
1

A distributed general-purpose computing system that
enforces a multilevel security policy can be created by

properly linking standard Unix systems and small trustworthy
security mechanisms.

A Distributed Secure System
John Rushby and Brian Randell

University of Newcastle upon Tyne

A secure system is one that can be trusted to keep secrets, and the important word here i s
“trusted.” Individuals, governments, and institutions such as banks, hospitals, and other
commercial enterprises will only consign their secrets to a computer system if they can be
absolutely certain of confidentiality.

The problems of maintaining security are compounded because the sharing of secrets is
generally desired but only in a tightly controlled manner. In the simplest case, an individual
can choose other individuals or groups with whom he wishes to share his private information.
This type of controlled sharing is called discretionary security because it is permitted at the
discretion of the individual.

When the individuals concerned are members of an organization, however, that organization
may circumscribe their discretionary power to grant access to information by imposing a
mandatory security policy to safeguard the interests of the organization as a whole. The most
widely used scheme of this type is the multilevel security, or MLS, policy employed in
military and government environments[1]. Here, each individual is assigned a clearance
chosen from the four hierarchically ordered levels, Unclassified, Confidential, Secret, and Top
Secret, and each item of information is assigned a classification chosen from the same four
levels. The fundamental requirement is that no individual should see information classified
above his clearance.

The fewer the people who share a secret, the less the risk of its disclosure through accident
or betrayal to unauthorized persons. Consequently, the basic MLS policy is enhanced by the
use of compartments or categories designed to enforce “need -to-know” controls on the
sharing of sensitive information. Each individual’s clearance includes the set of compartments
of information to which he is permitted access, and the classification of information i s
similarly extended to include the set of compartments to which it belongs. The combination of
a set of compartments and a clearance or classification is called a security partition. An
individual is permitted access to information only if his clearance level equals or exceeds the
classification of the information and if his set of compartments includes that of the
information. Thus an individual with a Secret-level clearance for the NATO and Atomic
compartments, abbreviated as a Secret(NATO, Atomic) clearance, may see information
classified as Secret(NATO) or Confidential(NATO, Atomic), but not that classified as Top
Secret(NATO) or Confidential(NATO, Crypto).

A multilevel secure system should enforce the policy outlined above; unfortunately,
conventional computer systems are quite incapable of doing so. In the first place, they
generally have no cognizance of the policy and therefore make no provision for enforcing it;
there is usually no way of marking the security classification to which a file, for example,
belongs. In the second place, experience shows that conventional systems are vulnerable to
outside penetration. Their protection mechanisms can always be broken by sufficiently skilled
and determined adversaries. Finally, and most worrisome of all, there is no assurance that the
system itself cannot be subverted by the insertion of “trap doors” into its own code or by the
infiltration of “Trojan horse” programs. In these cases, the enemy is located “inside the walls”

© 1983 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

2

and the system’s protection mechanisms may be rendered worthless. This type of attack i s
particularly insidious and hard to detect or counter because it can compromise security without
doing anything so flagrant as directly copying a Top Secret file into an Unclassified one. A
Trojan horse program with legitimate access to a Top Secret file can convey the information
therein to an Unclassified collaborator by “tapping it out” over clandestine communication
channels that depend on the modulation of some apparently innocuous but visible component
of the system state, such as the amount of disk space available.

Drastic measures have been adopted to overcome these deficiencies in the security
mechanisms of conventional systems. One approach is to dedicate the entire system to a
single security partition. Thus a system dedicated to Secret(NATO) operations would support
only information and users belonging to that single security partition. The principal
objection to this method of operation is that it fails to provide one of the main functions
required of a secure system – the controlled sharing of information between different security
partitions. Another drawback is the cost of providing separate systems for each security
partition. This problem can be mitigated to some extent by employing periods processing in
which a single system is dedicated to different security partitions at different times and i s
cleared of all information belonging to one partition before it is reallocated to a different one.

Another crude method for coping with the security problems of ordinary systems is to
require all users to be cleared to the level of the most highly classified information that the
system contains. This is called “system high” operation. The rationale is that even if the
system has been subverted, it can reveal information only to those who can be trusted with i t .
The disadvantage to this scheme is that it is very expensive (and counter to normal security
doctrines) to clear large numbers of people for highly classified information that they have no
real need to know. Furthermore, many excellent people may be unable or unwilling to obtain
the necessary clearances. This approach can also lead to the overclassification of information,
thereby reducing its availability unnecessarily.

Acronym Definitions

CBC: Cipher block chaining
DES: Data Encryption Standard
FARM: File access reference monitor
FIG: File integrity guarantor
IFS: Isolated file store
LAN: Local area network
MARI: Microelectronics Applications Research Institute
MLS: Multilevel security
RPC: Remote procedure call
RSRS: Royal Signals and Radar Establishment
SFM: Secure file manager
S F S : Secure file store
TNIU: Trustworthy network interface unit
TTIU: Trustworthy terminal interface unit

Several attempts have been made to construct truly secure systems for use in classified and
other sensitive environments. However, the builders of such systems face a new problem:
They must not only make their systems secure, but also convince those who will rely on them
that they are secure. A full general-purpose operating system is far too complex for anyone to
be able to guarantee this security. Accordingly, most efforts have focused on partitioning the
system into a small and simple trusted portion and a much larger and more complex untrusted
one. The system should be structured so that all securityrelevant decisions and operations are
performed by the trusted portion in a way that makes the untrusted portion irrelevant to the
security of the overall system. It is then necessary to rigorously establish the properties
required of the trusted portion and prove that it does indeed possess them. Such proofs
constitute security verification; they use the techniques of formal program verification to
show that the system implementation (usually its formal specification) is consistent with a
mathematical model of the security properties required[1,2].

The trusted portion of a secure system is generally identified with a small operating system
nucleus known as a security kernel; the rest of the operating system and all applications and
user programs belong to the untrusted component. Certain difficulties attend the use of such
kernelized systems, however.

Because it provides an additional level of interpretation beneath the main operating system,
a security kernel necessarily imposes some performance degradation. This can be minor when
specialized applications are concerned, since the kernel can be tuned to the application, but
general-purpose kernelized operating systems are three to ten times slower than their insecure

3

counterparts. Also, the division of a conventional operating system into trusted and untrusted
components is a complex and expensive task that cannot easily accommodate changes and
enhancements to its base operating system. Consequently, kernelized systems often lag many
versions behind the conventional operating systems from which they are derived.

Finally, and as we have argued elsewhere[3], security kernels for general-purpose operating
systems tend to be complex, and their interactions with nonkernel trusted processes are also
complex. The result is that the verification of their security properties is neither as complete
nor as convincing as might be desired. None of these problems are arguments against security
kernels per se, which have proved very successful for certain limited and specialized
applications such as cryptographic processors and message systems[4]; but they do indicate
that security kernels are unlikely to prove satisfactory as the primary security mechanism for
general-purpose systems[5].

Our approach is to finesse the problems that have caused difficulty in the past by
constructing a distributed secure system instead of a secure operating system. Our system
combines a number of different security mechanisms to provide a general-purpose distributed
computing system that is not only demonstrably secure but also highly efficient,
cost-effective, and convenient to use. The approach involves interconnecting small,
specialized, provably trustworthy systems and a number of larger, untrusted host machines.
The latter each provide services to a single security partition and continue to run at full speed.
The trusted components mediate access to and communications between the untrusted hosts;
they also provide specialized services such as a multilevel secure file store and a means for
changing the security partition to which a given host belongs.

The most significant benefits of our approach to secure computing are that it requires no
modifications to the untrusted host machines and it allows them to provide their full
functionality and performance. Another benefit is that it enables the mechanisms of security
enforcement to be isolated, single purpose, and simple. We therefore believe that this
approach makes it possible to construct secure systems whose verification is more compelling
and whose performance, cost, and functionality are more attractive than in previous
approaches.

Principles and mechanisms for secure and distributed systems

The structure of all secure systems constructed or designed recently has been influenced by
the concept of a reference monitor. A reference monitor is a small, isolated, trustworthy
mechanism that controls the behavior of untrusted system components by mediating their
references to such external entities as data and other untrusted components. Each proposed
access is checked against a record of the accesses that the security policy authorizes for that
component.

It is implicit in the idea of a reference monitor, and utterly fundamental to its appreciation
and application, that information, programs in execution, users, and all other entities
belonging to different security classifications be kept totally separate from one another. All
channels for the flow of information between or among users and data of different security
classifications must be mediated by reference monitors. For their own protection, reference
monitors must also be kept separate from untrusted system components.

Our approach to the design of secure systems is based on these key notions of separation
and mediation. These are distinct logical concerns, and for ease of development and
verification, the mechanisms that realize them are best kept distinct also. We consider it a
weakness that many previous secure system designs confused these two issues and used a
single mechanism – a security kernel – to provide both. Once we recognize that separation i s
distinct from mediation, we can consider a number of different mechanisms for providing it and
use each wherever it is most appropriate. In fact, our system uses four different separation
mechanisms: physical, temporal, logical, and cryptographical.

Physical separation is achieved by allocating physically different resources to each security
partition and function. Unfortunately, the structure of conventional centralized systems i s
antithetical to this approach; centralized systems constitute a single resource that must be
shared by a number of users and functions. For secure operation, a security kernel is needed to
synthesize separate virtual resources from the shared resources actually available. This is not
only inimical to the efficiency of the system, but it requires complex mechanisms whose own
correctness is difficult to guarantee.

In contrast with traditional centralized systems, modern distributed systems are well suited
to the provision of physical separation. They necessarily comprise a number of physically
separated components, each with the potential for dedication to a single security level or a

4

single function. To achieve security, then, we must provide trustworthy reference monitors to
control communications between the distributed components and to perform other security-
critical operations. The real challenge is to find ways of structuring the system so that the
separation provided by physical distribution is fully exploited to simplify the mechanisms of
security enforcement without destroying the coherence of the overall system.

Because it is costly to provide physically separate systems for each security partition and
reference monitor, we use physical separation only for the untrusted computing resources
(hosts) of our system and for the security processors that house its trusted components.
Temporal separation allows the untrusted host machines to be used for activities in different
security partitions by separating those activities in time. The system state is reinitialized
between activities belonging to different security partitions.

The real challenge is to find ways of structuring the
system so that the separation provided by physical

distribution is fully exploited to simplify the
mechanisms of security enforcement without

destroying the coherence of the overall system.

The security processors can each support a number of different separation and reference
monitor functions, and also some untrusted support functions, by using a separation kernel to
provide logical separation between those functions. Experience indicates that separation
kernels (simple security kernels whose only function is to provide separation) can be
relatively small, uncomplicated, and fast, and verification seems simpler and potentially more
complete for them than it does for general-purpose security kernels[3].

Our fourth technique, cryptographic separation, uses encryption and related (checksum)
techniques to separate different uses of shared communications and storage media.

The four separation techniques provide the basis for our distributed secure system. This is a
heterogeneous system comprising both untrusted general-purpose systems and trusted
specialized components, and to be useful it must operate as a coherent whole. To this end, our
mechanisms for providing security are built on a distributed system called Unix United,
developed in the Computing Laboratory at the University of Newcastle upon Tyne[6]. A Unix
United system is composed of a (possibly large) set of interlinked standard Unix systems, or
systems that can masquerade as Unix at the kernel interface level, each with its own storage
and peripheral devices, accredited set of users, and system administrator. The naming structures
(for files, devices, commands, and directories) of each component Unix system are joined into
a single naming structure in which each Unix system is, to all intents and purposes, just a
directory. The result is that, subject to proper accreditation and appropriate access control,
each user on each Unix system can read or write any file, use any device, execute any command,
or inspect any directory regardless of which system it belongs to. The directory naming
structure of a Unix United system is set up to reflect the desired logical relationships between
its various machines and is quite independent of the routing of their physical
interconnections.

The simplest possible case of such a structure, incorporating just two Unix systems, named
unix1 and unix2, is shown in Figure 1. From unixl, and with the root (“/”)and current working
directory (“.”) as shown, one could copy the file “a” into the corresponding directory on the
other machine with the Unix shell command

cp a /../unix2/user/brian/a

(For those unfamiliar with Unix, the initial “/” symbol indicates that a path name starts at the
root directory rather than at the current working directory, and the “..” symbol is used to
indicate a parent directory.)

5

Figure 1: The naming structure of a simple Unix United system.

Figure 2: The Newcastle Connection.

This command is in fact a perfectly conventional use of the standard Unix shell command
interpreter and would have exactly the same effect if the naming structure shown had been set
up on a single machine and unix I and unix2 had been conventional directories.

All the standard Unix facilities, whether invoked by shell commands or by system calls
within user programs, apply unchanged to Unix United, causing intermachine communication
as necessary. A user can therefore specify a directory on a remote machine as his current
working directory, request execution of a program held in a file on a remote machine, redirect
input and/or output, use files and peripheral devices on a remote machine, and set up pipelines
that cause parallel execution of communicating processes on different machines. Since these
are completely standard Unix facilities, a user need not be concerned that several machines are
involved.

Unix United conforms to a design principle for distributed systems that we call the
“recursive structuring principle”. This requires that each component of a distributed system be
functionally equivalent to the entire system. Applying this principle results in a system that
automatically provides network transparency and can be extended (or contracted) without
requiring any change to its user interface or to its external or internal program interfaces. The
principle may seem to preclude systems containing specialized components such as servers,
but this is not so. Any system interface must contain provisions for exception conditions to
be returned when a requested operation cannot be carried out. Just as the operating system of an
ordinary host machine can return an exception when asked to operate on a nonexistent file, so
a specialized server that provides no file storage can always return exceptions when asked to
perform file operations.

Unix United has been implemented without changing the standard Unix software in any way;
neither the Unix kernel nor any of its utility programs – not even the shell command
interpreter – have been reprogrammed. This has been accomplished by incorporating an
additional layer of software called the Newcastle Connection in each of the component Unix
systems. This layer of software sits on top of the resident Unix kernel; from above it i s
functionally indistinguishable from the kernel, while from below it looks like a normal user
process. Its role is to filter out system calls that have to be redirected to another Unix system
and to accept system calls that have been directed to it from other systems. Communication

6

between the Newcastle Connection layers on the various systems is based on the use of a
remote procedure call protocol and is shown schematically in Figure 2.

All requests for system-supported objects such as files ultimately result in procedure calls on
the Unix kernel interface. If the service or object required is remote rather than local, the local
procedure call is simply intercepted by the Newcastle Connection and replaced with a remote
one. This substitution is completely invisible at the user or program level, providing a
powerful yet simple way of putting systems together. Equally important, it provides a means
of partitioning what appears to be a single system into a number of distributed components.
From our perspective, this partitioning is the crucial property of Unix United, since it enables
a large, insecure Unix system to be broken into a number of physically separate components
with no visible change at the user level. The following sections will explain how we exploit
this physical separation to construct a secure system. We begin with a very simple system that
merely isolates different security partitions from one another.

A securely partitioned distributed system

We will describe a secure Unix United system composed of standard Unix systems (and
possibly some specialized servers that can masquerade as Unix) interconnected by a local area
network, or LAN. We assume that all the component Unix systems are untrustworthy and that
the security of the overall system must not depend on assumptions concerning their behavior
– except that the LAN provides their only means of intercommunication.

The consequence of not trusting the individual systems is that the unit of protection must be
those systems themselves; thus, we will dedicate each to a fixed security partition. We might
allocate two systems to the Secret level, one to the Top Secret level, and the rest to
Unclassified use. Limited need-to-know controls can be provided by dedicating individual
machines to different compartments within a single security level; thus, one of the Secret
systems could be dedicated to the Atomic compartment and another to NATO. In a commercial
environment, some systems could be dedicated to Finance and others to Personnel and
Management. Users are assigned to hosts with the knowledge that no security is guaranteed
within those individual systems. Note also that since the hosts are not trusted, they cannot be
relied upon to authenticate their users correctly. Therefore, access to each system must be
controlled by physical or other external mechanisms.

Although there is no security within an individual Unix system, the key to our proposal i s
to enforce security on the communication of information between systems. To this end, we
place a trustworthy mediation device between each system and its network connection; we call
it a trustworthy network interface unit, or TNIU (see Figure 3).

The initial and very restrictive purpose of TNIUs is to permit communication only between
machines belonging to the same security partition. The single Unix United system is therefore
divided into a number of disjoint subsystems. We will describe later how our system can be
extended to move information between partitions securely, thereby providing true multilevel
security.

Controlling which hosts can communicate with one another is a reference monitor function,
but because the LAN can be subverted or tapped, the TNIUs must also provide a separation
function to isolate and protect the legitimate host-to-host communications channels. This
separation function is provided cryptographically, with TNIUs encrypting all communications
sent over the LAN. Encryption is traditionally used to protect communications between parties
who share a common interest in preserving the secrecy of that communication, but this is not
the case here. Host machines are untrusted and may attempt to thwart the cryptographic
protection provided by their TNIUs. For this reason, the encryption must be managed very
carefully to prevent clandestine communication between host machines, or between a host
machine and a wiretapping accomplice.

Although the basic principles of encryption management are well established[8], a tutorial
outline of the issues and techniques as they affect our system may benefit readers to whom this
material is new.

Encryption and the protection of communications. Trustworthy network
interface units use the Data Encryption Standard, or DES[8] to protect information sent over
the LAN. However, since host machines are untrusted and the LAN can be tapped, the simplest
form of DES encryption – the so-called electronic code book mode – is ruled out. In this mode,
each 64-bit block of data is encrypted as a separate unit, and even a very powerful encryption
algorithm such as the DES cannot prevent the leakage of information from a corrupt host
machine under these circumstances. For example, suppose that a corrupt host wishes to
communicate the bit pattern 01101 to a wiretapping accomplice. The host constructs a

7

message XYYXY, where X and Y are arbitrary but distinct bit patterns of the same length and
alignment as the units of block encryption, and sends it to its TNIU for transmission. The
TNIU will encrypt the message to yield, say, PQQPQ before transmitting it over the LAN, but
the bit pattern 01101 remains visible in this encrypted message and can easily be extracted by
a wiretapper. Notice that the threat here is not due to any weakness in the encryption
algorithm employed, but to the way in which it is used; one need not be able to decrypt
messages to extract information planted by a corrupt machine,

Figure 3: A securely partitioned system.

Clandestine communications channels based on plaintext patterns that persist into the
ciphertext can be thwarted by employing a more elaborate mode of encryption called cipher
block chaining, or CBC, which uses a feedback technique to mask such patterns by causing the
encrypted value of each block to be a complex function of all previous blocks[8]. Of course,
identical messages will yield identical ciphertexts, even when CBC-mode encryption is used.
More importantly, messages that begin with the same prefix will yield ciphertexts that also
share a common prefix. A corrupt host can therefore signal to a wiretapping accomplice by
modulating the length of the prefix that successive messages have in common. This channel
for clandestine information flow must be closed, and this will be achieved if TNIUs attach a
random block of data, different in each case, to the front of each message before encrypting it,

The careful use of CBC-mode encryption prevents information from leaking through
channels that modulate message contents, but significant channels for information leakage
still remain. These are pattern-of-use channels whereby a corrupt host modulates the visible
parameters of messages in a way that can be decoded by a wiretapping accomplice. The
properties that can be modulated are the lengths of individual messages, their time and
frequency of transmission, and their destination.

All techniques for introducing noise inevitably reduce
the bandwidth available for legitimate

communications and may increase the latency of
message delivery.

(Presumably the source is fixed at the location of the corrupt host.) These properties, of which
length and destination are by far the most important, can be modulated to yield clandestine
communication channels of surprisingly high bandwidth. Unless link encryption is used to
reinforce the end-to-end encryption described here, it will not be possible to completely sever
these channels. Since link encryption is infeasible with most LAN technologies, the best
approach is to reduce the bandwidth of these pattern-of-use channels to a tolerable level, either
directly or through the introduction of noise,

The length channel is the easiest to deal with. TNIUs process message units of a fairly large,
fixed size – say 1024 bytes. Long messages must be broken into a number of separate message
units; short ones, and the residue of long ones, must be padded to fill a whole unit. (If this
technique causes great numbers of largely empty message units to be generated, some of the
legitimate bandwidth of the LAN will be wasted; but this is not usually a scarce resource and
some tuning of the choice of the unit size is possible in any case.) When this is done, a

8

wiretapper cannot observe the exact length of a message but can only estimate the number of
message units that it occupies. This information will be difficult to extract, and the corrupt
host will also have to modulate a second parameter (e.g., destination) so that the wiretapper
can identify the message units constituting each message.

The bandwidth of the channel that modulates message destinations can only be reduced by
introducing noise, thereby complicating traffic patterns so that the wiretapper finds it hard to
detect and extract any deliberate modulation. The obvious way to do this is for each TNIU to
generate a steady stream of spurious messages to all other TNIUs in its own security partition.
Spurious messages are marked as such (under encryption, of course) and are discarded by TNIUs
that receive them. More refined strategies, such as routing messages indirectly through a
number of intermediate TNIUs before delivering them to their final destination, are clearly
possible, but all techniques for introducing noise inevitably reduce the bandwidth available for
legitimate communications and may increase the latency of message delivery. Each
installation must choose its priorities in such a trade-off.

The techniques described so far enforce separation between the outside world and
communications internal to the distributed secure system. They do not, however, provide
separation between the different internal communications channels of the system. Thus, the
reference monitor component of a Secret-level TNIU can determine that its host is attempting
to communicate with another Secret-level host and that this communication accords with the
security policy and may therefore proceed; however, it cannot prevent the LAN messages that
constitute the communication from being delivered, either through error or malice, to the TNIU
of, say, an Unclassified host. Furthermore, unless additional mechanisms are introduced, the
receiving TNIU will not necessarily be able to detect that the messages have been sent to it in
error.

Incorrect delivery can occur because the LAN hardware, by accident or intent, misinterprets
message destination fields, or because those fields are modified by an active wiretapper.
(Remember that these fields must be in the clear so that the LAN hardware can interpret them.)
TNIUs may attempt to overcome this threat by embedding the true source, destination, and
security partition of each message unit inside the data portion of the message unit itself, where
it will be protected by encryption, However, this technique can be defeated by an active
wiretapper who splices the identification portion of a genuinely Unclassified message onto
the body of a Secret one.

It might appear that CBC-mode encryption automatically protects against this type of
attack and that because the encrypted value of each block within a message unit is a complex
function of all previous blocks, messages formed by splicing parts of different messages
together will decrypt unintelligibly, In fact, this is not so. Although the encrypted value of
each block produced by CBC-mode encryption depends implicitly on all prior plaintext
blocks, it depends explicitly on only the immediately preceding ciphertext block[8]. Thus,
damage to the contents or sequencing of ciphertext blocks affects only the decryption of the
block immediately following the damaged or misplaced block; in other words, CBC-mode
decryption is “self-healing.”

Two methods are available for securely separating the communications channels belonging
to different security partitions. The first uses a high-quality checksum to guarantee the
integrity of each message unit, including its identification fields. TNIUs must calculate the
checksum of each message unit before they encrypt it, and they must encrypt the message unit
and its checksum as a single unit so that the checksum will be protected by encryption.
Whenever a TNIU receives a message unit, it must first decrypt it and recompute its checksum.
Only if the recomputed checksum matches the one sent with the message unit should the unit
be accepted by the TNIU for further processing. The integrity of all message units accepted i s
thereby guaranteed because they cannot be forged, modified, or formed by splicing parts of
different units together during transmission over the LAN, Consequently, TNIUs can trust the
value of the security partition identifier embedded in each message unit, then they can (and
must) reject those bearing a different identifier.

The second method for distinguishing the communications belonging to different security
partitions is to use a different encryption key for each partition. (Until now, we have
implicitly assumed that the same key is used for all communications.) Each TNIU will be
provided with only the single key associated with its own security partition and will therefore
have no way of communicating with TNIUs belonging to different partitions. If a message unit
is delivered to a TNIU belonging to a different security partition from its sender, it will be
encrypted using one key and decrypted using another, making it unintelligible to the host
attached to the receiving TNIU. It is unwise, however, to allow the untrusted host machines to
see even such unintelligible transmissions from another security partition, so we propose to
combine the use of different encryption keys with the checksum technique described earlier. A

9

message delivered to a TNIU in a different security partition from its sender, and therefore
encrypted and decrypted with different keys, will certainly fail to checksum correctly.

The use of both checksums and different encryption keys is not strictly necessary, since
either technique is sufficient to separate the communications channels belonging to different
security partitions. The two techniques are complementary, however, and provide worthwhile
redundancy. Checksums guarantee the integrity of message contents, a very desirable property
in its own right, while the use of different encryption keys provides failsafe separation.

Any system using encryption must contain mechanisms for generating and distributing
keys securely. But unlike connection-oriented (virtual circuit) schemes in which a unique key
must be manufactured and distributed every time a new circuit is opened, our system imposes no
requirement for frequent or rapid key distribution. The key allocated to a TNIU is a function of
the (fixed) security partition to which its host belongs. This, combined with the presumption
that a LAN-based system is geographically compact, makes manual key distribution perfectly
viable. Because of its evident simplicity and security, this is the mechanism we employ. If the
fear of cryptanalysis calls for more frequent key changes than is convenient for manual
distribution, a set of keys can be installed on each occasion or a single master key can be
installed from which the TNIU can manufacture a whole set of communications keys. In either
case, the TNIUs must contain mechanisms for synchronizing their current encryption keys.

Although not strictly necessary, it is highly desirable to be able to detect and counter the
activity of an active wiretapper who attempts to “spoof” the system by replaying recordings
of genuine LAN messages. (Consider, for example, a banking system that carries messages
such as “move $100 from account A to account B. “) Spoofs can be detected if sequence
numbers or time stamps are embedded in each message unit. Of course, it is perfectly feasible
for hosts to do this themselves, but it seems more appropriate for TNIUs to provide this
function. The sequence number or time stamp of each message unit can constitute the unique
material that should be attached to the front of each message prior to encryption to mask the
similarity between messages that share a common prefix. Synchronizing the sequence
numbers or time stamps used between each pair of TNIUs requires a special TNIU-to-TNIU
protocol. This protocol must be resistant to spoofs, but it obviously cannot use sequence
numbers or time stamps itself for this purpose. A challenge-response technique first proposed
by Needham and Schroeder[9] can be used instead.

The integration and construction of TNIUs. The interposition of a TNIU between
a host and its LAN station raises interesting questions concerning the location of various
protocol functions. The whole issue of assigning function to layers in a protocol hierarchy
can become quite complex in the presence of encryption because standard functions such as
checksums and sequence numbering, for example, are duplicated – though in a different and
more sophisticated way – by the protection and security mechanisms. For this reason, TNIUs
should not operate below the normal protocol layering hierarchy but must be integrated with
it. In fact, we propose that TNIUs take over all protocol functions, except those at the highest
level. The benefit of this approach is that the TNIUs act as network front ends, relieving their
hosts of the low-level network load and thereby boosting overall performance.

The top-level protocol of the Newcastle Connection provides a remote procedure call, or
RPC, service and requires a fairly reliable datagram service from the lower levels of its
protocol hierarchy. We use this datagram service as the interface between host machines and
their TNIUs; individual datagrams form the message units that are encrypted and protected by
the TNIUs. Most RPCs and their results can be encoded into a single datagram, but those
concerned with file reads and writes, which can transfer arbitrarily large amounts of data, are
broken into as many separate datagrams as necessary by a subprotocol of the host machines’
RPC protocol.

The cryptographic techniques employed by TNIUs counter the threat of information
disclosure. The remaining danger is denial of service caused by the destruction of genuine LAN
traffic or the injection of large quantities of garbage. Although they can do nothing to prevent
or defeat such attacks, TNIUs must, as a correctness requirement, continue to provide reliable
(though necessarily degraded) service in spite of such occurrences. It is also a correctness
requirement of TNIUs that they recover from crashes safely. (Of course, verified software does
not crash, but we must allow for the possibility of a power failure.)

TNIUs that perform all the functions described certainly present a challenge in both
construction and verification. We argue, however, that they are very similar to the
cryptographic front ends of wide-area networks, and examples of these have already been built
and, in some cases, verified,4 Modern 16-bit microprocessors provide a suitable hardware base
for the construction of TNIUs, and single-chip implementations of the DES algorithm are
available that can perform CBC-mode encryption at LAN speeds. A separation kernel must be

10

used to enforce cleartext/ciphertext (so-called red/black) separation within each TNIU, with the
basic physical protection provided by the memory management chips appropriate to the
chosen processor. Since no disks are needed (the software can be held in ROM), a complete
TNIU should fit on a single board and cost less than a thousand dollars.

Unclassified hosts can generally be considered to belong to the same security partition as
the outside world. They need not be separated from it, and therefore their TNIUs need not use
encryption to protect their communications. In this case, there is no need to provide TNIUs to
Unclassified hosts, and this provides a worthwhile economy in systems where the majority of
hosts are Unclassified. It also permits a standard, unpartitioned Unix United system to be
smoothly upgraded to a securely partitioned one by the addition of a limited number of TNIUs.

A multilevel secure file store

The design introduced so far imposes a very restrictive security policy. The security
partitions are isolated from one another with no flow of information possible across different
levels or compartments. We will now explain how to extend this design to permit information
to cross security partitions in a multilevel secure manner. This will allow information to flow
from the Secret to the Top Secret levels, for example, but not vice versa.

Figure 4. The naming structure of a simple Unix United system
incorporating a secure file store.

It might seem that multilevel secure information flow could be provided by simply modifying
the policy enforced at the TNIUs so that, for example, Top Secret machines could receive
communications from Secret machines as well as Top Secret ones. Top Secret TNUIS would be
provided with the Secret as well as the Top Secret encryption keys and would permit incoming
but not outgoing communications with Secret-level machines. The flaw in this scheme is that
the communication could not be truly one way; a Secret machine cannot reliably send
information to a Top Secret one without first obtaining confirmation that the Top Secret
machine is able to accept it and, later, that it has received it correctly. The Secret machine must
therefore be able to receive information from the Top Secret machine as well as send to it. This
conflicts with the multilevel security policy.

Certainly the trustworthy TNIUs in the system could be enhanced to undertake reliable
delivery of data across security partitions, but this misses the point. If one host sends a file to
another, the sender needs to know that the receiver has been able to store the file correctly, not
merely that its TNIU received it correctly. Notice, too, that this scheme would only provide for
unsolicited communications; a Secret machine could send information to a Top Secret machine
of its own volition, but the Top Secret machine could not request that the information be sent
because its request would constitute an insecure information flow.

The best way to provide secure information flow across security boundaries is through a
trustworthy intermediary that provides an independent and useful service. The complexity of
such an intermediary will depend on the generality of that service. Combining simplicity with
the most useful function, we have selected files as the only objects allowed to cross security
boundaries, and we have chosen the multilevel secure storage and retrieval of files as the
service provided by the trustworthy intermediary. This is achieved by adding to the system a
secure file store with the ability to communicate with hosts of all security classifications. The
idea is that when a Secret-level host wishes to make one of its files available to higher levels,
it “publishes” it by sending it to the secure file store. A Top Secret host can subsequently
acquire a copy of this file from the secure file store.

11

Before describing the mechanism of the secure file store, we need to outline its logical
position and role within the overall Unix United system. Conceptually, the secure file store i s
just an ordinary Unix system that returns exceptions to all system calls except certain ones
concerned with files. As with any other component, it will be associated with a directory, say
SFS, in the Unix United directory structure. The SFS directory will contain subdirectories for
each security partition in the overall system. A simple Unix United directory structure
containing just the secure file store and two ordinary hosts is shown in Figure 4.

The ordinary hosts are associated with the directories TSUnix and SUnix and are allocated to
the Top Secret and Secret security partitions, respectively. Of course, from within SUnix, the
TSUnix branch of the directory tree is invisible, and vice versa. Even if the Newcastle
Connections within TSUnix and SUnix are aware of each other’s existence, any attempted
intercommunication will be stopped by their TNIUs. If the Secret-level user John of SUnix
wishes to make his “paper” file available to the Top Secret user Brian, he does so by simply
copying it into a directory that is subordinate to the SFS directory. For example:

publish <paper/ ../SFS/SECRET/john/paper.

(We explain later why this command uses “publish” and a later one uses “acquire” instead of the
standard Unix command “cp.”) This command will cause the secure file store machine to
receive a remote procedure call from SUnix requesting it to create and write a file called paper
located as a sibling of the file “c. “ The secure file store will consult its record of the security
policy to determine whether such a machine is allowed to create Secret-level files. Assuming
that it is, the requested file operation will be allowed to proceed and the copy of the file will be
created. Similarly, when the Top Secret user Brian attempts to print a copy of the paper by
issuing the command

acquire /../SFS/SECRET/john/paper|lpr

the secure file store will receive a remote procedure call from the machine TSUnix requesting a
copy of the file. Once again, it can consult the security policy, where it will see that the
request should be allowed to proceed. The secure file store will, however, refuse requests from
TSUnix to write into this “paper” file, or to delete it, since these contravene the requirements
of multilevel security. Similarly, John will not be allowed to read the “salaries” file held under
the TOPSECRET directory.

We now move from the services provided by the secure file store to its construction. A
multilevel secure Unix file system might seem to demand a substantial number of provably
trustworthy mechanisms – virtually a secure Unix. With careful design, however, we can reduce
the number of trusted mechanisms considerably.

The basic idea is to partition the secure file store into trusted and untrusted components
housed in physically separate machines. The trusted component, called the secure file
manager, or SFM, is a reference monitor concerned with enforcing the security policy; its file
storage is provided by the untrusted components. These untrusted components can be thought
of as separate, standard Unix systems connected directly to the SFM. Each untrusted file
storage machine is dedicated to a single security partition and is identified with one of the
subdirectories of the SFS directory (see Figure 5).

Communicating with hosts in different security partitions requires an enhanced TNIU for the
SFM, one that contains the encryption keys of all security partitions. The internal structure of
a TNIU with multiple encryption keys will be slightly more complex than that of one with just
a single key, particularly if communications using different keys can be in progress
simultaneously. Cleartext belonging to logically separate channels should be managed by
separate virtual machines, and temporal separation must be provided for different uses of its
single DES chip. These are not significant complications, however, and the responsibility for
correctly managing more than one encryption key is a small additional burden for the trusted
mechanism of a TNIU.

Host machines requiring access to secure files send remote procedure calls, or RPCs, to the
SFM. The TNIU of the SFM determines the sender’s security partition and passes this
information to the SFM along with the decrypted RPC. The SFM can then inspect the RPC to
check if the requested operation complies with its security policy. If it does, the SFM simply
forwards the RPC to the appropriate file storage machine for processing and relays the results
(suitably encrypted) back to the original caller.

There is an obvious flaw in this scheme, however. Because the Unix file storage machines
cannot be trusted, they constitute a security weakness – even though each holds files

12

belonging to only a single security partition. A host machine in the Top Secret partition could
modulate its legitimate requests for reading secure files belonging to the Secret partition to
convey Top Secret information to the Secret-level file storage machine. For example, suppose
the secret file storage machine contains a group of 26 files, each a different length. If a corrupt
Top Secret host requests, as it may legitimately do, copies of the fifth, fourteenth, ninth,
seventh, thirteenth, and first shortest files in that order, then the Top Secret string
E-N-I-G-M-A will have been communicated to the Secret file storage machine. This machine
could then encode the information received into a file that could subsequently and legitimately
be retrieved by a Secret-level host.

Although we cannot prevent Top Secret information from getting into the Secret-level file
store, we can prevent it from getting back out again. Once we recognize this, the solution to
the above problem is at hand.

The only objects that leave file storage machines are files retrieved in response to external
requests. Consequently, any clandestine information that is to reach the outside world must be
encoded into those files. Since all movement of files into and out of the file storage machines
is mediated by the SFM, security will be maintained if the SFM prevents the file storage
machines from encoding information into (i.e., modifying) outgoing files. In other words,
security depends on the SFM being able to guarantee the integrity of files retrieved from the
file storage machines.

Figure 5. Conceptual structure of the secure file store.

This can be achieved if a checksum is added to each file by the SFM before it is stored in one
of the untrusted file storage machines. Any attempt by a file storage machine to modify a file
will be detected on its subsequent retrieval by the SFM when the recomputed checksum fails to
match the one stored with the file. Of course, this only works so long as the file storage
machines are unable to forge the checksums. This can be ensured in two ways (other than by
keeping the checksums in the SFM). The first is to use a conventional checksum (i.e., one
computed by an algorithm that may be known to the file storage machines) but to protect it by
encrypting the file and the checksum as a single unit. The second technique is to use a
crypto-checksum that depends on a secret key for its computation. An example of a
crypto-checksum is the final block of ciphertext produced during CBC-mode encryption, an
alternative is to simply encrypt a conventional checksum. The advantage of crypto-check
sums is that they cannot be forged by those who do not possess the key; they can therefore be
used with information stored in the clear.

Either technique can be used to guarantee the integrity of files retrieved from the untrusted
file storage machines. We prefer the crypto-checksum approach because it requires only a
single operation. Intermediate checksums can be included at intervals within the file if the
SFM has insufficient space to buffer an entire file. If part of a file has already been delivered to
a host when modification to a later part is detected by the SFM, then some clandestine
information may have been conveyed to the host through the position at which the
modification began and file transfer was aborted by the SFM. This channel has very limited
bandwidth, and as long as all checksum failures raise a security alarm and are logged by the
SFM, it is not considered a serious security risk.

13

Figure 6. Actual structure of the secure file store.

Checksums prevent the untrusted file storage machines from modifying the files consigned
to them and from manufacturing forgeries, but they do not prevent them from signaling to a
collaborator by choosing which legitimate files they return in response to requests. For
example, a Secret host could send a steady stream of requests for file X, but the files actually
returned by the Secret file storage machine could be quite different. In particular, they could be
files selected on the basis of length, say, to convey information in the manner of the
E-N-I-G-M-A example given earlier, To close this channel, the SFM must be able to verify that
the correct file is returned in response to each request. This is easily accomplished by
including the name of each file in the checksum calculation.

A variation on this method of covert communication is not so easily countered, however. A
file storage machine can keep several old copies of a legitimate file and signal to an outside
collaborator by choosing which version of the file to return in response to each request. This
type of attack can be countered by recording a time stamp with each file and keeping a separate
record of the time stamp that identifies the current version of the file. The problem here is to
find a safe place to keep the record of each file’s current time stamp. It cannot be entrusted to
the file storage machines without additional mechanisms for safeguarding its own integrity,
and keeping it in the SFNI will impose a substantial storage requirement on a machine that i s
intended to have no disks of its own.

To keep the trusted mechanism of the SFM simple, we prefer to reduce the bandwidth of this
channel rather than attempt to close it completely. The SFM embeds a time stamp into each
file before calculating its checksum and consigning it to an untrusted file storage machine. In
addition, the SFM maintains. in its own private storage, a cache of the names and time stamps
of all files read from or written to an untrusted file storage machine during, say, the last five
minutes. Any attempt to return different versions of the same file within a shorter period will
be detected by the SFM and will raise a security alarm. Attacks that operate over a longer
period will go undetected, but their bandwidth will then be so low that they can be discounted
as serious threats.

Once clandestine information has been prevented from leaving a file storage machine, there
is no longer any need to provide separate file storage machines for each security partition; the
integrity checks performed by the SFM constitute the required separation mechanism.
Accordingly, the file storage machines can all be replaced by a single Unix system called the
isolated file store, or IFS. Rather than connect the IFS directly to the SFM, we prefer to
connect it to the LAN via a TNIU in the standard way. For it to be truly isolated from the rest of
the system, however, the TNIU of the IFS must be loaded with a special encryption key that i s
shared only with the TNIU of the SFM (see Figure 6).

The revised SFM is required to perform two security-critical tasks and is therefore split into
two logically separate components: the file access reference monitor, or FARM, and the file
integrity guarantor, or FIG. The task of the FARM is to ensure that all file access requests
comply with the security policy. the FIG is responsible for computing and checking the
checksums and time stamps on files sent to or received from the IFS.

The FIG achieves its purpose by employing checksum techniques very similar to those used
for LAN messages by the TNIUs. We therefore suggest constructing the FIG by making minor
modifications and extensions to an ordinary TNIU. The FARM function of the SFM is also
straightforward, requiring only the imposition of simple access control rules determined by a
security policy. This function can be performed inside a separate virtual machine provided by
the separation kernel of the machine that supports the TNIU/SFM functions.

We therefore conclude that all the functions of a complete SFM can be easily integrated into
the TNIU that connects it to the LAN. The development and verification costs of an integrated

14

TNIU/SFM should be little more than those for a TNIU alone, and production costs should be
about the same – approximately a thousand dollars.

The FIG checksum mechanism allows files to be read or written only in their entirety. This i s
different from the standard Unix file system interface, which permits incremental reading and
writing, and the repositioning of the file pointer. For this reason, secure files cannot be
accessed through the normal Unix file system interface but must use a special extension to that
interface provided by the Newcastle Connection. This extension adds new system calls to
publish, acquire, and delete secure files, and to list the names of the secure files belonging to a
given security partition, (The list operation must be implemented very carefully so as not to
provide the IFS with a clandestine information channel.) The minor inconvenience caused for
users by this nonstandard interface is certainly no worse than that imposed by the file transfer
programs used in conventional network architectures and is more than outweighed by the
simplicity of the trusted mechanisms needed to implement it. Extensions to this scheme that
do provide the full, standard Unix file system interface are described in a technical report[10],
but the difficulties of providing secure access to Unix i-node information and to directories
tend to compromise the attractive simplicity of the basic scheme. Completely different
mechanisms are known and are probably preferable in this case.

The accessing and allocation of security partitions

A system in which terminals are attached to machines of fixed security level can be
somewhat inconvenient to use. A Secret-level user can send mail to a Top Secret user via the
secure file system, but the recipient can only reply by leaving his Top Secret machine and
logging in to one at the Secret level, or lower. We can avoid this inconvenience and make
additional services possible by connecting terminals to trustworthy terminal interface units,
or TTIUs, rather than to hosts directly. Moreover, we can then include provisions for
dynamically changing the allocation of machines to security partitions.

Accessing different security partitions. What we term a trustworthy terminal
interface unit is basically a TNIU enhanced with some additional trusted functions, including a
terminal driver, some very limited Newcastle Connection software, and an authentication
mechanism. Each of these logically separate mechanisms runs in an individual virtual machine
provided by the separation kernel supporting the TTIU.

A TTIU in the “idle” state simply ignores all characters reaching it from the LAN or from its
terminal until a special character sequence is typed at the keyboard. This will cause the TTIU to
connect the terminal to its authentication mechanism, which will then interrogate the user to
determine his identity. Once the user has been authenticated, he can be asked for the security
partition to which he wishes to be connected. If the requested partition is within his clearance
and all other requirements of the security policy are satisfied (for example, a terminal located
in a public place is not permitted a Top Secret connection even if its user is authorized to that
level), then the TTIU will load the encryption key of the partition concerned into its DES chip.
The Newcastle Connection software in the TTIU will then be able to contact its counterpart in a
host machine belonging to the appropriate security partition, and the user will thereafter
interact with that remote machine exactly as if he were connected to it directly.

The Newcastle Connection component in the TTIU must be able to respond to remote
procedure calls directed to it by the Newcastle Connection of the remote machine. The only
calls that require a nonerror response are those appropriate to terminals, namely “read from the
keyboard”, “write to the screen,” and a couple of others concerned with status information.
Thus, only a fraction of the full Newcastle Connection software is required for a TTIU, and just
like the similar software in a conventional host, it need not be trusted.

A system in which terminals are attached to machines
of fixed security level can be somewhat inconvenient

to use.

None of the additional trusted mechanisms required to upgrade a TNIU to a TTIU should
present an undue challenge in either construction or verification, Nor should the presence of
these additional mechanisms affect the construction or verification of the TNIU components
themselves, since TNIUs are constructed on top of a separation kernel. In fact, the presence of
a separation kernel makes it perfectly feasible to support multiple terminals, each with a
separate set of TTIU and TNIU components, on a single processor.

15

Changing security partitions dynamically. TTIUs enable users to connect to
machines in different security partitions, thereby allowing them to perform each of their
activities at the most appropriate level within their clearance. If a security policy with a large
number of need-to-know compartments is supported, however, the number of different security
partitions can well exceed the number of physical hosts available. Even when the number of
distinct security partitions is small, the demand for resources within each partition can vary
with time. Furthermore, some users might prefer to use personal workstations for their
activities in many different security partitions. All these cases require some provision for
reallocating host machines to different security partitions.

With untrusted hosts, this can only be accomplished by temporal separation, which in its
simplest form is periods processing. This requires manual intervention to exchange all
demountable storage and the reinitialization of all fixed storage to remove every trace of
information from the old security partition before the machine can be brought up again at its
new level, either “clean” or reloaded with the suspended state of some previous activation at
that level.

Manual periods processing requires very rigid administrative controls, and it is slow and
expensive, We therefore propose mechanisms for automating the process, making it both
rapid and secure. The mechanisms required include one that causes a host’s TNIU to load the
encryption key of a new security partition, and another that provides temporal separation for
different uses of the host machine,

A project to develop an implementation of the system
described here has a sponsor and is being carried out.

The system state of a host machine is contained in its writable storage: CPU registers,
RAM, and disks, The disks of a Unix system provide swap space and contain the local file
system. With the exception of the file system, the local storage available to a host is all used
for strictly temporary purposes and can simply be erased and reinitialized when the host
changes security partitions. This is achieved by causing the host to boot-load a trusted
stand-alone purge program from ROM on power-up, or on command from its TNIU. This
program systematically clears and reinitializes all temporary storage available to its host
processor.

Unlike temporary storage, the local file system cannot just be erased when the host changes
security partitions; it must be retained (inaccessibly) for later activations of the host in the
same partition. Since Unix United provides convenient access to remote files, this requirement
can be satisfied by holding files remotely, either in file servers dedicated to particular security
partitions, or in the secure file store.

Operating host machines without local file store is inefficient. Accordingly, the purge
program creates a local file system on its host’s disk and initializes it to contain the standard
utility programs. (These can be obtained from a local read-only floppy disk, or from a “boot
server” accessed over the LAN.) Each reference to an apparently local file is intercepted by a
local file relocation process added to the Newcastle Connection. This process checks to see if
the requested file is already present in the local file system. If it is, the access is allowed to
proceed normally. If it is not, the relocation process first obtains a local copy of the file from
the machine that maintains the permanent version of the host’s file system for the security
partition concerned. For example, if the host is known as PW5 (personal workstation number
5) and is currently operating in the Secret(NATO) partition, then a reference to the local file
/user /john /paper might cause the local file relocation process to obtain a copy of the file
/../SNSERVER/PW5/user/john/paper, where SNSERVER is the name of the machine that
maintains the Secret(NATO) file system. This process is perfectly straightforward and need not
be trusted, since an attempt to name a machine in the wrong security partition will be caught by
the standard TNIU mechanisms (the local and remote machines will have incompatible
encryption keys). Files modified or created during a session must, of course, be written back to
their permanent file system by the local file relocation process at or before the end of the
session,

In outline, the complete scenario for automatically changing the security partition in which
a host operates is as follows. A user at a terminal attached to a TTIU is authenticated and asked
for the security partition in which he wishes to work. If this partition is within his clearance, a
signal is sent to the TNIU of a vacant host machine (or to the user’s personal workstation)
instructing it to switch to the indicated security partition. This signal is protected against
forgery or spoofing by the standard encryption techniques employed between TNIUs. Upon

16

receipt of the signal, the host’s TNIU loads the encryption key appropriate to the new security
partition, initiates the purging and reinitialization of its host machine, and informs the host’s
local file relocation process of the identity of its new security partition,

We have described a distributed system that provides a limited but useful form of multilevel
secure operation. Four distinct methods for achieving separation (physical, temporal,
cryptographical, and logical) have been illustrated. When used judiciously, they can provide
security without inefficiency and with only a limited number of trusted mechanisms.
Moreover, our trusted mechanisms are relatively simple and within the current state of the art.
Indeed, a number of them have previously been proposed (and some implemented) by others,
though usually as stand-alone systems. A more extensive treatment of the topics covered in
this article is available as a technical report[10]. It describes our mechanisms in more detail,
relates them to their precursors, and discusses some enhancements to the basic system (the
inclusion of downgraders or guards, and support for multilevel objects, for instance). Readers
who wish to learn more about issues and techniques relating to computer security should
consult the excellent book by D. E. Denning[8].

A project to develop an implementation of the system described here is being sponsored by
the Royal Signals and Radar Establishment, or RSRE, of the UK Ministry of Defence, and i s
being carried out by System Designers Ltd, of Camberley in conjunction with the
Microelectronics Applications Research Institute, or MARI, and the Computing Laboratory of
the University of Newcastle upon Tyne. The first stage of this project will result in the
delivery of a prototype to RSRE in mid-1983. The security mechanisms of the prototype will
be provided by ordinary user processes in a standard Unix United system. This will not, of
course, be secure, but it will allow the operation of the various mechanisms to be studied in
practice, enable the overall performance of the system to be evaluated, and most importantly,
permit the impact of a mechanically enforced security policy to be observed in a realistic
environment. If this stage is judged a success, a prototype implementation of the real system
will follow. We hope that before long we will be able to report on the progress of this project
and, in due course, on how well it achieves its security, usability, and performance goals.

Acknowledgments

This research was sponsored by the Royal Signals and Radar Establishment, Malvern,
England. We very much appreciate the enthusiastic encouragement of Derek Barnes of RSRE
and the stimulation of our many colleagues at Newcastle, particularly those involved with
Unix United. The Newcastle Connection, a commercial product licensed by MARI, is the
creation of Lindsay Marshall and Dave Brownbridge, while the remote procedure call
mechanism is the work of Fabio Panzieri and Santosh Shrivastava.

Two anonymous referees directed our attention to a number of vexatious technical problems
with some of our mechanisms and led us to make several improvements. The final form of this
article benefited considerably from the careful reading, criticism, and advice of Pete Tasker of
the Mitre Corporation. Sarah Rolph, also of the Mitre Corporation, suggested many
improvements in the presentation of this material.

References

1. C. E. Landwehr, “A Survey of Formal Models for Cornputer Security, “ Computing Surveys,
Vol. 13, No. 3, Sept. 1981, pp. 247-278.

2. M. H. Cheheyl et al., “Verifying Security,” Computing Surveys, Vol. 13, No. 3, Sept.
1981, pp. 279-339.

3. J. M. Rushby, “The Design and Verification of Secure Systems,” Proc. Eighth ACM Symp.
Operating System Principles, Dec. 1981, pp. 12-21, (ACM Operating Systems Review, Vol.
15, No. 5).

4. G. Grossman, “A Practical Executive for Secure Communications,” Proc. 1982 Symp.
Security and Privacy, IEEE Computer Society, Apr. 1982, pp. 144-155.

5. D. Lomet et al., “A Study of Provably Secure Operating Systems,” research report RC9239,
IBM T. J. Watson Research Center, Feb. 1982.

6. D. R. Brownbridge, L. F. Marshall, and B. Randell, “The Newcastle Connection, or UNIXes
of the World Unite!” Software – Practice and Experience, Vol. 12, Wiley Interscience, Dec.
1982, pp. 1147-1162.

17

7. S. K. Shrivastava and F. Panzieri, “The Design of a Reliable Remote Procedure Call
Mechanism,” IEEE Trans. Computers, Vol. C-31, No. 7, July 1982, pp. 692-697.

8. D. E. Denning, Cryptography and Data Security, Addison-Wesley, Reading, Mass., 1982.

9. R. M. Needham and M. Schroeder, “Using Encryption for Authentication in Large Networks
of Computers,” Comm. ACM, Vol. 21, No, 12, Dec. 1978, pp. 993-999.

10. J. M. Rushby and B. Randell, “A Distributed Secure System,” tech. report 182, Computing
Laboratory, University of Newcastle upon Tyne, England, Feb. 1983. (Also available from
first author at SRI International.)

John M. Rushby is a computer scientist with the Computer Science Laboratory of SRI
International. His research interests include the design, specification, and verification of
secure systems and other computer systems that must satisfy stringent requirements. From
1979 to 1982, he was a research associate with the Computing Laboratory of the University of
Newcastle upon Tyne, England, and from 1975 to 1978 he was a lecturer in the Department of
Computer Science at Manchester University, England. Rushby received BSc and PhD degrees
in Computer Science, both from the University of Newcastle upon Tyne, in 1971 and 1977,
respectively.

Brian Randell is a professor of computing science at the University of Newcastle upon
Tyne, where in 1971 he initiated a program of research on computing systems that now
encompasses several major projects. From 1964 to 1969, he was with IBM, primarily at the
IBM Research Center in the US, working on operating systems, the design of ultra high speed
computers, and system design methodology. Before that, he worked for the English Electric
Company, where he led a team that implemented a number of compilers, including the
Whetstone KDF9 Algol compiler. Randell graduated in mathematics from Imperial College,
London, in 1957.

