
CSL Technical Report SRI-CSL-2024-01 • May 16, 2024

Defeaters and Eliminative Argumentation
In Assurance 2.0

Robin Bloomfield (Adelard, part of NCC Group, and City, Univ. of London),
Kate Netkachova (Adelard), and John Rushby (SRI)

As Members of the CLARISSA Team
Honeywell, Adelard, UT Dallas, and SRI

Also issued as a CLARISSA Technical Report under the title
Defeaters and Eliminative Argumentation in CLARISSA

SRI Project 100651 under subcontract to Honeywell in support of AFRL and
DARPA ARCOS Program, Contract FA8750-20-C-0512.
Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Abstract

A traditional assurance case employs a positive argument in which
reasoning steps, grounded on evidence and assumptions, sustain a top
claim that has external significance. Human judgement is required to
check the evidence, the assumptions, and the narrative justifications for
the reasoning steps; if all are assessed good, then the top claim can be
accepted.

A valid concern about this process is that human judgement is fallible
and prone to confirmation bias. The best defense against this concern is
vigorous and skeptical debate and discussion in the manner of a dialectic
or Socratic dialog. There is merit in recording aspects of this discussion
for the benefit of subsequent developers and assessors. Defeaters are a
means doing this: they express doubts about aspects of the argument
and can be developed into subcases that confirm or refute the doubts,
and can record them as documentation to assist future consideration.

This report describes how defeaters, and multiple levels of de-
featers, should be represented and assessed in Assurance 2.0 and its
Clarissa/asce tool support. These mechanisms also support elimina-
tive argumentation, which is a contrary approach to assurance, favored
by some, that uses a negative argument to refute all reasons why the top
claim could be false.

Contents

1 Introduction to Defeaters 3
1.1 Representation of Defeaters . 5

2 Assessing Arguments With Defeaters 7
2.1 Propagation of Positive Assessments 8
2.2 Propagation With Refutations . 12
2.3 Exact Defeaters . 14
2.4 Summary of Propagation Rules . 15
2.5 Logic Programming Interpretation 15
2.6 Comparison with Dialectics in GSN 18

3 Eliminative Argumentation and Exact Defeaters 19

4 Conjunctive and Disjunctive Decomposition Blocks 21

5 An Illustrative Example 22

6 Defeaters and Confidence 25

7 Summary and Conclusion 28

References 31

List of Figures

1 Doubt as a Defeater with No Subcase 4
2 Highlighted Defeater Subcase . 6
3 Eliminative Argument Using an Exact Defeater 20
4 Two Levels of Defeaters . 23

2

1 Introduction to Defeaters

This report assumes general familiarity with Assurance Cases [19], and with Assur-
ance 2.0 [4] and its Clarissa toolset [22] in particular.

The primary criterion for a satisfactory assurance case in the Assurance 2.0
methodology is that it should justify indefeasible confidence in its top claim, mean-
ing that in addition to confidence that the claim is true, we must also be confident
that there are no overlooked or unresolved doubts that could change that judge-
ment [5, 20]. We refer to any concern about a case as a doubt and we annotate
the case by adding a doubt node to the graphical representation of the assurance
argument, pointing to a node that is under suspicion. The doubt node contains a
claim indicating the nature of the doubt (e.g., “I think there is something wrong
here”). At some point, we must return to investigate the nature and origin of the
doubt and will either dismiss it as unwarranted, or refine and sharpen it into a de-
feater with a possibly more specific (counter-)claim (e.g., “the justification for this
step is inadequate”) whose investigation is recorded in a subcase attached to the
defeater. Thus, a doubt is simply a defeater that has not yet been investigated (i.e.,
has no subcase) and so we will generally refer to both as defeaters. The back and
forth investigation of an assurance case argument against doubts and defeaters is
an application of the Socratic or dialectical methods for exposing error and refining
beliefs.1 These date back to ancient Greece but retain their potency. In particular,
defeaters play a dialectical rôle in argument that is similar to falsification in sci-
ence [11]. Thus, identification of potential defeaters should not be seen as criticism
but as a contribution to the development and clear formulation of an assurance case
and part of a process to establish its indefeasibility. In addition, developers should
consciously generate doubts, and vigorously investigate their associated defeaters as
a guard against confirmation bias, and evaluators may raise potential defeaters as
a way to elicit additional explanation or to clarify their understanding of some part
of an assurance case.

This report is concerned with the representation, evaluation, and recording of
defeaters within an assurance case. It does not address systematic search for de-
featers, which is an important topic akin to hazard analysis in systems (a defeater
for an argument is like a hazard to a system) and, indeed, some defeaters may re-
veal previously unconsidered hazards. We will examine methods of searching for
potential defeaters in a separate document.

Because they make (contrary) claims, the Clarissa/asce graphical tool for
Assurance 2.0 uses the same oval node for defeaters as for claims, but they are
colored differently (red for defeaters). An example (described in more detail in
Section 5) is shown in Figure 1, where a defeater (at upper right) attached to

1In philosophy, the Socratic method is considered an instance of dialectic [26]; the precise dis-
tinctions do not concern us here.

3

Figure 1: Doubt as a Defeater with No Subcase (upper right)

the sideclaim for the decomposition block claims that there are overlooked cases
in the decomposition. This defeater has no subcase below it, so it has not yet
been investigated and represents a doubt. The presence of a doubt or incompletely
investigated defeater causes the node that it indicates to be considered unsupported

and this will propagate (as described in Section 2) to the top claim and thereby
prevents the assurance case being considered complete or “closed.” Investigation of
a doubt/defeater will be recorded as an assurance subcase that confirms or refutes
its claim, as shown (for a more developed treatment of the same example) in Figure
4.

If a defeater is supported by an assurance subcase that is adjudged to be sound,
so that its claim is true, then the defeater is said to be confirmed or sustained and
the original case, and possibly the system it is about, must be modified to overcome
the flaw that has been identified. (Alternatively, the flaw may be explicitly accepted
as a residual risk, provided it is judged suitably insignificant [5, Section 6].)

After these modifications, the defeater and its subcase will (or should) no longer
apply, but we might like to retain them in the case as documentation to assist future
developers and evaluators. Thus, Clarissa/asce allows a defeater to be marked
as addressed and it and its subcase are then treated as a comment. Because the

4

defeater does not apply to the modified primary case, a narrative description of the
original problem and its resolution should be added to the defeater node. This may
be difficult to understand (because the context is changed in the modified case), so
an alternative is to modify the previously sustaining subcase for the defeater into a
refuted subcase (see below) for the now modified primary case.

If we suspect that a defeater is a “false alarm,” or it is one that has been overcome
by modifications to the original case (as above), then our task is to refute it: that is,
to provide it with a subcase that shows it to be false. One way to do this is with a
second-level defeater that targets the first defeater or some part of its subcase (for
example, the assurance case shown in Figure 4 has a second defeater that attacks
one of the claims in the subcase for the first). If the assurance subcase for that
second-level defeater is adjudged to be good, then the first defeater is said to be
refuted and it and its subcase play no part in the interpretation of the primary
case, but can be retained as a kind of commentary to assist future developers and
evaluators who may entertain doubts similar to that which motivated the original
defeater.

Another way to initiate refutation is by means of counter-evidence: that is,
evidence that contradicts the claim it is meant to support (for example, test evidence
may reveal failures). We discuss refutational reasoning in general in Section 2 below.

1.1 Representation of Defeaters

We first recap our terminology for the elements of graphical assurance cases in
Clarissa/asce. An assurance case is composed of various kinds of nodes, each
having a distinctive shape (e.g., oval for claims, and rounded rectangle for argument
nodes). An argument (building) block consists of an argument node with a parent
claim (usually drawn above it), optional sideclaims (usually drawn to the side), and
subclaims or evidence (usually drawn below it). The parent claim of one block
will be a subclaim or sideclaim to another block (except for the top claim). Thus,
the overall argument forms a tree (sometimes with cross links, so it is technically
a graph). There are just five kinds of argument block: concretion, substitution,
decomposition, calculation, and evidence incorporation.

A consequence of our determination that defeaters function more like a critique
or commentary than part of the logical evaluation of an assurance case is that in
Assurance 2.0 we allow defeaters to be attached (i.e., point) to any node in an
assurance argument. Specifically, in the graphical representation of arguments used
in Clarissa/asce, a defeater node has the same oval shape as a claim node (but is
colored differently—red instead of blue) and contains a logical claim, but we allow
it to point to another claim with no intervening (rounded rectangular) argument
node. Similarly, it may point to an argument, evidence, or subcase node without
being a subclaim or sideclaim of that node. And, of course, it can point directly to

5

another defeater node. To aid visual recognition of defeaters and their subcases, we
recommend that defeater nodes are placed to the side of (rather than below) the
node they point to and that their subcase is developed below them. This allows
defeater subcases to be isolated and highlighted, as portrayed in Figure 2.

Figure 2: Highlighted Defeater Subcase

The claim in a defeater may be vague (e.g., “I think there’s something missing
here”), which is appropriate when the defeater is indicating an as yet unexplored
doubt, or it may be specific, such as “this claim is false,” where “this claim” is
the one pointed to, or “the justification in this argument node is inadequate.” It
is a human judgment whether the claim in the defeater truly affects the credibility
or relevance of the node pointed to, but in the propagation of suspicion performed
by Clarissa/asce (described in Section 2.2) it is assumed that defeaters, if true,
really do “defeat” the node pointed to.

To deal systematically with refutation and with defeaters at several levels, we
need to extend our tool support to include refutational reasoning. That is to say,
Clarissa/asce needs to assess whether claims may be false, in addition to its
prior assessment of whether they are true or unsupported. We develop rules for
determination and propagation of these assessments in the following sections.

6

2 Assessing Arguments With Defeaters

We saw that investigation of a refuted defeater could introduce a second-level de-
feater and, in general, investigation and resolution of defeaters may lead to defeaters
at multiple levels. Thus, the focus of this report is how to assess assurance cases in
the presence of defeaters, including those at multiple levels. Since the argument
for an assurance case in Assurance 2.0 employs Natural Language Deductivism
(NLD) [5, Section 1.3], it represents something close to a logical proof,2 and it
might seem that we could look towards logical notions such as nonmonotonic log-
ics and defeasible reasoning3 for ideas on how arguments with defeaters should be
interpreted.

However, the goal of nonmonotonic logic and of defeasible reasoning is to work
out what can be concluded when there are contradictory premises or when exceptions
are added to premises (e.g., a premise “birds fly” gains the exception “unless they
are penguins”), but these concerns do not apply in the same way to assurance cases.
In Assurance 2.0, defeaters are a transient phenomenon and are “active” (as opposed
to serving as commentary) only during development or exploratory assessment of
the case. So, when we say that our topic is how to assess assurance cases in the
presence of multiple levels of defeater, we do not mean how to evaluate the truth of
contested claims but how to determine which parts of a case are contested—that is,
called into question by active defeaters, and therefore considered “unclosed.”

Because we do not fully evaluate assurance cases with active defeaters, but
merely assess which parts of the case are closed and which parts are still open
to question, the actual claim made by a defeater plays little part in the analysis.
In particular, if a defeater with claim X pointing to a claim A is sustained, we
do not suppose that some logical combination of A and X is thereby justified; we
accept that the claim A is challenged and revise it and/or its supporting subcase to
overcome the source of doubt. Of course, as noted earlier, we must make the human
judgement that X has some impact on the credibility or relevance of A but we do
not reduce this to some logical requirement such as X ≡ ¬A.4 Having said that, in
Section 3 we will introduce a circumstance where we do recognize the special case
where the claim in a defeater is the negation of that in the node that it points to;
we call these exact defeaters (and the general kind are then known as exploratory
defeaters).

When a first-level defeater is sustained, the assurance case is unsound and must
be adjusted; furthermore, the system concerned may be flawed or even unsafe and

2It is close rather than equivalent to a logical proof because an assurance case may choose to
accept residual doubts, such as nondeductive reasoning steps, or imperfectly justified premises.

3These topics are outlined in our Confidence Report [5, Section 5.1].
4We use and ¬ for negation, ∧ for conjunction, ∨ for disjunction, ⊃ for material implication,

and ≡ for equivalence.

7

can require adjustment also.5 Thus, sustained first-level defeaters are a serious mat-
ter and should be transient phenomena that arise only briefly during development or
while exploring a case during assessment, and are then fixed. Hence, the assurance
goal most generally associated with first-level defeaters is to refute them; this annuls
the doubt that motivated the defeater and leaves the original case unscathed.

One way to refute a first-level defeater is to add a second-level defeater, but this
must not degenerate into a cascade where a claim A is challenged by a first-level
defeater with the counter-claim ¬A and a second-level defeater challenges that with
the counter-counter-claim ¬¬A; this is equivalent to A in classical logic and we have
achieved nothing.6 However, the claim in a defeater need not be the negation of the
claim that it points to (and, indeed, it can point to a node that is not a claim); it
merely needs to assert something that calls the targeted claim or node into question.
Thus, a cascade of defeaters may be acceptable when they are based on different
concerns. Usually, however, lower-level defeaters (i.e., those that challenge other
defeaters) should dispute claims in the subcase of the defeater above them: thus,
the subcase for a defeater claiming A may decompose into subclaims for B, C, and
D and it is reasonable for a second-level defeater to challenge B (Figure 4 illustrates
this).

As noted earlier, dealing systematically with refutation and with defeaters at
several levels, requires our tool support to be extended with refutational reasoning.
That is to say, Clarissa/asce needs to assess whether claims may be false, in
addition to its prior assessment of whether they are true or unsupported. We
develop rules for determination and propagation of these assessments in the following
subsections, starting with positive assessments, and then proceeding to refutations.

2.1 Propagation of Positive Assessments

Prior to the introduction of defeaters, Clarissa/asce needed to consider only pos-
itive arguments, and did so using Natural Language Deductivism, NLD. That is,
assessment focused on the credibility and ultimately the indefeasibility of each argu-
ment block. In particular, developers and assessors would assure themselves that the
parent claim to each reasoning block was indefeasibly entailed by its subclaim(s),
given any side claim, and that the narrative justification provided adequate doc-
umentation for this. When evidence incorporation blocks also passed equivalent
scrutiny, and assumptions likewise, then it could be concluded by compositionality
that the overall assurance case provided indefeasible support for the top claim.

5When a defeater reveals a flaw in the system, one possible response is to add a runtime monitor
[12,18] that will detect and mask the hazardous condition; a systematic approach can be developed
along these lines [8].

6The reference to classical logic is in opposition to intuitionistic logic, which eschews the law of
the excluded middle or, equivalently, the law for elimination of double negation. We briefly discuss
this topic in our Confidence Report [5, page 57].

8

More formally, the argument blocks of an assurance case argument function as
logical premises with the top claim as conclusion. The case is then logically valid
if the argument blocks “fit together”: that is, the claims of the argument should
form a tree where the subclaims and sideclaim of each argument block match the
parent claim of another block, with the exception of claims representing assump-
tions and residual risks (the rule is simple because an assurance argument uses only
propositional logic). This is enforced automatically by the graphical construction
of arguments used in Clarissa/asce: the same claim node is used for those that
should match, connected by explicit arrows to the argument nodes concerned.

A logically valid argument is (logically) sound if we believe its premises to be
true: for Clarissa/asce, this means the narrative provided for each argument
block must be judged to provide (indefeasibly) credible justification for the argument
step represented by that block. Notice that whereas validity concerns only the
“form” of the argument (i.e., do the claims match), soundness concerns the meaning
of the claims and argument blocks involved.

Clarissa/asce could record assessment of soundness by attaching a checkmark
to each argument or evidence incorporation node, so that developers or assessors
can check the box if they consider the node’s narrative does provide indefeasible
justification for its parent claim, and not otherwise. However, Clarissa/asce does
not do this: instead, it makes the default assumption that argument and evidence
incorporation nodes are sound, and defeaters are used to indicate otherwise. We
prefer to use defeaters rather than checkmarks for this purpose because the defeater
and its subcase can explicitly record the reason for unsoundness.

This use of defeaters means that assessment of soundness is now represented
in the argument and thereby enters into determination of validity: for example, if
we point a defeater to an argument node and claim “I do not believe this narrative
justification,” then (un)soundness of that argument node is represented in the logical
evaluation of the defeater, and hence in validity of the overall case. This is useful
because it eliminates the need for a separate check for soundness and for ways to
perform and indicate its propagation: it is all handled by the mechanisms for validity
and defeaters.

However, determination of validity becomes a little more complicated than be-
fore because we have to account for defeaters, and we also allow incompletely de-
veloped arguments. In these cases, we cannot expect the top claim to be adjudged
true; instead, we can ask which claims are true and which are unsupported (i.e.,
have contested or incomplete subcases), and we can do this by propagating logical
assessments upward from the leaf nodes.7

7It can be argued that doubt should propagate downward as well as upward: for example, if a
concretion block below the top node is challenged, then surely it calls the whole development into
question as it suggests that the case is establishing an incorrect claim. Unfortunately, determination
of which parts of a case should be adjusted to correct a contested argument cannot be reduced to

9

There are five kinds of leaf nodes: claims lacking a subcase (typically indicating
undeveloped parts of the case), which are considered unsupported; assumptions,
which are claims lacking a subcase that are specially designated and justified, and
are assessed true; residual risks, which are are defeaters lacking a subcase that
are specially designated and justified, and are assessed false; references to exter-
nal subcases and theories, which inherit any existing assessment for the top claim
of the subcase or theory instantiation concerned, and are otherwise assessed as
unsupported; and evidence nodes, which are rather more complicated and are dis-
cussed later.

The parent claims of interior argument blocks (i.e., concretion, substitution,
decomposition, and calculation) are assessed true when all their subclaim(s) and
their sideclaim (if any) are assessed true; otherwise they are unsupported. As
explained above, the narrative justification provided with each argument node plays
no part in the propagation of these assessments, which are concerned only with
logical validity. The narrative justifications are critical in assessing soundness and
developers are expected to ensure (and evaluators to confirm) that the narrative
supplied for the argument node of each block justifies (indefeasible) belief in the
parent claim, given its subclaims and any sideclaims. During development or, later,
evaluation, any concern about the soundness of a narrative justification can be
registered by attaching a defeater to the argument node concerned, which will then
be factored into determination of validity.

Notice that these interior argument blocks represent premises that are a priori,
meaning that we believe them by virtue of thinking about, and understanding, the
system and the claims and the argument block concerned. This is in contrast to
evidence incorporation blocks, which are a posteriori premises, meaning that our
belief about them rests on observations or measurements of the system and its
environment.

We now turn to assessment of evidence incorporation blocks. As with other
argument blocks, for the purposes of logical validity we could just check that the
evidence is available and assume that it is good (and will be challenged by a defeater
if not) and assess the parent claim as true. However, evidence incorporation blocks
are different to other blocks in that they are not solely focused on logical reasoning
but provide the bridge between logical reasoning and the external world—which
is manifested as evidence. Hence, we must choose how much of the evaluation of
evidence we wish to factor into determination of logical validity, and how much into
soundness. The choice made in Clarissa/asce is that validity considers only the

calculation. Hence, there can be no uncontested rule for propagation of doubt. The purpose of
propagation is, firstly, to determine if an argument is valid and, secondly, to direct attention to those
parts most likely in need of attention if it is not, and we consider that our approach accomplishes
this in a manner that is effective and readily understood.

10

presence of the evidence, not its merit; interpretation and evaluation of evidence is
the responsibility of argument blocks above the evidence incorporation block.

Specifically, the parent node of an evidence incorporation block is a claim that
usually states “something measured” about the evidence (e.g., “the tests achieve
MC/DC coverage”): that is, it indicates what the evidence is. Above that there is
usually a substitution block whose parent claim states “something useful” derived
from the evidence (e.g., “there is no unreachable code”): that is, it indicates what
the evidence means (see [5, Sections 1.3 and 2.2]). In the interests of grammar, we
will call these evidentially measured and evidentially useful claims, respectively.8

The narrative justification of the evidence incorporation node is expected to sup-
port (indefeasibly) the determination that the supplied evidence really does deliver
the measured results (given any sideclaims). If the narrative justification for this
is considered inadequate during development or evaluation, then a defeater can be
attached to the evidence incorporation node. As with other argument blocks, the
narrative justification plays no part in assessing the logical validity of an evidence
incorporation block; thus, its evidentially measured claim is assessed true provided
the evidence is present; otherwise it is unsupported.

Measured evidence is transformed into useful evidence by a substitution block
placed above the measured claim of the evidence incorporation block. Usually,
we expect the measured evidence to affirm the evidentially useful claim and we
use confirmation measures to help make this determination in a principled way
(confirmation measures are discussed in detail in our Confidence Report [5, Section

2.2]). An example is Good’s confirmation measure log P (E |C)
P (E | ¬C) , where E represents

the evidence and C the evidentially useful claim. It is not necessary to apply these
measures numerically: what matters are the concepts underlying them, so that in
Good’s measure we are asked to consider the likelihood of the evidence given the
claim vs. its likelihood given the counterclaim. This is intended to ensure that the
evidence not only supports the claim but that it discriminates between this claim
and others (and the counterclaim in particular). Developers and evaluators can use
these measures informally or can apply them to numerical or qualitative (e.g., low,
medium, high) estimates of the subjective probabilities involved, if they find it useful
to do so. Conceptually or numerically large positive confirmation measures indicate
highly affirming evidence and this will be recorded and explained in the narrative
justification of the substitution block, which can be challenged by a defeater in case
of doubt. The usual rule for logical validity of a substitution block applies, so the

8Here, we are assuming the evidentially useful claim is supported by an argument block directly
above the evidentially measured claim. It is possible that additional reasoning is required (e.g.,
adequacy of tools involved in generating the evidence) so that the useful claim is further removed
from the measured claim; alternatively the additional reasoning could appear in a sideclaim to the
substitution block relating the two evidential claims. Further practical experience is needed to
develop recommendations for this topic.

11

parent (i.e., evidentially useful) claim will be assessed true provided the (evidentially
measured) subclaim and any sideclaims are also true. Also as usual, the narrative
justification, supported by a confirmation measure, is assumed to affirm soundness
of this determination, and will be challenged by a defeater otherwise.

However, the usual calculations can be overridden—because evidence sometimes
refutes a claim (e.g., when tests reveal a failure), which transforms it into counter-
evidence. This is examined below, where we consider propagation of assessments in
refutational arguments.

2.2 Propagation With Refutations

Note: the Clarissa/asce implementation does not currently support refutational
reasoning.

In refutational arguments, we need to consider the possibility that claims may
be false, in addition to true or unsupported as considered above.9 There are two
ways that false assessments may be introduced into an argument: one is through
counter-evidence, and the other is via defeaters; we begin with counter-evidence.

The discussion here is a continuation of that in the previous section and concerns
the case where evidence does not merely fail to affirm its evidentially useful claim,
but contradicts it. We considered affirming evidence in the previous section: this
is evidence that delivers a strong positive confirmation measure and justifies the
assessment that its evidentially useful claim is true; we now consider the other
cases. Conceptual or numerical confirmation measures close to zero indicate weak
evidence and in this case the evidentially useful claim will be assessed unsupported.
But sometimes evidence contradicts the claim it is meant to support: for example,
as noted previously, testing may reveal failures. We refer to this as counter-evidence
and it should lead to a strongly negative confirmation measure. In this case, we
assess the evidentially useful claim as false, provided its evidentially measured
subclaim and any sideclaims are true; otherwise it is unsupported.

We next turn to analysis of defeaters. Since a defeater can point to any kind of
node, we define the claim affected by the defeater to be the node pointed to if this
is a claim or defeater, and otherwise the parent claim (which may be a defeater) of
the node pointed to.

When the claim in a (non-exact) defeater is assessed false it means the defeater
is refuted; hence, the main case (or subcase for lower-level defeaters) is exonerated
and its claims are assessed as if the defeater were absent. Exact defeaters (those

9There is a subtle point concerning the interpretation of negative assessments, where
unsupported can sometimes function like false. If a top claim assessed as unsupported states
something like “the system is safe” then more work is needed to refine the case so that it delivers
a definitive assessment (i.e., true or false). But if the claim is “the argument establishes that the
system is safe” then unsupported carries stronger significance and its external interpretation will
be the same as false.

12

that point directly to a claim or other defeater and whose claim is the negation of
that pointed to) are a special case that is considered later, in Subsection 2.3.

When the claim in a defeater is assessed unsupported (which also applies when
the defeater has no subcase—i.e., it is merely a doubt), then so is the claim affected
by the defeater. And when the claim in the defeater is assessed true, then the
affected claim is also assessed unsupported;10 again, exact defeaters are a special
case and will be considered later.

These assessments override the assessments due to any other nodes pointing to
the affected claim (which may affirm it as true: when a claim is challenged by a true
or unsupported defeater, we have to accept that it is unresolved. And this is true
even if the defeater has no subcase (i.e., is a doubt); the mere existence of the doubt
calls the affected claim into question. These assessments are also independent of the
logical relationship between the affected claim and the claim in the defeater that
challenges it (again, excluding exact defeaters): we have made a human judgement
that the defeater does call the node pointed to (and hence the affected claim) into
question, even if thee two claims are logically unrelated. As a result, there is some
ambiguity here: when the claim affected by a defeater is assessed as unsupported, it
could either be because the defeater’s subcase has sustained the defeater or because
that subcase is incomplete; we need to examine the assessment of the defeater (true
or unsupported, respectively) to discriminate the two cases. In the latter case, the
defeater’s subcase needs more work, while in the former the main argument needs
to be revised (and possibly also the system concerned).

Finally (apart from exact defeaters), we consider propagation of false assess-
ments through the remaining kinds of argument blocks (i.e., concretion, substitu-
tion, decomposition, and calculation). In NLD, individual argument blocks of these
kinds are intended to be deductively valid: that is, they are interpreted as material
implications of the form

sideclaim ∧ subclaims ⊃ parent claim (1)

where the subclaims, if there is more than one, are usually conjoined (we introduce
disjunctive subclaims in Section 4).

The sideclaim and subclaims constitute the antecedent to this implication. As
described in the previous section, when all claims in the antecedent are assessed true

then, by the rules of classical logic, so is the parent claim. And if any antecedent
claims are unsupported, then the parent claim is also. But suppose some claims in
the antecedent are assessed false. Since they are conjoined, this means the whole
antecedent is false; does this mean we should assess the parent claim as false

too?

10It cannot be assessed false because the defeater may not precisely refute the affected claim
(unless it is an exact defeater, which is considered later), but merely call it into question.

13

It does not: it would be attempting to derive ¬A ⊃ ¬B from A ⊃ B, and this is
the logical fallacy of “denying the antecedent” [25].11 Moreover, there is a further
problem: if the antecedent is false, then it can imply anything: this is the false
implies everything problem.12 Thus, in general, we cannot propagate false upward
through these four kinds of assurance blocks;13 we must do something weaker and
the appropriate response is to assess the parent claim as unsupported.

2.3 Exact Defeaters

As noted above, exact defeaters are a special case; their purpose is to introduce
negation into an assurance case and this primarily finds application in an alternative
form of argumentation to be described in Section 3.

An exact defeater is one that: a) points to a node that is either a claim or
another defeater that b) lacks a subcase, and c) whose own claim is the negation
of the one pointed to. An example is shown in Figure 3; the example in Figure 1
cannot be an exact defeater, independently of its claim, because the claim it points
to has a subcase, contradicting b) above.

Because claims in Clarissa/asce are written in natural language, it is
not trivial to determine if one claim is the negation of another. Accordingly,
Clarissa/asce provides an explicit selection in its interface to indicate that a
defeater should be treated as the exact negation of the claim or defeater that it
points to. Furthermore, the node pointed to may have a subcase, but it will be
ignored (and indicated so in the graphical presentation) when the node becomes
the target of an exact defeater.This is to support exploratory development of a case
without having to undo or redo previous work.

The propagation rules for exact defeaters are simple: if the exact defeater is
assessed unsupported, then so is the node that it points to; otherwise the assessment
of the node pointed to is the logical negation of the assessment of the claim in the
defeater.

11An informal illustration of denying the antecedent uses the subclaim/premise “if college ad-
mission is fair, then affirmative action is unnecessary” to fallaciously infer the claim/conclusion
“college admission is not fair, so affirmative action is needed.”

12A ⊃ B is equivalent to (or is defined as) ¬A ∨ B so, if A is false, ¬A is true, and ¬A ∨ B is
true independently of B.

13There is a special case where the (conjunction of) subclaims is equivalent to the parent claim
(given the sideclaim) rather than merely entailing it: it is legitimate to propagate false in this
case but Clarissa/asce does not do so (because it does not attempt to interpret the language of
claims). Instead, the case should be modified to use an exact defeater.

14

2.4 Summary of Propagation Rules

Here we present a summary of the propagation rules for truth assessments described
in the previous subsections. Remember, we are using a three-valued logic: true,
false, and unsupported.

Assumptions: assigned true

Unsupported claims (i.e., claims with no subcase): assigned unsupported

External subcases: parent claim inherits whatever the subcase delivers for its top
claim, with default assignment unsupported

Evidence Incorporation: if evidence present
then (evidentially measured) parent claim is assigned true,
otherwise unsupported (see below for evidentially useful claims)

General assurance blocks (concretion, substitution, decomposition, and
calculation): if all subclaims and sideclaim true,
then parent claim is assigned true, otherwise unsupported

Special case for substitution blocks delivering evidentially useful parent claims:
Justification should reference confirmation measures then, provided sideclaim
and evidential measured subclaim are true,
if confirmation measure is strongly positive, then parent claim is true
confirmation measure is neutral, then parent claim is unsupported
confirmation measure is strongly negative, then parent claim is false

otherwise unsupported

Ordinary (non-exact) defeaters (includes doubts): if claim in defeater is false,
then rest of the case is unaffected (defeater is defeated),
otherwise affected claim is unsupported

Exact defeaters:
if claim in defeater is false, then parent claim is true
claim in defeater is true, then parent claim is false
claim in defeater is unsupported, then parent claim is unsupported

2.5 Logic Programming Interpretation

Our interest in this topic is motivated by the possibility that a suitable Logic Pro-
gramming language could mechanize the propagation rules described in the previous
subsections. Although these rules are easy to implement directly inClarissa/asce,
translation to Logic Programming could allow additional automated exploration and
analysis that provide added value.

15

As noted in formula (1), Clarissa/asce argument blocks are interpreted as a
material implication, which can be rewritten14 as

parent claim ∨ ¬sideclaim ∨ ¬subclaim1 ∨ · · · ∨ ¬subclaimn. (2)

The claims are ground terms (i.e., they contain no variables) and a ground term or
its negation is called a literal ; a disjunction of literals such as (2) is a clause. A
clause with exactly one positive (i.e., unnegated) term, again such as (2), is called a
definite clause; one with with no positive terms is called a goal ; and a single positive
term is a fact ; together, these constitute Horn clauses. The arguments of assurance
cases can be represented as collections of Horn clauses: evidence and assumptions
will be facts, and the other reasoning blocks will be definite clauses. Goals arise
when we pose questions about the argument (e.g., “is the top claim true?”).

Horn clauses are also the basis of logic programming : a collection of Horn clauses
has an interpretation in logic (namely, the set of literals that must be true to satisfy
all clauses in the collection) and another, operational, one that computes this set
(the set will be empty if the clauses are unsatisfiable).

In Logic Programming, clause (2) above is usually written

parent claim :- sideclaim, subclaim1,..., subclaimn. (3)

where the term on the left side of the :- symbol is called the head, and the list of
terms on the right hand side is called the body. An example fact is written as

claim

and indicates that this literal is true.
There are several Logic Programming languages; examples include Prolog and

Datalog and there are further variants within these. A significant source of variation
is the treatment of negation and how the logic and operational interpretations are
kept aligned under these different treatments.

In assurance cases, exact defeaters require strict, or logical (i.e., classical) nega-
tion because a true defeater claim (body) entails a false target claim (head) and
vice-versa. Other defeaters are more complex; first, the affected claim will usually
have an existing assessment derived from the primary case (i.e., ignoring the de-
feater) and a defeater can override this. In particular, the affected claim becomes
unsupported if the defeater is true or unsupported, and is left alone if the defeater
is false. This means we need a way to represent unsupported and its special rules
in our logic program. Fortunately, these resemble “unproved” and “weak” negation,
respectively, in certain forms of Logic Programming. In particular, the form of Logic
Programming known as Answer Set Programming (ASP) supports both classical or

14Here we are replacing A1 ∧ · · · ∧ An ⊃ B by ¬(A1 ∧ · · · ∧ An) ∨ B, applying commutativity of
∨, and then using De Morgan’s law to replace ¬(A1 ∧ · · · ∧An) by ¬A1 ∨ · · · ∨ ¬An.

16

strict negation (written as prefix -) and the autoepistemic (stable model semantics)
interpretation of weak negation (negation as failure), written as prefix NOT. That is,
NOT p is true if p is unproved, and NOT -p is true if -p (i.e., the strict negation
of p) is unproved. Notice that NOT p and NOT -p may both be true (meaning that
neither p nor its strict negation has been proved), whereas if p is true then -p must
be false, and vice-versa.

Clarissa/asce has a Prolog Export plugin that uses the s(CASP) system [23]
for answer set programming to perform semantic analysis of assurance cases [14].
Our treatment of assurance cases with defeaters is interpreted in s(CASP) using the
following translation rules, which are derived directly from those stated informally
in the previous subsection. However, in the informal rules we implicitly assumed a
“two pass” interpretation where, in the first pass we ignored ordinary (non-exact)
defeaters while propagating truth values and then applied the effects of defeaters
in the second pass. Here, we will translate the assurance argument together with
its defeaters and submit it all to the s(CASP) engine, which will interpret it as a
complete program. So we augment each rule with a defeater term that will be
instantiated by the translation of the claim(s) in the actual defeater(s) pointing to
this claim or its argument node (and be absent if there are none).

Assumptions: we simply state the claim as a fact, provided it is not defeated.

claim :- -defeater

It is worth examining the cases here. If the defeater is false or absent, the
claim is true. If the defeater is true, then -defeater is false, but this
does not make claim false (the body affects the head only when it is true).
Finally, if the defeater is unproved, then so is the claim.

Unsupported claims (i.e., claims with no subcase): we say nothing about the
claim; s(CASP) will treat it as unproved.

External subcases: the parent claim inherits whatever the subcase delivers for its
top claim.

Evidence Incorporation:

measured_parent_claim :- evidence_present, -defeater

Here, the evidence present flag is set true (i.e., stated as a fact) when the
evidence is present and is not mentioned otherwise.

General assurance blocks (concretion, substitution, decomposition, and
calculation):

17

parent_claim :- subclaims, sideclaims, -defeater

Here, subclaims is a list of one or more claims and sideclaims is also a list
of zero or more.

Special case for substitution blocks delivering evidentially useful parent claims:
Justification should reference confirmation measures, then confirmation can
be set true, unproved, false (i.e., respectively stated as a fact, not mentioned,
stated as a negated fact) according to whether the confirmation measure is
strongly positive, neutral, or strongly negative.

If confirmation measure is strongly positive:

useful_parent_claim :- sideclaims, measured_claim, -defeater

If confirmation measure is strongly negative:

-useful_parent_claim :- sideclaims, measured_claim, -defeater

Note that this causes the evidentially useful parent claim to be set false when
the evidence is strongly negative.

Ordinary (non-exact) defeaters (includes doubts):

if the defeater is unsupported (i.e., is a doubt), then it is not mentioned and
will default to unproved. Otherwise it must be the parent node of some
argument node and will be set according to its type using the rules above.

Exact defeaters:

parent_claim :- -defeater_claim

-parent_claim :- defeater_claim

Note that we need two rules here: one to propagate true and the other to
propagate false.

2.6 Comparison with Dialectics in GSN

The Goal Structuring Notation (GSN) has a “Dialectic Extension” [1, Section 1:6]
that serves purposes and provides capabilities very similar to our defeaters. Whereas
we have nodes explicitly marked as defeaters that can point to other nodes, in GSN
a “dialectic challenge” is indicated by a special kind of link (i.e., arrow) that can
point to other links as well as to nodes. (Links in GSN can indicate “supported by”

18

or “in context of” relationships, whereas arrows in Assurance 2.0 merely identify
the nodes that constitute a block and it suffices to point defeaters at nodes.) GSN
does not explicitly distinguish exploratory and exact defeaters, but informally it can
accomplish equivalent effects.

GSN does not make the strong distinction between logical validity and indefea-
sible soundness that is a focus of Assurance 2.0, nor does it perform refutational
reasoning, so argument nodes are considered true or false (i.e., refuted), without
the additional unsupported valuation of Clarissa/asce. A refuted goal or link
is indicated by a large X. Furthermore, propagation of defeat is performed infor-
mally and regarded as “a matter for expert judgement and the more likely outcome
is that the original goal structure is refactored at this point” [1, Section 2:11.3.4].
Similarly, retention of defeaters and “how to present dialectic argument in the final
goal structure” are regarded as “choices to be made by the practitioner” [1, Section
2:11.4/6].

The dialectic extension for GSN assurance cases is supported by the commercial
version of asce while a more complex form of defeasible reasoning [5, Section 5.1.4] is
supported by the Astah GSN tool [2,21]. Naturally, we consider that the treatment
of defeaters in Assurance 2.0 and their implementation in Clarissa/asce strike
the best balance of utility and rigor.

3 Eliminative Argumentation and Exact Defeaters

“Eliminative Induction” is a method of reasoning that dates back to Francis Bacon
who, in 1620 [3], proposed it as a way to establish a scientific theory by refuting
all the reasons why it might be false (i.e., its defeaters).15 Weinstock, Goodenough,
and Klein [7] build on the idea of Eliminative Induction to develop a means of
assurance that they call Eliminative Argumentation. Here, instead of attempting to
confirm a positive claim such as “the system is safe” we instead attempt to refute
the negative claim “the system is unsafe.” A successful refutation will establish the
negation of that claim, namely “the system is not unsafe.” In classical logic this
is equivalent to establishing the positive claim by virtue of the rule for elimination
of double negation (recall Footnote 6), and thereby provides the desired assurance.
Diemert and Joyce [6] and others [13] report successful application of eliminative
argumentation in assurance of real systems

The methodology of Assurance 2.0 favors positive cases where a constructive
argument is developed in support of some beneficial claim about a system. Of
course, in a formal or regulated safety process, there will generally be several layers
of review and challenge to the case that should eliminate flaws and undue optimism;

15This was a precursor to modern methods and theories of science, which see falsifiability as the
key characteristic [15]; however, they can be related via Bayesian Epistemology [9, 24].

19

Figure 3: Eliminative Argument Using an Exact Defeater

nonetheless, to combat confirmation bias and other complacency, we accept that it
can be useful to explicitly consider different points of view using contrary claims
and negative arguments. Furthermore, when attempting to refute a defeater to a
positive case, we are in a context similar to eliminative argumentation and therefore
need to support this kind of reasoning for our own purposes.

In the framework of Assurance 2.0, eliminative argumentation can be represented
by attaching an exact defeater to a positive claim, and then attempting to refute it.
We sometimes refer to this use of defeaters as eliminative and to the conventional
use as exploratory. Notice the whereas exploratory defeaters augment the main
argument, providing an exploratory investigation or commentary, eliminative or
exact defeaters are used as a reasoning step within the main argument.

An eliminative argument is shown in Figure 3 where we provide assurance that a
newly installed electric light is OK by introducing an exact defeater that asserts it is
not OK (i.e., faulty) and then refuting all the reasons that could make it so. Notice
that this uses a disjunctive decomposition, which will be explained in the following

20

section. See Figure 4 for a more elaborated development of a traditional argument
for the same example, which has a first-level exploratory defeater in the upper right
and an exact defeater (with a disjunctive decomposition) at the second-level in the
lower center.

4 Conjunctive and Disjunctive Decomposition Blocks

We stated earlier that the subclaims of decomposition blocks are treated as a con-
junction and we might wonder if this is always appropriate. For example, suppose
we are reasoning about a fault tolerant system S that has two redundant subsystems
A and B and it is sufficient for safety that either one of these is working. It might
seem that we should have a substitution block with parent claim “S is safe” and
subclaim “A is working correctly or B is working correctly,” which would seem to in-
vite the support of a decomposition block where the subclaims are disjoined instead
of conjoined. But this is not correct: it would allow us to provide a subargument
that considers only the case where A is working correctly—but we do not know in
advance whether it is A or B that will be working correctly. We also need to consider
the case where both are working correctly (because they might get in each other’s
way). A valid argument is a standard (conjoined) decomposition block with three
subclaims “A and B are both working correctly,” “A alone is working correctly,” and
“B alone is working correctly.” Another candidate for disjunctive decomposition is
when we have two (or more) alternative arguments in support of a given claim, so
that if the assessors do not like Argument 1, they can consider Argument 2. But,
again, if these are disjoined, we can establish the parent claim by developing only
Argument 1, thereby subverting the motivation for having alternative cases. So,
once again, we should interpret decomposition as a conjunction.

There is, however, one situation where disjunctive decomposition can be appro-
priate: this is when the base assurance case is a generic template (i.e., part of what
we call a theory) that may be instantiated in several ways. For example, we may
have a claim P that can be ensured either by subcase Q or subcase R, depending on
the realization chosen in the actual system. Here, we can use a disjunctive decom-
position (which needs no sideclaim) in the generic template and elaborate only the
appropriate subcase. We give an example in Section 5, where the claim that a light
bulb will last a certain time can be satisfied either by using an LED, or by using an
incandescent bulb that comes with a label “guaranteeing” adequate life.

In our experience, and apart from their use in theories and templates, the appro-
priate interpretation for the subclaims to a decomposition is always conjunction—at
least in positive cases. But what about negative cases: those where the local goal is
to refute some higher claim? Here, applying eliminative argumentation to system S
above, we might have the counter-claim “S is unsafe” and we support this with the
three subclaims “A is not working safely,” “B is not working safely,” and “neither

21

is working safely.” But any one of these is sufficient for S to be unsafe, so this
step of the argument needs to be represented by a decomposition block in which
the subclaims are disjoined. An explanation for this can be seen by supposing the
original, positive case can be represented as

Aok ∧Bok ∧ABok ⊃ Sok.

Then from this we postulate a negative case16

¬(Aok ∧Bok ∧ABok) ⊃ ¬Sok,

which is equivalent (by De Morgan’s law) to

¬Aok ∨ ¬Bok ∨ ¬ABok ⊃ ¬Sok.

We conclude that in negative cases it can be useful to have a disjunctive form
of decomposition block. One way to do this is to maintain just a single kind of
decomposition block, but to interpret it conjunctively in positive subcases and dis-
junctively in negative ones. Alternatively, we can introduce an explicitly disjunctive
form of decomposition, and this is the approach employed in Clarissa/asce. We
prefer this choice because it requires an active decision by the developers of the
assurance case and explicitly records it for the assessors. Furthermore, the disjunc-
tive form is available for use in positive cases (and the conjunctive form in negative
cases) should this ever be considered appropriate.

The propagation of truth values over a disjunctive decomposition requires that
if the sideclaim and any subclaim are true, then the parent claim is also true;
otherwise it is unsupported.

5 An Illustrative Example

The general propagation rules and the use of conjunctive and disjunctive decompo-
sition blocks, as described in the previous sections, are illustrated in Figure 4. Here,
we suppose than an electrician has installed a new light and we want assurance that
it works correctly. On the left we have a positive case that decomposes conjunc-
tively into three subcases concerning whether the light bulb, the switch, and the
wiring are OK. For brevity, we omit concretion and other steps needed to properly
connect the top claim to this decomposition. We suppose that these subcases all
support true subclaims. A sideclaim must establish that these are the only cases
that need to be considered and we suppose that its subcase is also assessed true.

16Remember, this is invalid in general (it is denying the antecedent), and therefore needs careful
justification; it is valid if the implication can be strengthened to equivalence (i.e., to if and only if).

22

Figure 4: Two Levels of Defeaters: Exploratory Top Right, Exact Bottom Center

Then, provided the narrative justification for the decomposition is judged credible,
the top claim can be assessed true.

But on the right, we add an exploratory defeater that introduces a negative sub-
case challenging the sideclaim by asserting that the three cases are insufficient.17 It
would be sufficient to sustain this by an assumption that states “working now is not
enough: we need to be sure it will continue to do so, for some specified minimum
time.” Instead, for the purposes of illustration we suppose that this defeater is sup-
ported by consideration of the possibilities that any of the bulb, switch, and wiring
are OK now, but may soon fail. This is represented by a disjunctive decomposition:

17In a more fully developed case, the defeater would probably challenge a missing concretion step
where, “OK” is implicitly concreted as “OK now” but should surely also include the expectation
that it will continue to be OK for the near future.

23

if any of these can be sustained, then the defeater is true and the affected sideclaim
(and hence the top claim also) becomes unsupported.

The failure subcases for the switch and wiring are abstracted, but that for the
bulb is developed. It seems that only “long life” bulbs will be used in this instal-
lation, so we can refute the claim that the bulb soon wears out; we do this with
an eliminative argument using an exact defeater that claims the bulb has a long
life. (The narrative justification for this block should explain why “Bulb has long
life” is the negation of “Bulb is OK now but wears out,” possibly by refining these
claims.) As a second-level defeater, this introduces a positive subcase and so we
expect any decompositions below it to be conjunctive. However, what we wish to
assert is that the bulb used will be new (but “burned in”) and either an LED, or
one with a label claiming it is good for 10,000 hours. Both of these ensure long life
and so we use them as subclaims to a disjunctive decomposition. As explained in
Section 4, this is the only situation we know of where a disjunctive decomposition is
appropriate in a positive case. The idea is that we wish to provide assurance for a
parameterized system and we disjunctively decompose the argument into subcases
according to different possible instantiations: the argument serves as a template and
in any particular instantiation only one subcase will be used.

Here we may suppose that the evidence indicates we have an LED bulb and
we will not use the subcase that requires evidence from the label. Note that these
applications of evidence are abbreviated in the interests of concision and simplicity;
usually, an evidence incorporation block supports an evidentially measured claim
and then a substitution block is used to lift this to an evidentially useful claim.

Because the evidence indicates the bulb is an LED, the corresponding evidential
node is true and this propagates through the lower disjunctive decomposition to
make the exact defeater’s subclaim true—and this makes its parent claim false.
This claim (i.e., “bulb is OK now but wears out”) is a subclaim to the upper disjunc-
tive decomposition. As the other subclaims to this decomposition have undeveloped
subcases, they are assessed unsupported and the parent claim to the decomposition
is assessed unsupported also (since none of its subclaims are true). This parent
claim is that in the first-level defeater and so it propagates as unsupported also and
causes the defeater’s target (the sideclaim to the conjunctive decomposition) to be-
come unsupported and hence the top claim also. Thus, the act of investigating this
defeater has alerted us that future failure is a valid concern, and so we will expand
the positive case to reflect this. We can then mark the defeater as addressed

Note that we developed the subcase to the first, exploratory defeater in a par-
ticular way in order to illustrate exact defeaters, disjunctive decompositions, and
refutational reasoning. In normal practice, once we had recognized the need to con-
sider future failures, we would use an assumption “light could fail in the near future”
to sustain the defeater, leading to immediate revision of the case.

24

The revised case might add a concretion block below the top claim to define what
it means for the light to be OK and this might say that it works now and can be
expected to continue to do so for some specified time in the future, given a specified
pattern of use, and “expected” might be further concreted into some probabilistic
claim. The subcase below that might then decompose into “now” and “future”
branches and the subcase to the exploratory defeater, suitably adjusted (e.g., it
becomes a positive case so its disjunctive decomposition is changed to conjunctive),
will become the subcase to the “future” branch.

6 Defeaters and Confidence

Assurance 2.0 provides two complementary ways for assessing an assurance case
argument and Clarissa/asce provides automated support for these. The first,
definitive, assessment is logical indefeasibility; this requires that the argument is
logically valid, the narrative justifications provide good reasons why each argument
block is sound, and there are no credible reasons that would cause us to revise these
judgments. We do not use checkmarks or other annotations to record the judge-
ment that a given block is indefeasibly sound; instead, we assume this is so and
use defeaters to indicate dissent. Automated validity checking using the methods
developed in the previous sections takes defeaters, and thereby soundness assess-
ments, into account and indicates the (in)completeness of the overall argument and
the status of each claim.

It is worth recapitulating our terminology for the various stages of
(in)completeness that an assurance argument may occupy.

Valid: this is the standard judgment from logic. It means that each claim is sup-
ported by an argument block whose subclaims and sideclaims are likewise
supported by further argument blocks, ultimately terminating in assumptions,
evidence, or defeaters that have been accepted as residual risks.

The graphical interface ofClarissa/asce is intended to eliminate many forms
of invalidity “by construction” and thereby to encourage the development of
arguments that will be valid when completed.

Validity does not depend on the meaning of the claims in an argument: it
is solely concerned with the “form” of the argument. Soundness takes the
meaning into account.

Sound: again, this judgment comes from logic. It means that each argument block
has a narrative justification that is considered (by a human developer or eval-
uator) to establish that its evidence or subclaims truly entail the parent claim,
given the sideclaim (if any). For the parent claims of reasoning (i.e., interior)

25

steps the entailment should be deductive (i.e., have no “gaps”), and for evi-
dentially useful claims it is an epistemic judgment that should be supported by
informal or explicit confirmation measures applied to the evidence. Likewise,
the credibility of assumptions must be supported by adequate justifications,
and defeaters accepted as residual risks must be supported by narrative justi-
fications that the risk they pose is tolerable (considering both likelihood and
impact).

Again, Assurance 2.0 and its support by Clarissa/asce are intended to
encourage the development of sound arguments “by construction”: that is why
it has sideclaims, confirmation measures, and a limited selection of blocks.

Deductively valid: soundness sets a high bar; a useful intermediate step between
validity and soundness focuses on whether the interior argument blocks are
deductive: that is whether the subclaims truly entail the parent claim, given
the sideclaim (if any). If an argument block is not deductive, it means (at best)
that the subclaims “strongly suggest” the parent claim, and might entail it
given some additional, but presumably unknown, information. Hence, there
are “gaps” between the subclaims that should be filled by identifying and
supplying this absent information (or else the argument block is completely
unsound). Thus, a deductively valid argument is one that has no “gaps”
and a sound argument is a deductively valid argument that has withstood
even stronger scrutiny, focusing on the details and credibility of its narrative
justifications and confirmation measures. An alternative to supplying missing
information is to identify it as a residual risk and justify why it is acceptable.

Indefeasibly sound: this judgment comes from epistemology. It means that our
judgement of soundness must be so strong that no credible new information
would change it.

Open: doubts about an assurance argument are indicated by attaching (ex-
ploratory) defeaters. Defeaters that are themselves defeated (i.e., are refuted
by a subargument) are said to be “retired,” meaning they no longer play a
part in the assurance argument, but may be retained as commentary. Un-
refuted or true defeaters may be explicitly accepted and justified as residual
risks; otherwise they are said to be “active.” An assurance argument that has
active defeaters or is incomplete (e.g., has disconnected subarguments or has
unsupported claims) is said to be “open,” otherwise it is “closed.”

The validity plugin of Clarissa/asce checks the validity of closed arguments
and provides helpful feedback on open ones.

The use of defeaters and refutational reasoning within validity assessment sup-
ports a cooperative balance between human judgment and automation in assessment

26

of soundness and indefeasibly: formulating defeaters, and exploring their subcases,
expresses human judgment about local soundness, while validity assessment incor-
porating refutational reasoning integrates these judgments over the full case.

The second form of assessment for assurance case arguments concerns confidence
and, in its strict form, this applies only to arguments that have already been as-
sessed as indefeasible, or at least sound. Now, it is reasonable to ask how we can
have anything less than full confidence in an argument that is indefeasibly sound.
The explanation is that our judgements of soundness—that is, whether each eviden-
tial block supports its evidentially useful claim and whether the subclaims of each
reasoning block indefeasibly entail their parent claim (given any sideclaims)—are
human judgments, and confidence, quantified as a subjective probability, indicates
our degree of belief in that judgement, which may be less than total even for in-
defeasible claims (e.g., the judgment of indefeasibility may rest on hazard analysis,
which can never be declared perfect).

We want to assess confidence compositionally: that is, confidence in a (sub)case
should be calculated from confidence in its parts and this requires that confidence
is represented numerically, so that we can do arithmetic with it.18 The natural way
to do this is to represent confidence as a subjective probability.

For evidence, confidence is derived from the quantitative or qualitative assess-
ments used in calculating confirmation measures for the evidentially useful claim:
usually, P (C |E) is used as the confidence measure, that is, the posterior likelihood
of the evidentially useful claim, given the evidence. For other blocks, the default
assessment is derived by a “sum of doubts” calculation, where doubt is the dual of
confidence (i.e., doubt = 1 − confidence), so the doubt in a parent claim is given
by the sum of the doubts in its subclaims and sideclaim. This default assessment
can be modified by the user to reflect human judgment. The Clarissa/asce confi-
dence plugin propagates these human and automated local assessments throughout
the case.

Confidence assessments of completed cases are not used to deliver judgment on
a case (that is the rôle of indefeasible soundness) but to help ensure balanced effort
across a case and to support graduated assessments. Graduated assessments assist
in trading confidence for cost in applications considered to pose less risk, as exempli-
fied by the Design Assurance Levels (DALs) of DO-178C [16] and System Integrity
Levels (SILs) of IEC 61508 [10]. Cost can be reduced by simplifying the system
and thereby its assurance case (e.g., providing less fault checking or redundancy),
and/or by weakening the assurance case (e.g., providing less evidence, or less costly
evidence). It is also possible that system-level assurance cases may employ differ-
ent levels of confidence in different parts of the case. For example, an architectural
framework that enforces partitioning [17] may require the highest level of confidence

18We could use some ordinal scale, such as low medium, and high, or even acceptable and unac-
ceptable, and then devise rules for their combination, but there seems little merit in doing so.

27

in its assurance, while lesser levels of confidence may be adequate for some of its
partitioned applications (because partitioning limits fault propagation).

Logical validity and confidence are evaluated in Clarissa/asce by separate
plugins and both of these can decorate the graphical representation of the case to
indicate their assessments. Logical validity uses the propagation rules of Section 2
(as augmented by Section 4 if disjunctive decompositions are present). Confidence
is assessed by the methods sketched above and described in detail in our Confidence
Report [5, Section 3].

Strictly, both logical and confidence assessments apply only to closed cases: that
is, those in which there are no unsupported claims nor unresolved doubts nor active
exploratory defeaters. Nonetheless, it can be helpful to calculate approximations
to these assessments for open cases during construction or assessment (e.g., when
assessors have used defeaters to flag or explore doubtful elements of a case), either
to estimate progress or to focus attention, and the Clarissa/asce plugins can do
this.

We suggest using Clarissa/asce and its plugins to support these activities
as follows. Logical validity should be checked frequently during development; in
the early stages, it is expected that most parts of the argument will be assessed
unsupported, with only some areas assessed true. Temporary assumptions can be
used for the purpose of exploration: for example, in the absence of some evidence
we could assert the intended evidentially useful claim as an assumption in order to
check that a valid case can be built above it. Negative assumptions (i.e., assessments
of false) can be achieved by adding an exact defeater above a positive assumption.
Narrative justifications can be supplied either as the argument is developed, or once
a valid skeleton for it is in place. Deductiveness, soundness, and indefeasibility can
then be considered, either serially or all together, and any doubts about these can
be recorded and explored by adding defeaters to the argument and exploring their
impact using the validity checker.

Confidence assessments are typically propagated upward from evidence and as-
sumptions using the sum of doubts calculation, and are performed only when the
argument is moderately complete (i.e., has no disconnected subarguments nor un-
supported claims). Confidence values can be adjusted by the human user: the pur-
pose of in-progress confidence assessments is not to deliver judgement but to assist
allocation of effort and to direct attention to those parts of an assurance argument
most in need of attention.

7 Summary and Conclusion

We have introduced two ways of using defeaters in Assurance 2.0 [4] and its
Clarissa/asce toolset [22]. Ordinary, or exploratory defeaters provide a way of
recording and exploring doubts about an assurance case argument or its narrative

28

justifications and can be retained as commentary to assist future developers and
evaluators who may have similar doubts. Exact or eliminative defeaters introduce
negation into an argument: that is, instead of providing a subcase sustaining claim
A, we instead attempt to provide one that refutes ¬A. Both kinds of defeater help
challenge confirmation bias by inviting consideration of a contrary point of view in
the manner of a dialectic or Socratic dialog. Exact defeaters allow an assurance
case or subcase to proceed by eliminative argumentation, which some find more
persuasive than a conventional, positive assurance case.

By a positive assurance case or subcase we mean one that employs an argument
where the assurance goal is to sustain the local top (sub)claim (i.e., to assess it as
true); the alternative is a negative case, where the goal is to refute the local top
subclaim (i.e., to assess it as false). The subcase to any first-level defeaters of a
positive case will be negative and vice-versa. Defeaters may appear in the subcases of
other defeaters so these assessments can alternate. Thus, a subargument is positive
if it is under an even (or zero) number of defeaters and negative if it is under an
odd number.

The claims of an assurance argument may be assessed as true, false, or
unsupported and these assessments propagate in suitable ways upward from the
leaf nodes of the argument (i.e., from evidence, assumptions, and residual risks).
Defeaters must be treated suitably and, in particular, care is needed when prop-
agating false as this can introduce the fallacy of denying the antecedent. These
concerns, and their correct treatment in Clarissa/asce, are described in detail in
Section 2.2.

Truth assignments to claims propagate the same in positive and negative cases
and there is no difference in interpretation or meaning between positive and negative
cases, it is just that we usually try to sustain the former and refute the latter. In
a finished assurance case argument, all positive cases should be sustained and all
negative ones refuted (or, exceptionally, accepted as residual risks [5, Section 6]) as
otherwise some defeaters must still be unresolved (i.e., the case is still open).

There is one difference between positive and negative arguments: subclaims to
decomposition blocks are typically conjoined in positive arguments, but disjoined in
negative ones. We introduce disjunctive decomposition blocks to Clarissa/asce
so that this choice can be represented explicitly. This also allows disjunctive decom-
positions to be used in positive arguments (and conjunctive in negative ones) and
Section 4 examined the (rare) circumstances where this can be useful.

When the claim of an exploratory defeater is refuted, it means that the doubt
that motivated it is annulled and the original case stands; however, the defeater and
its subargument can be retained as commentary. If refutation is unsuccessful, then
we can attempt instead to sustain the defeater’s claim (this is an instance where
we attempt to sustain a negative subcase and will generally require adjustment to
the subcase). If this succeeds, it means that the doubt is justified and the primary

29

argument, and possibly the system itself, must be revised. Once that has been
accomplished, it should be possible to refute the defeater and to retain it and its
(likely once again adjusted) subcase as commentary.

The claim in an exact defeater must be the negation of the claim or defeater
that it points to, so that refutation of the defeater claim sustains the target claim
and vice-versa. Because claims expressed in natural language can be hard to ana-
lyze (to see if one is the negation of another), users can direct Clarissa/asce to
mark defeaters as exact, in which case the subclaim and parent claim are assumed
to be negations of each other, and any existing subcase for the affected claim is
temporarily ignored. Those who favor eliminative argumentation can employ it by
simply introducing an exact defeater near the top of the argument, while those who
do not approve this style of argumentation can eschew this construction.

Refutational arguments, as introduced by defeaters, invite a different perspective
than conventional positive arguments and can be valuable in challenging confirma-
tion bias and other forms of complacency in the construction of assurance cases.
However, the finished assurance case delivered to evaluators must be indefeasibly
sound (modulo residual risks that are documented and explicitly accepted), so all
exploratory defeaters must have been refuted and no longer play an active part in the
argument. Nonetheless, consideration of refuted defeaters can greatly assist evalua-
tors (and future (re)developers) to comprehend a case, and the Clarissa/asce tool
for Assurance 2.0 can therefore retain them and their subcases in completed cases,
where they function as a kind of commentary. To avoid cluttering the main argu-
ment, and also to accommodate those who consider that evaluators should review a
finished argument independently of its developers, Clarissa/asce can selectively
hide or reveal defeaters and their subcases.

Evaluation of an assurance case and, on that basis, authorizing deployment of
the system concerned, are topics of delicate judgement. It is not the task of the
evaluators to repeat the work of the assurance case developers, but they must form
some judgement about it and there is contention whether defeaters should play a
part in this. Our colleague Shankar says: “an assurance argument is a brief, not a
debate” but, on the other hand, evaluators may want to know that developers have
considered contrary points of view, and they may have doubts of their own and
will want to see if these were considered and how they were resolved. We refer to
this process of review and assessment as the “case about the case” or metacase and
are preparing a report on the topic. We are also preparing a report on systematic
methods of searching for potential defeaters.

In summary, defeaters and the refutational (sub)arguments that they introduce
are vital tools in the construction of sound and persuasive assurance case argu-
ments, and potentially also in their assessment. However, their use and assessment
(particularly at multiple levels) is not straightforward, and we hope that this re-

30

port has adequately explained and justified their treatment in Assurance 2.0 and its
Clarissa/asce tool.

Acknowledgments. The work described here was developed in partnership with
other members of the Clarissa project, notably Srivatsan Varadarajan, Anitha
Murugesan, and Isaac Hong Wong of Honeywell, Gopal Gupta of UT Dallas, and
Robert Stroud of Adelard.

This material is based upon work performed under subcontract to Honeywell sup-
ported by the Air Force Research Laboratory (AFRL) and DARPA under Contract
No. FA8750-20-C-0512. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the Air Force Research Laboratory (AFRL) and DARPA.

References

[1] Goal Structuring Notation Community Standard Version 3. The Assurance
Case Working Group, York, UK, May 2021.

[2] Astah. Astah GSN home page. http://astah.net/editions/gsn.

[3] Francis Bacon. The Novum Organon: Or, A True Guide to the Interpretation
of Nature. Oxford University Press, 1855. English translation by G. W. Kitchin;
the original Latin is from 1620.

[4] Robin Bloomfield and John Rushby. Assurance 2.0: A Manifesto. In Mike
Parsons and Mark Nicholson, editors, Systems and Covid-19: Proceedings of
the 29th Safety-Critical Systems Symposium (SSS’21), pages 85–108, Safety-
Critical Systems Club, York, UK, February 2021. Preprint available as
arXiv:2004.10474.

[5] Robin Bloomfield and John Rushby. Confidence in Assurance 2.0. Techni-
cal report, Computer Science Laboratory, SRI International, Menlo Park, CA,
November 2021, updated May 2024. Also available as arXiv:2205.04522

[6] Simon Diemert and Jeff Joyce. Eliminative argumentation for arguing system
safety—a practitioner’s experience. In IEEE Systems Conference, 2020.

[7] John B. Goodenough, Charles B. Weinstock, and Ari Z. Klein. Eliminative
induction: A basis for arguing system confidence. In Proceedings International
Conference on Software Engineering, New Ideas and Emerging Results, pages
1161–1164, IEEE Computer Society, San Francisco, CA, May 2013.

31

http://astah.net/editions/gsn
https://arxiv.org/abs/2004.10474
https://arxiv.org/abs/2205.04522

[8] Richard Hawkins and Philippa Ryan Conmy. Identifying run-time monitor-
ing requirements for autonomous systems through the analysis of safety ar-
guments. In Computer Safety, Reliability, and Security (SafeComp 2023),
Volume 14181 of Springer Lecture Notes in Computer Science, pages 11–24,
Springer, Toulouse, France, September 2023.

[9] James Hawthorne. Bayesian induction IS eliminative induction. Philosophical
Topics, 21(1):99–138, 1993.

[10] IEC 61508—Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-Related Systems. International Electrotechnical Commission,
Geneva, Switzerland, March 2004. Seven volumes; see http://www.iec.ch/

zone/fsafety/fsafety_entry.htm.

[11] Imre Lakatos. Proofs and Refutations. Cambridge University Press, Cambridge,
England, 1976.

[12] Bev Littlewood and John Rushby. Reasoning about the reliability of diverse
two-channel systems in which one channel is “possibly perfect”. IEEE Trans-
actions on Software Engineering, 38(5):1178–1194, September/October 2012.

[13] Laure Millet et al. Assurance case arguments in the large: The CERN LHC ma-
chine protection system. In Computer Safety, Reliability, and Security (Safe-
Comp 2023), Volume 14181 of Springer-Verlag Lecture Notes in Computer Sci-
ence, pages 3–10, Springer-Verlag, Toulouse, France, September 2023.

[14] Anitha Murugesan, Isaac Hong Wong, Robert Stroud, Joaqúın Arias, Elmer
Salazar, Gopal Gupta, Robin Bloomfield, Srivatsan Varadarajan, and John
Rushby. Semantic analysis of assurance cases using s(CASP). In International
Conference on Logic Programming 2023 Workshops: Goal-Directed Execution
of Answer Set Programs (GDE), Volume 3437 of CEUR Workshop Proceedings,
London, UK, July 2023.

[15] Karl Popper. The Logic of Scientific Discovery. Routledge, 2014. First pub-
lished in German 1934, English 1959.

[16] RTCA. DO-178C: Software Considerations in Airborne Systems and Equipment
Certification. Requirements and Technical Concepts for Aviation (RTCA),
Washington, DC, December 2011.

[17] John Rushby. Partitioning for avionics architectures: Requirements, mecha-
nisms, and assurance. NASA Contractor Report CR-1999-209347, NASA Lan-
gley Research Center, June 1999. Available at https://www.csl.sri.com/

~rushby/abstracts/partitioning.

32

http://www.iec.ch/zone/fsafety/fsafety_entry.htm
http://www.iec.ch/zone/fsafety/fsafety_entry.htm
https://www.csl.sri.com/~rushby/abstracts/partitioning
https://www.csl.sri.com/~rushby/abstracts/partitioning

[18] John Rushby. Runtime certification. In Martin Leucker, editor, Eighth Work-
shop on Runtime Verification: RV08, Volume 5289 of Springer-Verlag Lecture
Notes in Computer Science, pages 21–35, Springer-Verlag, Budapest, Hungary,
April 2008.

[19] John Rushby. The interpretation and evaluation of assurance cases. Techni-
cal Report SRI-CSL-15-01, Computer Science Laboratory, SRI International,
Menlo Park, CA, July 2015. Available at http://www.csl.sri.com/users/

rushby/papers/sri-csl-15-1-assurance-cases.pdf.

[20] John Rushby. The indefeasibility criterion for assurance cases. In Yamine
Ait-Ameur, Shin Nakajima, and Dominique Méry, editors, Implicit and Ex-
plicit Semantics Integration in Proof Based Developments of Discrete Systems,
Communications of NII Shonan Meetings, pages 259–279, Springer, Kanagawa,
Japan, July 2020. Postproceedings of a workshop held in November 2016.

[21] Toshinori Takai and Hiroyuki Kido. A supplemental notation of GSN to deal
with changes of assurance cases. In 4th International Workshop on Open Sys-
tems Dependability (WOSD), pages 461–466, IEEE International Symposium
on Software Reliability Engineering Workshops, Naples, Italy, November 2014.

[22] Srivatsan Varadarajan, Robin Bloomfield, John Rushby, Gopal Gupta, Anitha
Murugesan, Robert Stroud, Kateryna Netkachova, and Isaac Hong Wong.
Clarissa: Foundations, tools and automation for assurance cases. In 42nd
AIAA/IEEE Digital Avionics Systems Conference, The Institute of Electrical
and Electronics Engineers, Barcelona, Spain, October 2023.

[23] Sarat Chandra Varanasi, Joaqúın Arias, Elmer Salazar, Fang Li, Kinjal Basu,
and Gopal Gupta. Modeling and verification of real-time systems with the event
calculus and s(CASP). In Practical Aspects of Declarative Languages: 24th
International Symposium (PADL 2022), pages 181–190, Springer, Philadelphia,
PA, January 2022.

[24] Susan Vineberg. Eliminative induction and Bayesian confirmation theory.
Canadian Journal of Philosophy, 26(2):257–266, 1996.

[25] Denying the Antecedent. Wikipedia. https://en.wikipedia.org/wiki/

Denying_the_antecedent.

[26] Dialectic. Wikipedia. https://en.wikipedia.org/wiki/Dialectic.

33

http://www.csl.sri.com/users/rushby/papers/sri-csl-15-1-assurance-cases.pdf
http://www.csl.sri.com/users/rushby/papers/sri-csl-15-1-assurance-cases.pdf
https://en.wikipedia.org/wiki/Denying_the_antecedent
https://en.wikipedia.org/wiki/Denying_the_antecedent
https://en.wikipedia.org/wiki/Dialectic

	Introduction to Defeaters
	Representation of Defeaters

	Assessing Arguments With Defeaters
	Propagation of Positive Assessments
	Propagation With Refutations
	Exact Defeaters
	Summary of Propagation Rules
	Logic Programming Interpretation
	Comparison with Dialectics in GSN

	Eliminative Argumentation and Exact Defeaters
	Conjunctive and Disjunctive Decomposition Blocks
	An Illustrative Example
	Defeaters and Confidence
	Summary and Conclusion
	References

