
prsavesubsversion *new same
prtrace mixed terse *verbose no
prtried ask report continue *repeat

Next, move the cursor to r proof in the alt siblings module and start the prover.
The Instantiator will find a substitution to prove this theorem in just a few seconds and
will write the substitution back into the specification text like this:

r_proof: PROVE reflexive FROM sib_def {b <- a@CS, a <- a@CS}

The substitution is the text in braces. What it says is that the variable b in the premise
sib def should be replaced by the Skolemized instance of the variable a from the con-
clusion (i.e., the formula reflexive) and that the variable b in the premise should be
replaced by the Skolem instance of a from the conclusion. It is the appearance of the
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S and C in the qualifiers @CS attached to the variables that indicate “conclusion” and
“Skolem instance” respectively. With the substitutions now embedded in the specifica-
tion text, try doing the proof again. You should find it goes a bit quicker than before
(though the need to reparse and typecheck the modified specification slows down the
total operation). Next, switch to the *ehdm-info* buffer and study the “trace” of the
process of Skolemization and substitution that is recorded there. Try and understand
how the substitutions serve to link the formulas together.

Now try the same sequence of actions on the next proof in the module and on the
third. Notice that the second proof needs two instances of the sib def premise, while
the third needs three. See what happens if you provide too many or too few instances
of this premise. Also see what happens if you provide some of the substitutions in the
specification, and let the Instantiator find the rest. What happens if you give some
wrong substitutions in the specification text? Also see what happens if you set the vari-
able prmode to checking and invoke the theorem prover on proofs with full and partial
explicit substitutions.4 Finally, see if you can construct the necessary substitutions on
your own.

Note that you can generate the Skolemized form of a proof without having to go
through the full proof process using the skolemize command (M-X sko). Try it—note
that the value mixed for prtrace behaves like terse for proofs and like verbose when
you use the skolemize command. Also try the show-parity command that tells you
which variables in the formula indicated by the cursor will become Skolemized and which
will be available for substitution.

4The Instantiator is not used in checking mode. In checking mode, the formula is reduced to ground
form using any explicit substitutions given in the text, together with a set of default bindings that are
described in the User Guide.
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Putting It Together

In this chapter, we’ll put what we’ve learned so far, together with a few new things, to
use on a computer science application: the canonical “stacks” example. Later we show
how to verify the implementation of a stack that uses an array and a pointer.

5.1 Specification of Stacks

Given what we know already, we can easily construct the specification for a simple “stack
of integers” module shown in Figure 5.1. A deficiency of this specification is that it is
specific to the particular case of a stack of integers. If we wanted a stack of booleans, or a
stack of some user-defined type, we would have to define a new stacks module. A similar
situation occurs in older programming languages, such as Pascal, which does not allow
arrays of variable size as parameters of subprograms, so that different subprograms had
to be written for different sizes of arrays. This is, obviously, rather unproductive because
the code of all those subprograms would be almost identical. What is needed, in both
programming and specification languages, is some way to parameterize modules—and
subprograms—so that they can be reused in different incarnations. Ada, for example,
provides generic packages for this purpose; the equivalent construct in Ehdm is the
parameterized module.

Ehdm allows modules to be parameterized by types and by constants, so the natural
way to rewrite our simple stacks module is as a parameterized module that takes the
type of the elements of the stack as a parameter. We should also add the particular
value of the element type that is to be used as an “error flag” as a second parameter
(it’s hardwired as 0 in the simple stacks example). Before we construct a parameterized
stacks module, however, there is an additional point that is worth introducing. We
explained earlier that the Ehdm theorem prover needed to be given an explicit list of
the premises it could use in each proof. In the particular case of a module whose axioms
consist solely of equations, it is possible to tell the theorem prover that the whole theory

35
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simple_stacks: MODULE

EXPORTING ALL

THEORY

stack: TYPE

newstack: stack

s: VAR stack

e: VAR int

push: function[stack, int -> stack]

pop: function[stack -> stack]

top: function[stack -> int]

isnewstack: function[stack -> bool]

replace: function[stack, int -> stack] ==

(LAMBDA s, e : push(pop(s), e))

popnew: AXIOM pop(newstack) = newstack

topnew: AXIOM top(newstack) = 0

poppush: AXIOM pop(push(s, e)) = s

toppush: AXIOM top(push(s, e)) = e

isnewnew: AXIOM isnewstack(newstack)

isnewpush: AXIOM NOT isnewstack(push(s, e))

END simple_stacks

Figure 5.1: The “Simple Stacks” Example
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defined by that module is available, and the theorem prover will use those equations in
a very efficient manner. Looking at our simple stacks example, we see that all but the
last two axioms are simple equations. In fact we could rewrite these as equations:

isnewnew: AXIOM isnewstack(newstack) = true

isnewpush: AXIOM isnewstack(push(s, e)) = false

but this option will not always be available in other specifications that we write. A more
general approach to specifications that have many equations, plus a few non-equational
axioms, is to split the specification into two modules: one for the equations, and the
other for the non-equational axioms. Hence we arrive at the specification shown in the
two modules of Figures 5.2 and 5.3. 1

Since stack eqns is a parameterized module, any uses of it need to indicate which
instantiation is required. For example, the instantiation of stacks eqns in which the
integers are used as the actual elem type, and 0 is used us the undef flag would be
indicated by

stack_eqns[int, 0]

while a stack of type person, with Alice as the undefined flag would be indicated by

stack_eqns[person, Alice]

What if we needed to have both of these instantiations available simultaneously? How
would we indicate which version of push we meant in each particular context? The
answer is that we would have to qualify each use of an identifier from stack eqns by
the particular instantiation intended. This is done by preceding the name by a dot and
the specific instantiation of the module that is intended:

stack_eqns[int, 0].push

As a convenient abbreviation, Ehdm allows you to delete the module name and move
the identifier to the front if the result is unambiguous. Thus the following form is
equivalent to the one given previously.

push[int, 0]

As a further abbreviation, you can often get away with just saying push—the type-
checker will try to resolve the specific instance on the basis of the argument types that
are used.

Turning to the case of module stacks, notice that it is itself a parameterized module
and that it imports stack eqns instantiated with its own formal parameters.

1These modules have been constructed specifically to demonstrate various features of the Ehdm
system and we deliberately ignore issues such as stack overflow. Appendix A provides a more realistic
alternative specification.
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stack_eqns: MODULE [elem: TYPE, undef: elem]

EXPORTING stack, newstack, push, pop, top, replace

THEORY

stack: TYPE

newstack: stack

s: VAR stack

e: VAR elem

push: function[stack, elem -> stack]

pop: function[stack -> stack]

top: function[stack -> elem]

replace: function[stack, elem -> stack] ==

(LAMBDA s, e -> stack : push(pop(s), e))

popnew: AXIOM pop(newstack) = newstack

topnew: AXIOM top(newstack) = undef

poppush: AXIOM pop(push(s, e)) = s

toppush: AXIOM top(push(s, e)) = e

END stack_eqns

Figure 5.2: The “Stack Eqns” Example
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stacks: MODULE [elem: TYPE, undef: elem]

USING stack_eqns[elem, undef]

EXPORTING isnewstack WITH stack_eqns[elem, undef]

THEORY

s: VAR stack

e: VAR elem

isnewstack: function[stack -> bool]

isnewnew: AXIOM isnewstack(newstack)

isnewpush: AXIOM NOT isnewstack(push(s, e))

END stacks

Figure 5.3: The “Stacks” Example

We can use the theory defined by stack eqns and stacks to prove some simple
theorems. This is done in the module stack thms shown in Figure 5.4. Notice that
since stacks re-exports stack eqns, it is not necessary for stack thms to explicitly
import stack eqns.

Notice that the proof part of stack thms contains a new construct:

WITH stack_eqns

This tells Ehdm that the theorem prover can make use of all the axioms in the module
stack eqns in performing the proofs that follow.2 This use of the WITH clause may refer
only to modules whose axioms are all simple equations.

Notice also that the final proof in stack thms does not follow from the equational
axioms alone and that we need to indicate the additional axiom that is required to
perform this proof. You might want to try deleting the WITH clause from stack thms

and trying to provide the full FROM clauses that will then be required. Beware that if an
axiom needs to be used more than once in a proof, then it must be cited the requisite
number of times in the FROM clause.

2This applies only when the Instantiator is in use—that is, when the variable prmode has the value
automatic or interactive.
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stack_thms: MODULE

USING stacks[int, 0]

THEORY

s: stack

e, x: VAR nat

top_replace: THEOREM top(replace(s, e)) = e

pop_replace: THEOREM pop(replace(s, e)) = pop(s)

push_replace: THEOREM replace(push(s, e), x) = push(s, x)

isnewreplace: THEOREM NOT isnewstack(replace(s, e))

PROOF

WITH stack_eqns

topr_proof: PROVE top_replace

popr_proof: PROVE pop_replace

pushr_proof: PROVE push_replace

newr_proof: PROVE isnewreplace FROM isnewpush

END stack_thms

Figure 5.4: The “Stack Thms” Example
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We are now in a position to clear up the mystery regarding the syntax for function
declarations. The explanation is that function is a type exported from a parameterized
module called functions3. Thus

function[stack, elem -> stack]

is really an abbreviation for

functions[stack, elem -> stack].function

where the arrow -> can be regarded as simply a special type of comma.

5.2 Implementation of Stacks

In this section we describe the standard implementation of stacks by a pair consisting
of an array and a pointer, and we prove the “correctness” of this implementation (i.e.,
its consistency with the axiomatization of stacks just presented).

The stack implementation is specified in the module stackrep shown in Figure 5.5.
In this module we define types, constants, and functions corresponding to each of those
defined in the basic stacks theory (defined by stacks and stack eqns). To aid compre-
hension, the names of the implementation-level objects are the same as those of their
abstract counterparts, with rep stuck on the front.

This module introduces a number of new features. The first is the declaration

linarray: TYPE = array [nat] OF elemtype

This is an instance of a type definition; in contrast to a type declaration (such as foo:
TYPE) that introduces an uninterpreted type, a definition introduces an interpreted type
whose interpretation is specified by the type expression given to the right of the equals
sign. Ehdm type expressions provide for three kinds of interpreted types: arrays, records
and enumerations. Here we are introducing an array type; the array elements are of
type elemtype and are indexed by the type nat. Semantically, arrays are identical to
functions, and array access is indicated in the same way as function application (e.g.,
x(4)). New values are assigned to array elements by a WITH construct as follows:

x, y: linarray

i: VAR nat

xdef: FORMULA x = y WITH [i := undef]

The formula xdef indicates that the array x has the same elements as the array y,
except that its i’th element has the value undef.

Next, the declaration

3The functions module is defined in the prelude, but is not really a module, since it has a variable
number of parameters. Ehdm does not currently support user-defined modules with a variable number
of parameters
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stackrep: MODULE [elemtype: TYPE, undef: elemtype]

EXPORTING linarray, rep_stack, concrete_equality, rep_newstack,

rep_push, rep_pop, rep_top, rep_isnewstack

THEORY

linarray: TYPE = ARRAY [nat] OF elemtype

rep_stack: TYPE = RECORD astack: linarray,

pointer: nat

END RECORD

p, p1, p2: VAR rep_stack

e: VAR elemtype

i: VAR nat

concrete_equality: function[rep_stack, rep_stack -> bool] =

(LAMBDA p1, p2 :

(p1.pointer = p2.pointer)

AND (FORALL i :

(1 <= i AND i <= p1.pointer)

IMPLIES (p1.astack(i) = p2.astack(i))))

rep_newstack: rep_stack

rep_new_ax: AXIOM rep_newstack.pointer = 0

rep_push: function[rep_stack, elemtype -> rep_stack] =

(LAMBDA p, e : p

WITH [pointer := p.pointer + 1, astack := p.astack

WITH [(p.pointer + 1) := e]])

rep_pop: function[rep_stack -> rep_stack] =

(LAMBDA p : p

WITH [pointer :=

IF p.pointer = 0 THEN 0 ELSE pred(p.pointer) END IF])

rep_top: LITERAL function[rep_stack -> elemtype] ==

(LAMBDA p :

IF p.pointer = 0 THEN undef ELSE p.astack(p.pointer) END IF)

rep_isnewstack: LITERAL function[rep_stack -> bool] ==

(LAMBDA p : p.pointer = 0)

END stackrep

Figure 5.5: The “Stackrep” Example
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rep stack: TYPE = RECORD astack: linarray,

pointer: nat

END RECORD

introduces a record type; records are similar to arrays, but field access is indicated by the
usual “dot” notation (e.g., x.stack). Update is indicated by the same WITH construct
as arrays (e.g., x WITH [pointer := 5]).

The function concrete equality introduces an important, but subtle point con-
cerning the correctness of implementations. We need to show that the axioms of the
stacks theory hold in the stackrep implementation. Consider the axiom

poppush: AXIOM pop(push(s, e)) = s

In the implementation, the array-pointer pair corresponding to pop(push(s, e)) will
not be identical to that corresponding to s, because the push operation will have (pos-
sibly) changed the value stored in the array at the location one beyond those used to
represent the values stored in s. Since the pop operation will then have reduced the
value of the pointer below that of this changed location, the fact that its value has
changed is irrelevant to the value of the stack represented by the array-pointer com-
bination. But the fact remains that the array-pointer combination corresponding to
pop(push(s, e)) may not be identical to that corresponding to s. The explanation,
of course, is that only the part of the array below the pointer is relevant to the value of
the stack it represents, and so we need a notion of equality on the array-pointer stack
representation that takes this into account. This modified equality function is generally
called a concrete equality and is specified in the present case by the definition:

p1, p2: VAR rep_stack

concrete_equality: function[rep_stack, rep_stack -> bool] =

(LAMBDA p1, p2 :

(p1.pointer = p2.pointer)

AND (FORALL i :

(1 <= i AND i <= p1.pointer)

IMPLIES (p1.astack(i) = p2.astack(i))))

This simply specifies that two stack representations are considered to represent the same
stack if their pointers have the same values, and their arrays contain the same elements
up to the location indicated by the pointer.

There is another point about this declaration that needs some explanation. Until
now we have been introducing interpreted constants by literal definitions, indicated by
the symbol ==. Such declarations cause all appearances of the defined identifier to be
replaced by the associated definition—which can be undesirable for complex definitions
(and for recursive definitions, which we will encounter in the next chapter). Ehdm has
another sort of definition that is not expanded automatically. This form uses a single =



44 Chapter 5. Putting It Together

symbol, and is referred to as simply a definition (as opposed to a literal definition). To
clarify what sort of definition is being used, you can place the optional keyword LITERAL

after the colon in a literal definition, and the optional keyword DEFINITION in the same
place in an ordinary definition, thus:

plus1: DEFINITION function[nat -> nat] = (LAMBDA n : n+1)

A definition such as this is equivalent to a declaration followed by an axiom:

plus1: function[nat -> nat]

plus1: AXIOM sigma(n) = n + 1

Notice that the symbol plus1 serves double duty as the name of both the identifier
being defined and its defining equation. These two uses cannot be confused, since the
former can appear only in expressions (or exporting lists), while the latter can appear
only in proofs. Unlike literal definitions, (ordinary) definitions must be cited where
needed in proofs.

In the present example, the functions concrete equality, rep pop and rep push

are given by definitions, rep top and rep isnewstack are defined literally, and
rep newstack is defined by an axiom. It is usually best, for pragmatic reasons associated
with theorem proving, to use literal definitions only for simple constructions (remem-
ber, these will be expanded in-place everywhere). When both are feasible, definitions
are generally preferable to axioms because they cannot introduce (new) inconsistencies.
In the present case, the specification is entirely definitional, with the exception of the
rep new ax axiom.

The next step in this analysis is to connect the abstract and the concrete levels of
specification together using the mapping module stackmap shown in figure 5.6. Note
the special association

=[stack] -> concrete equality

that is used to indicate the interpretation for equality on the type stack. (If this
association is omitted, then it is assumed that the interpretation for equality on stack

is the standard equality on the type that interprets stack—i.e., rep stack in this case.)
Typechecking stackmap will produce the mapped module stackmap map shown in

Figure 5.7. As we expect, this module contains mapped instances of all the axioms
from the source modules. But it also contains three formulas (the first three) that
we might not have expected. These are generated because we indicated that the
concrete equality predicate was to be used as the interpretation for equality on stacks.
We must ensure that this predicate really is a reasonable equality—i.e., that it satisfies
the properties of an equivalence relation. For this reason, Ehdm automatically inserts
appropriate instances of the reflexivity, symmetry, and transitivity into the mapped
module whenever an interpretation is specified for an equality predicate.4

4To guarantee soundness, substitutivity should also be enforced, but this is not done at present.
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stackmap: MODULE [etype: TYPE, udef: etype]

MAPPING stack_eqns[etype, udef], stacks[etype, udef]

ONTO stackrep[etype, udef]

stack -> rep_stack

newstack -> rep_newstack

pop -> rep_pop

top -> rep_top

push -> rep_push

isnewstack -> rep_isnewstack

=[stack] -> concrete_equality

END stackmap

Figure 5.6: The “Stackmap” Mapping Module

The trivial proof declarations automatically supplied in stackmap map are inade-
quate to the task, so we must construct more complex proof declarations in order to
discharge our proof obligations. A suitable module stackmap proofs is shown in Fig-
ure 5.8.

Note that these (and all subsequent) proofs should be performed using the Ehdm
prover in checking mode (i.e., set the value of the variable prmode to checking). Observe
that three of the proofs use a premise nat invariant and a variable nat var that do
not appear to be defined anywhere. These are the standard names for the subtype
predicate and variable associated with the built-in type nat (recall the description on
Page 56). The built-in predecessor function pred on the naturals is also referenced. The
relevant definitions from the “prelude” module naturalnumbers are:

nat_var: VAR nat

nat_invariant: AXIOM (FORALL nat_var: nat_var >= 0)

pred: function[nat -> nat] ==

(LAMBDA nat_var -> nat : IF nat_var > 0 THEN nat_var - 1 ELSE 0 END IF)
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stackmap_map: MODULE [etype: TYPE, udef: etype]

USING stackrep[etype, udef]

EXPORTING ALL WITH stackrep[etype, udef]

THEORY

e: VAR etype

s: VAR stackrep[etype, udef].rep_stack

x1: VAR stackrep[etype, udef].rep_stack

x2: VAR stackrep[etype, udef].rep_stack

x3: VAR stackrep[etype, udef].rep_stack

concrete_equality_isreflexive: FORMULA concrete_equality(x1, x1)

concrete_equality_issymmetric: FORMULA

concrete_equality(x1, x2) IMPLIES concrete_equality(x2, x1)

concrete_equality_istransitive: FORMULA

concrete_equality(x1, x2) AND concrete_equality(x2, x3)

IMPLIES concrete_equality(x1, x3)

isnewnew: FORMULA rep_isnewstack(rep_newstack)

isnewpush: FORMULA NOT rep_isnewstack(rep_push(s, e))

popnew: FORMULA concrete_equality(rep_pop(rep_newstack), rep_newstack)

topnew: FORMULA rep_top(rep_newstack) = udef

poppush: FORMULA concrete_equality(rep_pop(rep_push(s, e)), s)

toppush: FORMULA rep_top(rep_push(s, e)) = e

PROOF

concrete_equality_isreflexive_PROOF: PROVE

concrete_equality_isreflexive

concrete_equality_issymmetric_PROOF: PROVE

concrete_equality_issymmetric

concrete_equality_istransitive_PROOF: PROVE

concrete_equality_istransitive

isnewnew_PROOF: PROVE isnewnew

isnewpush_PROOF: PROVE isnewpush

popnew_PROOF: PROVE popnew

topnew_PROOF: PROVE topnew

poppush_PROOF: PROVE poppush

toppush_PROOF: PROVE toppush

END stackmap_map

Figure 5.7: The Mapped Module “Stackmap map”
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stackmap_proofs: MODULE [etype: TYPE, udef: etype]

USING stackmap_map[etype, udef]

PROOF (* Requires checking mode only *)

e: VAR etype

s: VAR rep_stack

ref_proof: PROVE concrete_equality_isreflexive FROM

concrete_equality {p1 <- x1@c, p2 <- x1@c}

sym_proof: PROVE concrete_equality_issymmetric FROM

concrete_equality {p1 <- x1@c, p2 <- x2@c, i <- i@p2s},
concrete_equality {p1 <- x2@c, p2 <- x1@c}

trans_proof: PROVE concrete_equality_istransitive FROM

concrete_equality {p1 <- x1@c, p2 <- x2@c, i <- i@p3},
concrete_equality {p1 <- x2@c, p2 <- x3@c, i <- i@p3},
concrete_equality {p1 <- x1@c, p2 <- x3@c}

isnewnew_proof: PROVE isnewnew FROM rep_new_ax

isnewpush_proof: PROVE isnewpush FROM

rep_push {p <- s}, nat_invariant {nat_var <- (s@c).pointer}

popnew_proof: PROVE popnew FROM

concrete_equality {p1 <- rep_pop(rep_newstack), p2 <- rep_newstack},
rep_new_ax,

rep_pop {p <- rep_newstack}

topnew_proof: PROVE topnew FROM rep_new_ax

poppush_proof: PROVE poppush FROM

concrete_equality {p1 <- rep_pop(rep_push(s, e)), p2 <- s},
rep_pop {p <- rep_push(s, e)},
rep_push {p <- s},
nat_invariant {nat_var <- (s@c).pointer}

toppush_proof: PROVE toppush FROM

rep_push {p <- s}, nat_invariant {nat_var <- (s@c).pointer}

END stackmap_proofs

Figure 5.8: The “Stackmap proofs” Module



Chapter 6

Some Advanced Topics

In this chapter we will meet some rather more advanced topics: recursive definitions,
subtypes, type-correctness conditions, higher-order logic, and module assumptions.
We’ll take as our example the problem of establishing the closed-form expression for
the sum of the first n natural numbers:

n∑
i=1

i =
n× (n+ 1)

2

To begin, we need to specify the summation appearing on the left of this equation. It is
possible, using higher-order logic, to specify a general summation operator, but for the
present we will content ourselves with specifying a more specific function sigma that
denotes the particular sum we are interested in. The obvious way to define sigma uses
a recursion, something like this:

sigma: function[nat -> nat] ==

(LAMBDA n : IF n = 1 THEN 1 ELSE sigma(n-1) + n END IF)

However, there are a couple of things wrong with this definition as it stands. First of
all, a literal definition (one using ==) such as this causes all appearances of the defined
identifier to be replaced by its definition. The recursion in the definition for sigma

would therefore lead to endless rewriting, and is prohibited in Ehdm literal definitions
for this reason. The obvious repair is to use an (ordinary) definition instead of a literal
definition, thus:

sigma: DEFINITION function[nat -> nat] =

(LAMBDA n : IF n = 1 THEN 1 ELSE sigma(n-1) + n END IF)

Replacing the literal definition of sigma by an ordinary one has dealt with the
pragmatic issue of uncontrolled rewrites, but a serious logical problem remains. Careless
use of recursion can introduce inconsistencies into a specification, for example:

48
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nono: function[bool -> bool] = (LAMBDA b: NOT nono(b))

A recursively defined function is acceptable only if its “computation” terminates for all
arguments. The usual way to prove termination is to establish that at each recursive
call the “size” of the arguments decreases according to some well-founded relation.
In Ehdm, the well-founded relation < on nat is used and we require that a measure
function be specified with every recursive definition. The measure function must have
the same domain type as the recursive function being defined, but must return a value
of type nat.1 The name of the measure function is indicated in a BY clause following
the recursive definition thus:

n: VAR nat

identity: LITERAL function[nat -> nat] == (LAMBDA n : n)

sigma: RECURSIVE function[nat -> nat] =

(LAMBDA n : IF n = 1 THEN 1 ELSE sigma(n-1) + n END IF)

BY identity

Notice that the optional keyword RECURSIVE may be given after the colon in order to
assist readability.2

Ehdm analyzes recursive definitions and produces formulas involving the measure
function that must be proved in order to establish the well-foundedness of the definition
concerned. In the present case, the formula concerned is

sigma_TCC1: FORMULA

n >= 0 IMPLIES NOT (n = 1) IMPLIES identity(n) > identity(n - 1)

which is easily seen to be true (the n >= 0 condition comes from the subtype predicate
on the type nat, which is discussed below, and n = 1 comes from the condition in
the recursive definition itself). We will explain shortly how this formula is generated
and presented to the user, but first we need to press on with our examination of the
inadequacies in our basic definition for sigma.

Notice that the definition of sigma does not terminate if it is given an argument
of zero—even though the well-foundedness condition sigma TCC1 is true. We must be
missing something.

Indeed we are, and it is a check on the type-correctness of the recursive call to sigma
appearing in its definition. The formal argument n to sigma has been declared to be of
type nat—so we must ensure that the n-1 in the recursive call sigma(n-1) is indeed of
type nat. But what exactly is the type nat?

In Ehdm, the natural numbers are declared as a subtype of the integers:

1Only the primitive recursive higher-order functions can be defined this way.
2The earlier definition of sigma on page 48 is syntactically unacceptable to Ehdm on two grounds:

a) a recursive definition must have a BY clause, and b) the optional keyword DEFINITION can only be
used in nonrecursive definitions; in a recursive definition the optional keyword is RECURSIVE.
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x: VAR int

nat: TYPE FROM int WITH (LAMBDA x: x >= 0)

This declaration is built-in to the “prelude” of standard theories, but would have the
same form in a user-written module. It declares the type nat to be a subtype of the
type int with defining predicate (LAMBDA x : x >=0). This means that wherever an
expression of type nat is required, it is necessary to ensure that the expression actually
supplied does satisfy the subtype predicate for nat. In the case of the definition of
sigma, this means that it is necessary to ensure that the n-1 in the recursive call
sigma(n-1) satisfies the subtype predicate on nat (because the argument to sigma has
been declared to be of type nat). We know that n is of type nat, since it was declared
so, and the constant 1 is known to be of type nat, so what is the type of n-1? There
is no subtraction operator defined on the type nat in Ehdm, but there is a subtraction
operator defined in the type int, which is the parent type of nat. Consequently, the
system promotes n and 1 to the parent type int, interprets the - sign as the subtraction
operator on int, and concludes that n-1 has type int. However, the context demands
something of type nat. Since nat is known to be a subtype of int, and n-1 is now known
to be an int, this expression will also be a nat provided it satisfies the defining predicate
for nat. Thus, we will have to prove (n-1) >= 0. Now this particular appearance of
the expression n-1 occurs in the ELSE part of an IF with condition n=1. Hence, we
know NOT (n = 1) in this context. We also know that n is a nat, and so it satisfies the
subtype predicate n >= 0. Hence, the typecheck-consistency condition, or TCC for the
appearance of n-1 in sigma(n-1) is:

sigma_TCC2: FORMULA

n >= 0 IMPLIES NOT (n = 1) IMPLIES n - 1 >= 0

This is false, and so our putative recursive definition for sigma is not type-correct and
will not be accepted by Ehdm.

There are two plausible corrections that we could make. The first would redefine
sigma so that the recursion bottoms out at 0 rather than 1:

sigma: RECURSIVE function[nat -> nat] =

(LAMBDA n : IF n = 0 THEN 0 ELSE sigma(n-1) + n END IF)

BY identity

This is probably the best solution. For pedagogical purposes, however, we will adopt
the other approach: redefining sigma to take a strictly positive integer as its argument.
This is shown in Figure 6.1. We define posint to be a subtype of nat comprising
just the strictly positive numbers. We then define sigma as before, and introduce
the theorem closed form that we wish to prove. Notice that the literal definition of
the identity function has to include the return type indicator -> nat in its LAMBDA

expression. If this indicator is omitted, the type computed for the LAMBDA expression
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sum: MODULE

EXPORTING ALL

THEORY

n: VAR nat

posint: TYPE FROM nat WITH (LAMBDA n : n > 0)

m, q, z: VAR posint

identity: function[posint -> nat] == (LAMBDA q -> nat : q)

sigma: RECURSIVE function[posint -> nat] =

(LAMBDA q : IF q = 1 THEN 1 ELSE sigma(q - 1) + q END IF)

BY identity

square: function[nat -> nat] == (LAMBDA n : n * n)

closed_form: THEOREM 2 * sigma(q) = square(q) + q

END sum

Figure 6.1: Theory Section for the “Sum” Example
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will be function[posint -> posint] and this is type-incompatible with the declared
signature of identity as function[posint -> nat].3 By including the return type
indicator in the LAMBDA expression, we coerce its type to that required.

The definition of closed form in Figure 6.1 also raises a few interesting points. The
straightforward transliteration of the formula we gave at the beginning would lead us
to write:

closed_form: THEOREM sigma(p) = p * (p + 1) /2

and this would be perfectly acceptable. Pragmatically, however, it is best to avoid
division and also non-linear multiplication since these present difficulties in theorem
proving (the theories concerned are undecidable). By multiplying both sides by two
we avoid the division, and by expanding the product on the right hand side we can
capture the nonlinear multiplication inside the function square, where it will be easier
to deal with if it proves necessary to assist the theorem prover. (As it happens, these
precautions are unnecessary in this case, but you should be aware of the issues.)

If we now typecheck the module sum, we will be told that the system has generated
a “TCC module” sum tcc. This module is shown in Figure 6.2.

3Subtyping in the present version of Ehdm applies only to ground types and does not induce a
subtype hierarchy on the function types.
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sum_tcc: MODULE

USING sum

EXPORTING ALL WITH sum

THEORY

n: VAR naturalnumber

q: VAR posint

p: VAR function[posint -> boolean]

m: VAR posint

(* Existence TCC generated for posint *)

posint_TCC1: FORMULA (EXISTS n : n > 0)

(* Subtype TCC generated for the first argument to sigma in sigma *)

sigma_TCC1: FORMULA (NOT (q = 1)) IMPLIES (q - 1 >= 0) AND (q - 1 > 0)

(* Termination TCC generated for sigma *)

sigma_TCC2: FORMULA (NOT (q = 1)) IMPLIES identity(q) > identity(q - 1)

(* Subtype TCC generated for the first argument to p in induction AND

Subtype TCC generated for the first argument to sigma in basis AND

Subtype TCC generated for basis_proof *)

induction_TCC1: FORMULA (1 > 0)

(* Subtype TCC generated for the first argument to p in induction *)

induction_TCC2: FORMULA (p(m)) AND (p(1)) IMPLIES (m + 1 > 0)

(* Subtype TCC generated for the first argument to sigma in inductive_step *)

inductive_step_TCC1: FORMULA

(2 * sigma(q) = square(q) + q) IMPLIES (q + 1 > 0)

(* Subtype TCC generated for ind_step_proof *)

ind_step_proof_TCC1: FORMULA (q + 1 > 0)

Figure 6.2: The TCC Module “Sum Tcc” (continues)
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PROOF

posint_TCC1_PROOF: PROVE posint_TCC1

sigma_TCC1_PROOF: PROVE sigma_TCC1

sigma_TCC2_PROOF: PROVE sigma_TCC2

induction_TCC1_PROOF: PROVE induction_TCC1

induction_TCC2_PROOF: PROVE induction_TCC2

inductive_step_TCC1_PROOF: PROVE inductive_step_TCC1

ind_step_proof_TCC1_PROOF: PROVE ind_step_proof_TCC1

END sum_tcc

Figure 6.2: The TCC Module “Sum Tcc”

TCC modules contain typecheck-consistency conditions: formulas that must be
proven in order to ensure the soundness of their parent modules. TCC modules are
protected from modification just like MAP modules, but the relationship between a TCC

module and its parent is more intimate than that between a MAP module and its par-
ent. A MAP module is an auxiliary to its parent mapping module; the meaning of the
mapping module is not affected by the presence or absence of its MAP module, nor by
whether its proofs have been performed successfully. A module having a TCC module,
however, is not fully admitted into a specification unless its TCC module is present and
all its formulas are proven—since these are necessary to ensure the soundness of the
parent module. The Ehdm system permits users a certain flexibility in choosing when
to attack the formulas in a TCC module: the system insists on the TCC module being
available and unaltered whenever any operation is performed that depends on the se-
mantics of its parent module, but the check that the formulas in the TCC have been
proved is delayed until the user invokes a proof-chain analysis that involves formulas
from the parent module.

The TCCs shown in Figure 6.2 include two similar to those we saw earlier, and a third
one that is new. This is an existence TCC for the subtype posint; whenever a subtype
is introduced, it is necessary to prove that the type has a member, since the standard
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rules for reasoning with quantified formulas depend on the nonemptiness of the ranges
of quantification.

Notice that it is necessary for a parent module to export the types and constants that
appear in its TCC module—if a TCC module fails to typecheck, the probable explanation
is that you forgot to export the necessary identifiers from its parent module. Also
notice in Figure 6.2 that trivial proof declarations (i.e., declarations without premises
or substitutions) for the formulas are generated automatically in the TCC module itself.
These often suffice, but do not do so for the existence TCC here.4 Consequently, we must
provide the additional module sum tcc proofs shown in Figure 6.3 that supplies the
necessary proof. The presence of multiple proof declarations for a single formula (as
here for posint TCC1) is not a problem; the proof-chain analyzer will always prefer a
successful proof over an unsuccessful one.

sum_tcc_proofs: MODULE

PROOF

USING sum_tcc

posint_TCC1_PROOF: PROVE posint_TCC1 {n <- 1}

END sum_tcc_proofs

Figure 6.3: The “Sum Tcc Proofs” Proof Module

TCC modules are generated in three circumstances: when subtypes are used, when a
definition is recursive, and when a state invariant is specified. The third of these possi-
bilities is not discussed here. For subtypes, the TCC’s are of two types: the nonemptiness
TCC, and those needed to ensure type-correctness in places where a coercion from the
parent to the subtype is required. The termination TCC for a recursive definition has
already been described. Note that the proof of a termination TCC must not use, either
directly or indirectly, the recursive function concerned. This requirement is enforced by
the Ehdm proof-chain checker.

The Ehdm system automatically inserts instances of subtype predicates in proofs
when necessary. Occasionally, however, it is necessary to cite the necessary predicate ex-
plicitly. This is done using standard names that are introduced automatically whenever
a subtype is declared. For the declaration

sub: TYPE FROM t WITH (LAMBDA x: inv(x))

4Trivial declarations never can suffice for existence TCCs, since explicit substitutions will be necessary
to provide witnesses to the existential quantifications.
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the system automatically generates a variable of type sub and an axiom that expresses
the invariant property:

sub var: VAR sub

sub invariant: AXIOM (FORALL sub var: inv(sub var))

The names of the variable and axiom are always formed with the canonical suffixes var

and invariant, respectively.

Now that we have finally succeeded in defining our problem, we can proceed to solve
it. Since sigma is defined recursively, the natural way to prove the closed form theorem
is by induction. The specification language of Ehdm contains elements of higher-order
logic; that is, it allows quantification over function types. This means that we can define
induction axioms directly in Ehdm. For example, the induction axiom we need here
can be written as follows:

n, m: VAR posint

p: VAR function[posint -> bool]

induction: AXIOM

(FORALL p: p(1) AND (FORALL m : p(m) IMPLIES p(m + 1))

IMPLIES (FORALL n : p(n)))

We will worry about justifying this later, but first let’s look at what it says and consider
how to use it. This specification fragment introduces p as a predicate variable and then
asserts that for any such predicate, if p is true for 1, and for any posint m, p true
for m implies p true for m+1, then we may conclude p is true for all n of type posint.
Our goal is to establish closed form using the induction axiom—which means that
we will need to substitute for p in induction the predicate implicitly appearing in
closed form. That is, our proof will contain a premise like:

induction {p <- (LAMBDA q : 2 * sigma(q) = square(q) + q)}

Looking at the induction axiom, we can see that in order to obtain the result we want,
we will have to establish the two conjuncts in its antecedent. We can break these out
in instantiated form as the following two lemmas:

basis: LEMMA 2 * sigma(1) = square(1) + 1

inductive_step: LEMMA

2 * sigma(q) = square(q) + q

IMPLIES 2 * sigma(q + 1) = square(q + 1) + q + 1

In this way we construct the full form of the sum module shown in Figure 6.4. This
form of the module generates a TCC module with 7 formulas; all but the last of which
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require nothing beyond the automatically supplied proof declarations. The remaining
TCC is the one we saw earlier that asserts the nonemptiness of the posint type.

At this point, we recommend trying out the proofs in the modules sum, sum tcc,
and sum tcc proofs and then invoking the proof-chain checker in verbose mode on the
formula closed form (point to the formula and do M-X fs; when asked for the name
of the module at the top of the proof tree, respond with sum tcc proofs). Notice how
the proof-chain checker tracks the dependencies on TCCs. In particular, notice that it
checks that a recursively defined function is not used in its own termination proof.

We have now succeeded in proving the closed form theorem, but to do so we intro-
duced an induction axiom in a rather ad-hoc manner. It is always necessary to scrutinize
axioms with great care, since they can potentially introduce inconsistencies. Often, it
is preferable to axiomatize a standard and well-understood theory, and then derive the
particular results needed as lemmas, rather than assert those results directly as axioms.
The benefits of the recommended approach are that you can refer to textbooks for ap-
propriate formulations of the theories of interest, and that you will build up a library
of generally useful specifications that can be reused many times.

In the present case, we have introduced an induction axiom that is specific to the type
posint, and that is not justified by reference to external authority. We can remedy both
deficiencies by deriving our specific induction scheme as an instance of a more general
one. The most general induction scheme is that known as Noetherian5 or well-founded
induction. If < is a well-founded relation over a type dom, then Noetherian induction
can be stated as follows [16, page 6]

p: VAR function[dom -> bool]

d, d1, d2: VAR dom

general_induction: AXIOM

(FORALL p :

(FORALL d1 :

(FORALL d2 : d2 < d1 IMPLIES p(d2)) IMPLIES p(d1))

IMPLIES (FORALL d : p(d)))

There are some subtleties in this definition. For example, if d1 is a minimal element
(i.e., if there is no d2 such that d2 < d1), then the antecedent to the first implication
is false, and the implication is therefore true. Now this implication is the antecedent
to the second—and so it will be necessary to establish that p holds for such a minimal
element.

Since this axiom applies to any type dom and well-founded relation <, we should
enclose it in a module having these as parameters. A suitable declaration would be:

5Named after the German mathematician Emmy Noether; an alternative spelling of her name is
Nöther; we use the simple form to accommodate the limited character set of Ehdm.
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sum: MODULE

EXPORTING ALL

THEORY

n: VAR nat

posint: TYPE FROM nat WITH (LAMBDA n : n > 0)

m, q, z: VAR posint

identity: function[posint -> nat] == (LAMBDA q -> nat : q)

sigma: RECURSIVE function[posint -> nat] =

(LAMBDA q : IF q = 1 THEN 1 ELSE sigma(q - 1) + q END IF)

BY identity

square: function[nat -> nat] == (LAMBDA n : n * n)

closed_form: THEOREM 2 * sigma(q) = square(q) + q

p: VAR function[posint -> bool]

induction: AXIOM (FORALL p :

p(1) AND (FORALL m : p(m) IMPLIES p(m + 1))

IMPLIES (FORALL q : p(q)))

PROOF

basis: LEMMA 2 * sigma(1) = square(1) + 1

basis_proof: PROVE basis FROM sigma {q <- 1}

inductive_step: LEMMA

2 * sigma(q) = square(q) + q

IMPLIES 2 * sigma(q + 1) = square(q + 1) + q + 1

ind_step_proof: PROVE inductive_step FROM sigma {q <- q + 1}

the_proof: PROVE closed_form FROM

induction {p <- (LAMBDA z : 2 * sigma(z) = square(z) + z)},
basis,

inductive_step {q <- m@p1}

END sum

Figure 6.4: The Full “Sum” Example
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noetherian: MODULE [dom: TYPE, <: function[dom, dom -> bool]]

Notice that Ehdm allows the standard arithmetic relations and operators to be over-
loaded with new definitions. The Ehdm typechecker resolves such uses on the basis of
the argument types supplied.

The only thing wrong with this specification is that we have not taken care of the
requirement that the relation < be well-founded : there is nothing to stop us using
instantiations like

noetherian[int, <]

(here < is the standard less-than relation on the integers) and deriving contradictions—
since less-than is not well-founded on the integers.

We need some way to ensure that any use of the noetherian module respects the
requirement that the relation in question should be well-founded. This is accomplished
in Ehdm by the ASSUMING clause. This clause may precede the THEORY part of any
parameterized module and serves to introduce formulas that are assumed inside the
module and that must be discharged whenever the module is used. In the present case,
the ASSUMING clause needs to state the requirement that the relation supplied as the
second argument to the module be well-founded. It is a little tedious to give a full
specification for well-foundedness (it requires infinite sequences), so we will deal only
with a simple form of well-foundedness corresponding to the less-than relation on the
natural numbers. It is well-known that a relation can be shown to be well-founded by
establishing a correspondence with another relation that is already known to be well-
founded [16, pp 8–9]. Now the ordinary less-than relation is known to be well-founded
on the naturals, so that we can state the requirement for well-foundedness in terms
of the existence of a measure function. This is accomplished in the full Noetherian
module shown in Figure 6.5. (Notice we have dropped the outermost quantifier on p in
the induction axiom).

Now let’s consider how we should use the Noetherian module to provide the
induction needed in the sum module. There are two ways to proceed: either we
can try and prove closed form directly from general induction, or we can use
general induction to prove our original induction axiom (which would then become
a lemma). The second course of action is likely to be easier, and we could also then
place the induction lemma in a module of its own and make it generally available as
a proven, simplified induction scheme for those who do not require the full power of
general induction. But perhaps the simple induction scheme is a little too simple
for this purpose; it would be better to generalize it a little so that it is less specific to
the posint type and the “step by 1” inductive step. A suitably generalized module is
shown in Figure 6.6.

The simple induction module introduces an induction scheme that is suitable for
those cases where we have a type dom with a single base element, and a “step function”
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noetherian: MODULE [dom: TYPE, <: function[dom, dom -> bool]]

ASSUMING

measure: VAR function[dom -> nat]

a, b: VAR dom

well_founded: FORMULA

(EXISTS measure : a < b IMPLIES measure(a) < measure(b))

THEORY

p: VAR function[dom -> bool]

d, d1, d2: VAR dom

general_induction: AXIOM

(FORALL d1 :

(FORALL d2 : d2 < d1 IMPLIES p(d2)) IMPLIES p(d1))

IMPLIES (FORALL d : p(d))

END noetherian

Figure 6.5: The “Noetherian” Example
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simple_induction: MODULE [dom: TYPE, base_elem: dom,

step: function[dom -> dom]]

ASSUMING

x, y: VAR dom

measure: VAR function[dom -> nat]

well_ordered: FORMULA (EXISTS measure : measure(x) < measure(step(x)))

reachability: FORMULA x /= base_elem IFF (EXISTS y : step(y) = x)

THEORY

d1, d2: VAR dom

lessp: function[dom, dom -> bool] == (LAMBDA d1, d2 : d2 = step(d1))

n, m: VAR dom

p: VAR function[dom -> bool]

induction: THEOREM

(p(base_elem) AND (FORALL m : p(m) IMPLIES p(step(m))))

IMPLIES p(n)

PROOF

USING noetherian[dom, lessp]

ind_proof: PROVE induction {m <- y@p2} FROM

general_induction {d <- n, d2 <- m}, reachability {x <- d1@p1}

discharge: PROVE well_founded {measure <- measure@p1} FROM

well_ordered {x <- a@c}

END simple_induction

Figure 6.6: The “Simple Induction” Example
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with the property that any member of the type dom can be reached by successive ap-
plications of the step function, starting from the base element. Notice that this new
module also has an assuming clause of it own, and that it discharges the assumption on
the Noetherian module.

Now we are finally in a position to perform an “elegant” proof of the closed form

theorem. This is given in the alt sum module shown in Figure 6.7
The module synonym declaration on the third line of the proof clause of this module

is worth a mention. Observe that it is necessary to construct the next function before
the proper instance of the simple induction module can be cited. Since the USING

clause must come before any declarations, we have a potential chicken and egg situation.
In this particular case, we could avoid it by defining the next function in the THEORY

section, ahead of the USING clause in the PROOF section. Sometimes, however, this is
not possible (as, for example, when the module instance is needed in the THEORY section
itself). There are four solutions to this difficulty.

• Cite the generic (unparameterized) instance of the module in the using clause,
and use the fully-qualified versions of any names taken from that module—e.g.,
induction[posint, 1, next].

• A variant on the above: cite the generic instance in the USING clause, then in-
troduce a module synonym for the instantiated instance of the module as soon
as the other necessary terms have been defined. The module synonym can then
be used to abbreviate the fully qualified names (e.g., instance.induction) or, if
there is only one such module synonym, it will automatically establish the correct
instances of names from the module concerned. This is the approach illustrated
in Figure 6.7.

• Define the necessary terms in a separate module that exports their names. Cite
this module earlier in the USING clause than the module whose instance needs to
use those names.

• Use a nested module. This is discouraged, since nested modules will be removed
from the language in Version 6.

Try out the proofs in alt sum (you will have to supply a module containing a proof
for one of the TCCs generated by alt sum), and then invoke the formulastatus com-
mand in verbose mode on the formula closed form. Notice how the proof-chain checker
tracks the obligations to discharge assumptions whenever a module having an assuming
clause is used.

LATEX-Printing Specifications Specifications are not intended solely for mechanical
analysis; humans are expected to read and review them as well. Ehdm provides a LATEX-
print command that generates LATEX source files suitable for use in reports or viewgraph
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alt_sum: MODULE

EXPORTING ALL

THEORY

n: VAR nat

posint: TYPE FROM nat WITH (LAMBDA n : n > 0)

m, q, z: VAR posint

identity: function[posint -> nat] == (LAMBDA q -> nat : q)

sigma: RECURSIVE function[posint -> nat] =

(LAMBDA q : IF q = 1 THEN 1 ELSE sigma(q - 1) + q END IF)

BY identity

square: function[nat -> nat] == (LAMBDA n : n * n)

closed_form: THEOREM 2 * sigma(q) = square(q) + q

PROOF USING simple_induction

next: function[posint -> posint] == (LAMBDA q -> posint : q+1)

instance: MODULE IS simple_induction[posint, 1, next]

basis: LEMMA 2 * sigma(1) = square(1) + 1

basis_proof: PROVE basis FROM sigma {q <- 1}

inductive_step: LEMMA

2 * sigma(q) = square(q) + q

IMPLIES 2 * sigma(q + 1) = square(q + 1) + q + 1

ind_step_proof: PROVE inductive_step FROM sigma {q <- q + 1}

the_proof: PROVE closed_form FROM

induction {n <- q, p <- (LAMBDA z : 2 * sigma(z) = square(z) + z)},
basis,

inductive_step {q <- m@p1}

discharge_well_ordered: PROVE well_ordered {measure <- identity}

discharge_reachability: PROVE

reachability {y <-if x>1 then x-1 else 1 end if}

END alt_sum

Figure 6.7: The “Alternative Sum” Example
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presentations. This facility pretty-prints the specification, substituting standard math-
ematical notation for keywords and special symbols (so that AND, for example, becomes
∧). In addition, it substitutes Greek characters for their names (e.g., delta becomes δ).
To use this facility, go to the sum module, and type M-X latex-print. After a few mo-
ments, the latex file sum.tex will be generated, along with the file ehdm-modules.tex.
The sum.tex file is expected to be \input to another file, and cannot be LATEXed on its
own. The ehdm-modules.tex file is a complete skeleton file that \inputs the file just
generated: to see the LATEX-printed module, simply LATEX the file ehdm-modules.tex

and print (or preview) the result. The result in this case should look something like
Figure 6.8, (the exact result depends on the settings of the Ehdm variables controlling
the prettyprinter).

The default substitutions that are applied when LATEX-printing an Ehdm module
can be augmented or overridden by user-supplied substitutions. The details require a
good understanding of LATEX and we won’t go into them here (see [6]), but Figure 6.9

shows the theory part of the sum module, when N , N+, (⋆1)2 and
⋆1∑
i=1

i have been

specified as the substitutions for nat, posint, square and sigma, respectively.
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sum: Module

Exporting all

Theory

n: Var nat
posint: Type from nat with (λ n : n > 0)
m, q, z: Var posint
identity: function[posint→ nat] == (λ q → nat : q)
σ : Recursive function[posint→ nat] =

(λ q : if q = 1 then 1 else σ(q − 1) + q end if) by identity
square: function[nat→ nat] == (λ n : n ∗ n)

closed form: Theorem 2 ∗ σ(q) = square(q) + q

p: Var function[posint→ bool]

induction: Axiom (∀ p : p(1) ∧ (∀m : p(m) ⊃ p(m+ 1)) ⊃ (∀ q : p(q)))

Proof

basis: Lemma 2 ∗ σ(1) = square(1) + 1

basis proof: Prove basis from σ {q ← 1}

inductive step: Lemma
2 ∗ σ(q) = square(q) + q ⊃ 2 ∗ σ(q + 1) = square(q + 1) + q + 1

ind step proof: Prove inductive step from σ {q ← q + 1}

the proof: Prove closed form from
induction {p← (λ z : 2 ∗ σ(z) = square(z) + z)},
basis,
inductive step {q ← m@p1}

End sum

Figure 6.8: LATEX-printed Theory part of “Sum” Module
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sum: Module

Exporting all

Theory

n: Var N
N+ : Type from N with (λ n : n > 0)
m, q, z: Var N+

identity: function[N+ → N ] == (λ q → N : q)
⋆1∑
i=1

i : Recursive function[N+ → N ] =

(λ q : if q = 1 then 1 else
q−1∑
i=1

i+ q end if) by identity

(⋆1)2: function[N → N ] == (λ n : n ∗ n)

closed form: Theorem 2 ∗
q∑

i=1

i = (q)2 + q

p: Var function[N+ → bool]

induction: Axiom (∀ p : p(1) ∧ (∀m : p(m) ⊃ p(m+ 1)) ⊃ (∀ q : p(q)))

End sum

Figure 6.9: LATEX-printed Theory part of “Sum” Module after Substitutions



Chapter 7

Specifying and Reasoning about
State-dependent Behavior

In this chapter, we look at those aspects of the Ehdm system that deal with abstract
programs. By “program” we mean a program in a procedural programming language,
such as Ada or Pascal.1 A main characteristic of those languages is that computation
is expressed by means of program variables and manipulation of their values: values
are stored in program variables by assignment statements and subsequently retrieved
for use in further computation. We can view the collection of program variables and
their values at a given point in a computation as the state of the computation, and
view computations themselves as manipulations or transformations of states. It is these
notions of state and state transformation that are modeled in Ehdm by corresponding
concepts of state object and operation.

7.1 State Objects

A program variable in, say, Ada is an object that can hold values of a certain type; for
example,

x: integer;

is the declaration of a variable that can hold values of type integer. If the value of the
variable is meant to be constant, one uses a declaration like

c: CONSTANT integer = 10;

In Ehdm, the corresponding declaration of the constant is

1We here use “procedural language” in contrast to “functional language.”
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c: integer == 10

You might think that the corresponding Ehdm declaration for the program variable x

is

x: VAR integer

However, such a declaration introduces a logical variable, that is, the sort of variable
used in quantified formulas and lambda expressions. What we need here is a completely
different kind of “variable.” In Ehdm, we have a special class of types, called state
types, for objects whose values are state-dependent and which we call state objects. We
can form the state type for an arbitrary type. For example, state[int] is the type of
integer state objects, so the Ehdm declaration for x is

x: state[int]

We will see in a moment that state objects are used in Ehdm just like program variables
in Ada. The use of the term “variable” in programming languages is rather unfortunate
because it conflicts with its use in logic. The two concepts are quite distinct, and main-
taining the distinction is very important (even though not all specification languages
make it). In order to avoid confusion, we adopted the term “state objects,” which is
meant to suggest the connection with state dependence.

7.2 Operations

Now that we have state objects, how do we associate values with them? In Ada, we
assign a value to x by a statement like

x := 10;

or

x := x + 2;

In Ehdm, we can do exactly the same. In fact, Ehdm includes a number of constructs
which together form a simple “programming language,” with assignments and various
control structures; because it uses Ada syntax, this sublanguage looks like a fragment
of the Ada statement language.

However, when developing specifications, we are usually not so much interested in
actual code, at least not in the beginning. Instead, we want to specify and reason about
state transformations in a more abstract setting. A state transformation is expressed
in Ehdm by an operation. An operation is simply an element of the primitive type
operation. An operation can have parameters. You can think of an operation as an
abstract form of a procedure in Ada—abstract in the sense that no body has been given
for it.



7.2. Operations 69

There are several ways to specify the meaning of an operation. We can give an
operation an interpretation by declaring that it stands for a piece of “code” in the
sublanguage just mentioned. This is similar to declaring a constant or giving a function
interpretation; we will come back to this later.

More interesting is an abstract description of the effect of an operation. Remember
that the meaning of an operation is a state transformation. “State” is expressed by
one or more state objects, and a state is modified by changing the value(s) of the state
object(s). So the effect of an operation can be described by specifying the relationship
between the states before and after modification. Such relationships are conveniently
expressed by Hoare formulas.2

Let us look at a few simple examples to make all this more concrete. Consider the
following declarations:

sqrt op: operation[number,state[number]]

n: VAR number

r: VAR state[number]

sqrt ax: AXIOM { n > 0 } sqrt op(n,r) { r*r = n }

The first declaration introduces an operation sqrt op that takes two parameters: a
number and a state object of type state[number]. The distinction between these two
kinds of parameters is essentially the same as between in and in out parameters in Ada
(or between value parameters and variable parameters in Pascal): with the first kind,
values are passed to the operation; parameters of the second kind can have their values
modified by the operation, providing a means for passing values out of the operation.

The formula sqrt ax is a Hoare formula. It consists of three parts: a precondition,
an operation part, and a postcondition. The operation part is some expression of type
operation; in the example it is a “call” to sqrt op—think of it as a procedure call.
The precondition and the postcondition are expressions of type boolean that typically
refer to objects appearing in the operation part. Both describe states abstractly, that is,
they do not specify particular states, but classes of states. For example, n > 0 means
“some state in which n > 0 is true.” The meaning of the Hoare formula sqrt ax is then

A state satisfying the precondition n > 0 is transformed by the operation
sqrt op(n,r) into a state satisfying the postcondition r*r = n.

Of course, n itself is merely a variable and thus does not depend on states; but the
formula can be instantiated in a way that n is replaced by an expression that does
involve state objects. Hoare formulas are treated much like other formulas; in particular,
they can be quantified and, just as in first-order formulas, universal quantifiers can be
dropped at the outermost level. Thus sqrt ax is the same as

2Hoare formulas are named after C. A. R. Hoare, who introduced the basic concept and also the
logic for reasoning with them [10].



70 Chapter 7. Specifying and Reasoning about State-dependent Behavior

sqrt ax: AXIOM

(FORALL n, r: { n > 0 } sqrt op(n,r) { r*r = n } )

Note that sqrt ax does not say anything about the effect of sqrt op when the
precondition is not satisfied. It is quite common that a Hoare formula gives only a
partial specification of an operation.

Now, let us look at another example.

swap: operation[state[int],state[int]]

x, y: VAR state[int]

a, b: VAR int

swap 1: AXIOM

{ x = a AND y = b } swap(x,y) { x = b AND y = a }

The operation swap is declared as taking two state objects of type state[int] as
arguments. The intended meaning of the operation swap is that it swaps the values of
its arguments: in the new state, x should have the old value of y and y the old value
of x. In the formula swap 1, this is expressed as “a state in which x has some value a

and y some value b is transformed by swap(x,y) into a state in which x has the value
b and y the value a.” In this formulation the link between old and new values is rather
indirect; we can express it more conspicuously by using primed names. An occurrence
of x in a postcondition (or precondition) stands for the current value of the state object,
whereas x’ denotes the previous value of x, more precisely, the value of x in the state
associated with the precondition. (Use of primed names of state objects is restricted to
postconditions of Hoare formulas because only there do they have a meaning.) Thus,
formula swap 1 can be restated as

swap 2: AXIOM

{ true } swap(x,y) { x = y’ AND y = x’ }

(The trivial precondition, true, can be interpreted as “any state.”) The formula swap 2

is preferred over swap 1 since it avoids the auxiliary variables.

Changes Clauses. A Hoare formula specifies how an operation transforms a state.
However, as we pointed out before, a Hoare formula need not be a complete specification
of an operation; it need not describe all possible effects of the operation. Thus, when
we see a formula like swap 2, we cannot assume that no other state object is affected
by swap. Ehdm provides a construct that lets you specify explicitly which state objects
can possibly be affected by an operation; we call this construct a CHANGES clause. A
CHANGES clause may be used in a separate axiom or formula declaration; alternatively,
it can be attached to the declaration of an operation with the reserved word WHERE. For
example, we would specify for the operation swap:

swap ch: AXIOM swap(x,y) CHANGES x, y
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or, alternatively,

swap: operation[state[int],state[int]]

WHERE swap(x,y) CHANGES x, y

Either form says that the operation swap may modify the values of its arguments and
has no effect on any other state object. (In either form, the variables x and y must
have been declared beforehand.) A CHANGES clause permits users to delimit the possible
extent of effects of an operation without having to be specific about how the state is
changed. The most important aspect of a CHANGES clause is the complement of what it
states, namely that every state object not listed in the clause remains unchanged.3 In
proofs with Hoare formulas—which will be discussed shortly—it is often necessary to
state such invariance by providing CHANGES clauses for abstract operations.

3Such statements are often referred to as frame axioms or frame statements.
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stackops: MODULE [t: TYPE, undefined: t]

USING stacks[t, undefined]

EXPORTING ALL

THEORY

v: VAR t

x: VAR state[t]

stack_obj: state[stack]

init_op: operation

WHERE init_op CHANGES stack_obj

push_op: operation [t]

WHERE push_op(v) CHANGES stack_obj

pop_op: operation [state[t]]

WHERE pop_op(x) CHANGES stack_obj, x

init_ax: AXIOM {true} init_op {stack_obj = newstack}

push_ax: AXIOM {true} push_op(v) {stack_obj = push(stack_obj’, v)}

pop_ax: AXIOM

{true}
pop_op(x)

{x = top(stack_obj’) AND stack_obj = pop(stack_obj’)}

Figure 7.1: The “Stackops” Example (continues)
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7.3 State Machines

So far we have talked only about individual operations and Hoare formulas. We now
look at how they are used in the larger context of specifying an abstract state machine.
We use the simple example of a stack module, displayed in Figure 7.1. It defines an
object, stack obj, and operations on that object. Each of the operations modifies the
stack object. The Hoare formulas specify the effects of the operations; in essence, they
say that the operations are procedural counterparts of the stack functions of module
stacks.

Each operation is specified by a Hoare formula and a CHANGES clause. The operation
pop op returns the top value of the stack in its argument and also pops the stack, thus
it combines the functionality of both top and pop.

7.4 Proving Properties of Operations

Now let us prove some simple properties about operations. Properties are stated
(mainly) by Hoare formulas, so this means that we have to prove Hoare formulas.
Ehdm provides a special theorem prover component, usually called the Hoare Sentence
Prover (HSP), which has the semantics of Hoare formulas and the operation constructs
built into it.

The proof part of module stackops (Figure 7.1) declares three lemmas and their
proofs. The first thing you may notice in the proof declarations is that the reserved
word PROVE is replaced by VERIFY. The latter tells the Ehdm theorem prover to invoke
the Hoare Sentence Prover component, rather than the prover you have been using so
far ( the ground prover or the instantiator).

The first lemma, L1, asserts that a push operation followed by a pop operation leaves
the stack object unchanged. You may think of it as a test whether the specifications
of the operations are meaningful: at the least, the basic properties of stack structures
defined in module stacks should be preserved. It is also about the simplest Hoare for-
mula that mentions more than one operation. How does the prover prove L1? The HSP
uses a forward strategy that reduces a Hoare formula proof to a sequence of proofs in
predicate logic. Recall the basic meaning of a Hoare formula, which we can rephrase like
this: Assuming that the precondition is true in the state at the start, the postcondition
will be true for the final state after a “hypothetical execution” of the operation part.
The HSP simulates this process exactly:

Assume that the precondition is true, i.e., assume the precondition. In our case, we
get to assume true—big deal! The first operation is push op(v). The premise push ax

tells us that if its precondition is true then we can assert its postcondition for the state
corresponding to the “;” in L1. If push ax had a non-trivial precondition, the HSP
would generate a subproof to ascertain that the condition is true. Here, nothing needs
to be done, and we assert
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PROOF (* checking mode *)

USING associativity

w: VAR t

y, z: VAR state[t]

L1: LEMMA

{true} push_op(v); pop_op(x) {stack_obj = stack_obj’}

pr1: VERIFY L1 FROM

push_ax, pop_ax,

poppush@C’ {s <- stack_obj, e <- v}

op: VAR operation

L2: LEMMA

{true} op {stack_obj = stack_obj’}
IMPLIES

{true}
push_op(x); op; pop_op(x)

{stack_obj = stack_obj’ AND x=x’}

pr2: VERIFY L2 FROM

push_ax, pop_ax,

poppush@C’ {s <- stack_obj, e <- x},
toppush@C’ {s <- stack_obj, e <- x}

L3: LEMMA

{true}
push_op(y); push_op(w); pop_op(z); pop_op(y)

{stack_obj = stack_obj’ AND y = y’}

pr3: PROVE L3 FROM

L2 {op <- (push_op(w); pop_op(z)), x <- y},
L1 {v <- w, x <- z},
assoc {op1 <- push_op(w), op2 <- pop_op(z), op3 <- pop_op(y)}

END stackops

Figure 7.1: The “Stackops” Example
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stack obj1 = push(stack obj0, v)

The indices of stack obj indicate the state change.

Next, we make use of the premise pop ax. Again, no subproof is needed, and we get
to assert

x = top(stack obj1) AND stack obj2 = pop(stack obj1)

If we combine this with the first assertion, we get

x = top(push(stack obj0, v)) AND

stack obj2 = pop(push(stack obj0, v))

The formula describes what we have derived to be true for the final state. The last
step is to prove that this assertion implies the postcondition of L1. This is where the
last premise comes into play. Formula poppush, from the module stack eqns (see
Figure 5.2) is a first-order formula. If its instantiation is to involve a state object, we
need to indicate at what point its value is to be used. This is done by instantiating
the formula with a qualified state object: The qualification is syntactically very similar
to the @-suffixes used in ordinary proofs, but it has a very different meaning: here, a
suffix refers to either the postcondition or the precondition of a Hoare formula, where
the formula itself is indicated by a C (for conclusion) or a Pn (for premise n). The
precondition of a formula is indicated by a prime (’), and the postcondition by the lack
of a prime. Thus, stack obj@C’ means “the value of stack obj in the state associated
with the precondition of the conclusion,” which we already gave the name stack obj0.
With the help of this instantiation of poppush, the predicate logic prover can deduce
that the postcondition of L1 implies the assertion for the final state.

The user does not see anything of this process, but it is important to understand the
basic principle. The system writes out a trace of all the subproofs generated by the HSP
unless the variable prtrace is set to no. The HSP is invoked by the same commands as
the ordinary prover; the reserved word VERIFY tells the system which prover component
to use. The trace is written into the *ehdm-info* buffer; try out a proof and look at the
subproofs. If the proof fails, the subproofs trace usually reveals where a subproof did
not succeed. There is also a special command vcg that invokes the HSP just to generate
the subproofs without actually submitting them to the predicate logic prover; this can
be quite helpful in figuring out what kind of predicate-logic premises are required for a
Hoare formula proof.

Of course, the reduction process is much more involved for more complex formulas.
For example, case splits are generated for conditional operations, and special rules apply
to loops. However, the basic principle of forward reduction of the operation part and
accumulation of assertions remains the same.

Lemma L2 shows a formula that has Hoare formulas embedded in boolean structure.
As in all formulas, the free variable op is universally quantified. The proof of L2 proceeds
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essentially like the one described above: the conclusion of the implication is proved using
the antecedent as the specification of op.

Lemma L3 is a slight generalization of lemma L1. We use it here to demonstrate
how ordinary first-order proof techniques can be used with operations and Hoare formu-
las. Remember that Hoare formulas are essentially just predicates. The ground prover
treats them as uninterpreted predicates. The proof pr3 is declared with the reserved
word PROVE, thus it invokes the ordinary prover. The proof is based on simple equa-
tional reasoning, using a lemma—displayed in Figure 7.2—that states associativity of
operation composition. (Composition is expressed by “;” as an infix operator on opera-
tions; the ground prover has no built-in knowledge about this operator.) Note also how
lemma L2 is used as a premise: the operation variable op is instantiated to the inner
composition of operations.

associativity: MODULE

THEORY

op1, op2, op3: VAR operation

assoc: LEMMA ((op1; op2); op3) = (op1; (op2; op3))

END associativity

Figure 7.2: Associativity of “;”

7.5 Implementing the Stack Operations

The module stackops specifies the stack operations abstractly. As a next step, we give
them interpretations that look more like real program code.
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stackops2: MODULE [etype: TYPE, undef: etype]

USING stackrep[etype, undef], makrec[etype, undef]

EXPORTING init_op, push_op, pop_op

THEORY

v: VAR etype

x: VAR state[etype]

istack: state[linarray]

index: state[nat]

init_op: operation == BEGIN index := 0 END

push_op: operation[etype]

push_def: FORMULA

push_op(v) = BEGIN index := index + 1;

istack(index) := v

END

pop_op: operation[state[etype]]

pop_def: FORMULA pop_op(x)

= BEGIN

IF index = 0

THEN x := undef

ELSE x := istack(index);

index := pred(index)

END IF

END

init_lm: LEMMA {true} init_op {index = 0}

push_lm: LEMMA {true}
push_op(v)

{istack = (rep_push(rec(istack’, index’), v)).astack

AND index = (rep_push(rec(istack’, index’), v)).pointer}

pop_lm: LEMMA {true}
pop_op(x)

{x = rep_top(rec(istack’, index’))

AND istack = (rep_pop(rec(istack’, index’))).astack

AND index = (rep_pop(rec(istack’, index’))).pointer}

Figure 7.3: Implementation of “Stackops” (continues)
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PROOF

pr1: VERIFY init_lm

pr2: VERIFY push_lm FROM

push_def,

rep_push@c’ {p <- rec(istack, index), e <- v},
recax1@c’ {ll <- istack, n <- index},
recax2@c’ {ll <- istack, n <- index}

pr3: VERIFY pop_lm FROM

pop_def,

rep_pop@c’ {p <- rec(istack, index), e <- x},
recax1@c’ {ll <- istack, n <- index},
recax2@c’ {ll <- istack, n <- index}

END stackops2

Figure 7.3: Implementation of “Stackops”

The module stackops2, displayed in Figure 7.3, contains an implementation of
stackops. It is modeled closely after the implementation of stacks by stackrep. In
fact, we use stackrep to state the properties we want to prove about the implementa-
tion, as we will see below. Instead of the abstract state object stack obj, we now have
two state objects, an array istack and a naturalnumber-valued object index. Each
operation has been given an interpretation in the form of “concrete” operations (assign-
ments, conditional statements etc.) on istack and index. The code for the operations
is quite straightforward.

The figure above displays the continuation of the module stackops2. The properties
that are stated as lemmas and proved in that module correspond exactly to the axioms
in module stackops, where they define the meaning of the stack operations. The corre-
spondence becomes clear when, following the approach taken in module stackrep, we
regard the record consisting of (the values of) the two objects as the representation (or
“implementation”) of (the value of) the abstract state object stack obj. The current
version of the Ehdm language does not provide a built-in constructor for record con-
stants with given components;4 we have defined one in the module makrec displayed
in Figure 7.4. The postconditions of the lemmas in stackops2 are derived from those
of the axioms in stackops by applying the mapping defined by the module stackmap:

4This deficiency is corrected in Ehdm Version 6.
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makrec: MODULE [etype: TYPE, undef: etype]

USING stackrep[etype, undef]

EXPORTING ALL

THEORY

ll: VAR linarray

n: VAR nat

cc: rep_stack

rec: function[linarray, nat -> rep_stack]

recax1: AXIOM (rec(ll, n)).astack = ll

recax2: AXIOM (rec(ll, n)).pointer = n

END makrec

Figure 7.4: The Record Constructor Module “Makrec”
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stack obj is replaced by rec(istack,index), push by rep push etc. To make the con-
ditions more readable and the proofs more manageable, we have replaced the equalities
between records by equalities among the record components. (We cannot express the
mapping from stackops onto stackops2 as in module stackmap because the current
version of Ehdm does not support the mapping of one state object onto an aggregate
of several.)

The proofs of the lemmas are straightforward; they require only the definitions of
the operations, the basic properties of rep push and rep pop (from module stackrep),
and the meaning of the record constructor function as expressed in module makrec. Try
to figure them out for yourself by following the reduction process described above.

7.6 Generating Ada Text

Ehdm provides an experimental facility for translating procedural code-level specifica-
tions to Ada. The translator extracts the “computational” content of a specification
module and converts it into Ada text. Figure 7.5 shows the result of translating the
module stackops2. The translator is invoked by the command Translate to Ada (M-X
tr); it writes the Ada text into a new buffer and file with the extension .ada.

In this example, it is quite obvious that the generated Ada text is computationally
equivalent to the operations specified in the module stackops2 and satisfies the intent
of the specification in module stackops. Given a formal semantics for the fragment of
Ada that we employ, it should, in principle, be possible to develop an argument for the
correctness of the resulting code. At present, however, informal reasoning and inspection
must be used to determine the equivalence of a specification and the executable Ada
program generated from it.5 The purpose of the Ada translator is simply to allow
practical experiment with this approach to program development.

The Ada translator cannot handle all the constructs of Ehdm. For example, it
cannot handle higher-order functions, lambda expressions or quantified expressions.
This is reasonable, since the translator simply converts from Ehdm to Ada syntax; it
is not a code synthesizer. Therefore, you should develop a specification all the way
down to simple imperative operations before invoking the Ada translator. However,
even low-level specification modules often contain these untranslatable constructs—for
example in declarations needed to state properties required during verification. The Ada
translator cannot tell which declarations in a specification are intended as part of the
“computational” component. Consequently, it attempts to translate every declaration;
constructs that it cannot translate are replaced by placeholders and an explanation is
printed in the form of an Ada comment. Examples appear in the translation of stackrep
shown in Figure 7.6. Most of this module, including all the untranslated constructions,

5This “equivalence” is not strict: for example, the Ada type Natural and the Ehdm type nat are
rather different.
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WITH stackrep;

WITH makrec;

GENERIC

TYPE etype IS PRIVATE;

undef : etype;

PACKAGE stackops2 IS

PROCEDURE push_op (v : etype);

PROCEDURE pop_op (x : in out etype);

END stackops2;

PACKAGE BODY stackops2 IS

PACKAGE makrec_2 IS NEW makrec(etype, undef);

USE makrec_2;

PACKAGE stackrep_1 IS NEW stackrep(etype, undef);

USE stackrep_1;

istack : linarray;

index : Natural;

PROCEDURE push_op (v : etype) IS

BEGIN

index := index + 1;

istack(index) := v;

END push_op;

PROCEDURE pop_op (x : in out etype) IS

BEGIN

IF index = 0 THEN

x := undef;

ELSE

x := istack(index);

index := pred(index);

END IF;

END pop_op;

END stackops2;

Figure 7.5: The Ada code generated by “stackops2”
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is irrelevant to the “computational” component of stackops2, being needed only in
the statement and proof of its lemmas—in fact, only the type definition linarray is
needed for the Ada code. It is up to the user to recognize this fact and to delete all the
irrelevant parts of translated modules.6

6It is, in fact, possible to use the Ada translator without having developed the specification to a
very low level. In this case, the translated “code” will consist mostly of procedure stubs and comments
containing specification fragments. These can then serve as the starting point for a program development
conducted in Ada.
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GENERIC

TYPE elemtype IS PRIVATE;

undef : elemtype;

PACKAGE stackrep IS

TYPE linarray IS ARRAY (Natural) OF elemtype;

TYPE rep_stack IS RECORD astack : linarray; pointer : Natural; END RECORD;

FUNCTION concrete_equality (p1, p2 : rep_stack) RETURN Boolean;

rep_newstack : CONSTANT rep_stack := a_3619;

FUNCTION rep_push (p : rep_stack; e : elemtype) RETURN rep_stack;

FUNCTION rep_pop (p : rep_stack) RETURN rep_stack;

FUNCTION rep_top (p : rep_stack) RETURN elemtype;

FUNCTION rep_isnewstack (p : rep_stack) RETURN Boolean;

END stackrep;

PACKAGE BODY stackrep IS

-- The following EHDM syntax is not currently translatable

-- (FORALL i : (1 <= i AND i <= p1.pointer)

-- IMPLIES (p1.astack(i) = p2.astack(i)))

-- It is replaced by QUANEXPR in the following ADA code

FUNCTION concrete_equality (p1, p2 : rep_stack) RETURN Boolean IS

BEGIN

RETURN (p1.pointer = p2.pointer) and QUANEXPR;

END concrete_equality;

Figure 7.6: The Ada code generated by “Stackrep” (continues)
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-- The following EHDM syntax is not currently translatable

-- p WITH [pointer := p.pointer + 1, astack := p.astack

-- WITH [(p.pointer + 1) := e]]

-- It is replaced by WITHEXPR in the following ADA code

FUNCTION rep_push (p : rep_stack; e : elemtype) RETURN rep_stack IS

BEGIN

RETURN WITHEXPR;

END rep_push;

-- The following EHDM syntax is not currently translatable

-- p WITH [pointer := IF p.pointer = 0 THEN 0 ELSE pred(p.pointer) END IF]

-- It is replaced by WITHEXPR in the following ADA code

FUNCTION rep_pop (p : rep_stack) RETURN rep_stack IS

BEGIN

RETURN WITHEXPR;

END rep_pop;

FUNCTION rep_top (p : rep_stack) RETURN elemtype IS

BEGIN

RETURN IFEXPR(p.pointer = 0, undef, p.astack(p.pointer));

END rep_top;

FUNCTION rep_isnewstack (p : rep_stack) RETURN Boolean IS

BEGIN

RETURN p.pointer = 0;

END rep_isnewstack;

END stackrep;

Figure 7.6: The Ada code generated by “Stackrep”
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Final Words

This tutorial has concentrated on the mechanics of the Ehdm language and system
and we have not said much about style and clarity in formal specifications, nor about
using verification for maximum benefit. We plan to publish a companion document
the near future that will exemplify the approach to formal specification and verification
that we advocate. In the meantime, three full-scale applications demonstrate the use
of Ehdm in earnest [20–22]. One of these [21] provides some interesting evidence for
the value of formal analysis. The journal proof that the Interactive Convergence Clock
Synchronization Algorithm maintains synchronization despite the occurrence of Byzan-
tine faults comprises five lemmas and a main theorem [13]. Our analysis, using Ehdm,
demonstrated that four of the five lemmas, and the main theorem, were all false as
stated. As far as we know, these flaws had not previously been detected by the “social
process” of informal peer scrutiny to which the journal paper has been subjected since
its publication. We corrected the flaws in the journal proof (which were nontrivial and
required changes to the external specification of the algorithm, not just to the proofs
themselves), formally verified the corrected proof, and extracted a revised journal-level
proof from the formal verification that is much simpler and easier to follow than the
original, incorrect, proof. Applications undertaken in Ehdm by others are also available
in reports and papers [3, 17,28].
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Appendix A

Alternative Stacks Example

The stacks example given in section 5.1 is somewhat artificial—it was designed to show
features of the language without getting bogged down in detail. Here we provide a more
complete and realistic specification for stacks, consisting of the module alt stacks

(Figure A.1) and an implementation alt stackrep (Figure A.2).
The alt stacks module extends the stacks module by the addition of the predi-

cates isempty and isfull, and some new axioms. If isfull is always false, then this
new specification is equivalent to the earlier stacks and stack eqns modules. The
alt stackrep module is extended to provide interpretations for these new predicates.
In addition, there is a new module parameter, max, that bounds the depth of stack
and is used in the interpretation of the isfull predicate. The alt stackmap and
alt stackmap proofs modules are not provided here; you are encouraged to specify
and prove these as an exercise.
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alt_stacks: MODULE [elem: TYPE, undef: elem]

EXPORTING ALL

THEORY

stack: TYPE

s: VAR stack

e: VAR elem

newstack: stack

push: function[stack, elem -> stack]

pop: function[stack -> stack]

top: function[stack -> elem]

replace: function[stack, elem -> stack] ==

(LAMBDA s, e -> stack : push(pop(s), e))

isempty: function[stack -> bool] == (LAMBDA s : s = newstack)

isfull: function[stack -> bool]

fullnewstack: AXIOM NOT isfull(newstack)

popempty: AXIOM isempty(s) IMPLIES pop(s) = s

pushempty: AXIOM NOT isempty(push(s, e))

topempty: AXIOM isempty(s) IMPLIES top(s) = undef

popfull: AXIOM NOT isfull(pop(s))

pushfull: AXIOM isfull(s) IMPLIES push(s, e) = s

poppush: AXIOM NOT isfull(s) IMPLIES pop(push(s, e)) = s

pushpop: AXIOM NOT isempty(s) IMPLIES push(pop(s),top(s)) = s

toppush: AXIOM NOT isfull(s) IMPLIES top(push(s, e)) = e

END alt_stacks

Figure A.1: The Alternative “Stacks” Example
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alt_stackrep: MODULE [elemtype: TYPE, undef: elemtype, max: nat]

EXPORTING range, linarray, rep_stack, concrete_equality, rep_newstack,

rep_push, rep_pop, rep_top, rep_isempty, rep_isfull

ASSUMING nonzero_max: FORMULA max > 0

THEORY

n: VAR nat

range: TYPE FROM nat WITH (LAMBDA n : n <= max)

linarray: TYPE = ARRAY [range] OF elemtype

rep_stack: TYPE = RECORD astack: linarray,

pointer: range

END RECORD

p, p1, p2: VAR rep_stack

e: VAR elemtype

i: VAR range

concrete_equality: function[rep_stack, rep_stack -> bool] =

(LAMBDA p1, p2 :

(p1.pointer = p2.pointer)

AND (FORALL i :

(1 <= i AND i <= p1.pointer)

IMPLIES (p1.astack(i) = p2.astack(i))))

rep_newstack: rep_stack

rep_new_ax: AXIOM rep_newstack.pointer = 0

rep_isempty: LITERAL function[rep_stack -> bool] ==

(LAMBDA p : p.pointer = 0)

rep_isfull: LITERAL function[rep_stack -> bool] ==

(LAMBDA p : p.pointer = max)

rep_push: function[rep_stack, elemtype -> rep_stack] =

(LAMBDA p, e :

IF NOT rep_isfull(p)

THEN p WITH [pointer := p.pointer + 1,

astack := p.astack WITH [(p.pointer + 1) := e]]

ELSE p

END IF)

rep_pop: function[rep_stack -> rep_stack] =

(LAMBDA p : p WITH [pointer := pred(p.pointer)])

rep_top: LITERAL function[rep_stack -> elemtype] ==

(LAMBDA p : IF rep_isempty(p) THEN undef ELSE p.astack(p.pointer) END IF)

END alt_stackrep

Figure A.2: The Alternative “Stackrep” Example
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