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Abstract—Assurance cases are gaining traction as a
means of certification in Aerospace and other safety and
security critical industries. In this paper, we first introduce
a rigorous Assurance 2.0 framework that eliminates ad-
hoc construction of assurance cases with emphasis on
the validity and soundness of the argumentation process,
confidence of the claims/arguments/evidences and the sys-
tematic exploration of defeaters. We next describe the
tools and automation support for Assurance 2.0 that was
developed in the Clarissa project and finally highlight the
key capabilities in the context of an illustrative example.

Index Terms—Assurance Case, Certification, Property-
based Compliance, Integrated Security and Safety Analysis.

I. INTRODUCTION

Certification in regulated industries like Aerospace,
Nuclear, Automotive, etc., has traditionally relied on
a compliance driven approach with highly prescrip-
tive requirements on system development processes to
guarantee both safety and security. For example, the
entire avionics development is regulated through ARP-
4761 [1] for safety, DO-326A [2] for security, and
ARP-4754A [3] for system development via guidelines
like DO-178C [4] for software and DO-254 [5] for
hardware. Notwithstanding a proven track record, al-
though such a compliance-driven approach offers clarity
to stakeholders on exact criteria to meet, the quality of
compliance and the degree of confidence in the system is
hard to judge. The rationale for prescriptions is hidden
from the system developers, while the detailed design
knowledge imbalance is skewed negatively against the
regulators. This hinders adoption of development inno-
vations that improve system flexibility and predictability,
which could lower costs and time incurred in certification
phase that have historically dominated the product life-
cycle.

In contrast, we argue that an assurance case approach,
which is more objective, outcome-driven, property-
based, automated, and systematic, can overcome these

limitations and lower the safety and security risks posed
by the system over its lifetime. In this paper, we highlight
our novel contributions to assurance case foundations
and their realizations in tools developed under the
Consistent Logical Automated Reasoning for Integrated
System Software Assurance (CLARISSA) project for the
DARPA Automated Rapid Certification Of Software
(ARCOS) program [6]. Clarissa assurance cases are built
upon a more rigorous and demanding Claims Argument
Evidence (CAE) [7] methodology called Assurance 2.0
[8]. This simplifies the development and assessment
of cases because issues that were previously treated
in an ad-hoc manner and were subject to contention,
misinterpretation and challenges are now made explicit
and treated systematically.

Clarissa tools provide the Assurance 2.0 foundational
building blocks and automation support that ensures
focus on positive claims while actively searching for
negative defeaters that could invalidate a claim and
propagate refutations through the case. Evidence is
weighed deliberately using confirmation measures that
carefully distinguish between facts established by the
evidence (claims about something measured) and infer-
ences drawn from it (claims about something useful).
Assurance 2.0 requires that the completed assurance
case should be indefeasible whereby no credible new
information would change the judgment and evaluation
of the case i.e., no unresolved doubts and defeaters.

Assurance 2.0 simplifies the assessment of assurance
cases by being clear about what is developed within
the assurance argument and what is referenced and inte-
grated by it through the application of external theories,
models that describe system behaviors (e.g. require-
ments, code architectures, etc.), and evidence assemblies.
Theories are reusable assurance sub-case templates with
self-contained justifications, which provides an oppor-
tunity for well-established theories to be pre-certified
based on criteria for their correct instantiations. Further,
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we define a simple formalism for Claims, Evidence, and
Theory specifications to overcome ambiguities associ-
ated with natural language and allow for automated se-
mantic checks (e.g., consistency and completeness) and
reasoning. Theories reduce cognitive load and improve
understanding and efficiency by opening the door to
assurance case synthesis. The overall assurance case can
easily be built in an error-free manner, within Clarissa,
by instantiating various theories along with integrating
arguments and substantiating evidence.

To demonstrate the practicality of Clarissa’s approach
and tools, we use the ArduCopter system, an open-source
platform, as an illustrative case example. The objective is
to construct an assurance case that establishes justifiable
confidence in the flight-critical ArduCopter software’s
fitness to carry out autonomous surveillance missions
within geofenced areas while meeting safety and security
criteria. The structure of the assurance case is based
on an Overarching Properties (OP) [9] approach that
satisfies three primary objectives: Intent, Correctness,
and Acceptability. OP is gaining FAA recognition as
an alternative means of compliance, especially for next-
generation AI/ML-based avionics and autonomous soft-
ware, which do not lend themselves to certification using
only traditional DO-178C processes.

II. ASSURANCE 2.0 FOUNDATIONS

Assurance is the process of collecting evidence about
a system and its environment and developing claims
and an argument that use these to justify (or reject)
deployment of the system; an assurance case is a way
of organizing and presenting this information, together
with other relevant facts and knowledge in a manner that
facilitates overall comprehension and assessment.
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Fig. 1. Example Clarissa Assurance Case

Overview: Assurance cases in Clarissa follow the ap-
proach presented as Assurance 2.0 [8], [10], which builds
on the earlier “Claims, Arguments, Evidence” or CAE
[7], where the main component of an assurance case is
a structured argument represented as a tree of claims

linked by argument steps, and grounded on evidence. A
pictorial example illustrating various concepts discussed
in this section is shown in Figure 1. Assurance 2.0
emphasizes “simplicity through rigor” whilst construct-
ing assurance cases that comprise arguments, models,
theories, evidence assemblies:

• Models: Descriptions of behavioral attributes or
properties of the system from some point of view
(timing, power, functional) at some level of abstrac-
tion. Includes requirements, architecture and code.

• Theories: Definition, analysis, and evaluation of
individual topics, as assurance sub-cases, that jus-
tify some claims and allows compositional as-
surance reasoning. e.g., hazard analysis, MC/DC
testing[11], formal verification, static code analysis.

• Evidence and its assembly: Evidence must support
a claim, otherwise it is just data. Individual items
often need assembly to create evidence e.g., tests,
assumptions, tooling, provenance, and analysis.

• Structured arguments over claims: tie the models,
theories and evidence together using a CAE ap-
proach. The underlying argument interpretation is
Natural Language Deductivism (NLD) which in-
volves: (i) Informal application of formal deductive
logic whereby sub-claims deductively entail their
parent claim as with logical reasoning in mathe-
matics, science, and engineering and (ii) Arguments
are both valid and sound. Argument validity simply
requires that all the reasoning steps “fit together”
correctly making their claims logically true. Argu-
ments are sound if all steps are well justified and
can be accepted as correct/reasonable: i.e. when all
evidence incorporation steps cross some threshold
for credibility, and all interior or reasoning steps
have indefeasible justifications. Narrative justifica-
tions for soundness are provided for each argument
step, often supported by side-claims that establish
necessary assumptions. Narrative justifications use
natural language but may reference some external
theory, calculation, proof, or mechanized analysis
with tools.

Clarissa Building Blocks: An argument within assur-
ance 2.0 has rather limited scope and can take a restricted
form with just a few basic steps for structuring and
organizing references to external models, theories and
evidence. Thus, Clarissa uses only five different kinds
of argument steps and these are called (building) blocks
[12], [13], [8] and they are utilized, with side-claims
justifications as shown in Figure 2, and comprise:

1) Concretion: support one claim (e.g., “is correct”) by
another more precise, measurable and less abstract
claim (e.g., “satisfies DO-178C”)

2) Substitution: support claim property P about object
X by a similar claim property Q about object Y.
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Fig. 2. Clarissa Building Blocks

Usually, either X and Y or P and Q are held con-
stant. For example, MC/DC testing is “equivalent”
to demonstrating absence of unreachable code.

3) Decomposition: claim that a conclusion about the
whole object, process, property or function can be
deduced from the claims or facts about constituent
parts including potentially over time. For example,
if a property holds for all sub-systems in a system
then the property holds for the overall system.

4) Calculation: claim that the value of a property of
a system in a given environment can be computed
from the values of related properties of other objects
in that environment. E.g., average data retrieval
time from a database can be calculated from the
probability that the data is in the cache (property of
one sub-system) and the time of data retrieval if it is
not in the cache (property of the other sub-system).

5) Evidence Incorporation: supports claims of “some-
thing measured” then “something useful”. It is used
at the edge of the case tree (leaf nodes) to incor-
porate the evidence elements and demonstrates that
a sub-claim is directly satisfied by its supporting
evidence.

Evaluation and Assessment of Assurance Cases:
An assurance case is intended to provide justifiable
confidence in the truth of its top claim, which typically
concerns safety or security. A natural question is then
“how much” confidence does the case provide? We argue
that confidence cannot be reduced to a single attribute
or measurement. Instead, we suggest it should be based

on attributes that draw on three different perspectives:
(i) Positive Perspective: considers extent to which the

evidence and overall argument make a positive case to
justify belief in its claims. Primary positive measure
is soundness, which interprets the argument as a logi-
cal proof by NLD and delivers a yes/no measurement
based on logical validity (checkable) plus credibility
of evidence and reasoning. Credibility of evidence is
“weighed” by confirmation measures based on (possibly
qualitative) subjective probabilities indicating our con-
fidence in the claim, given the evidence. Weights for
each evidence assembly should cross some appropriate
threshold and narrative justifications should establish the
soundness of each reasoning step. Defeaters are used to
indicate when these are considered inadequate.

Secondary positive measure is probabilistic confidence
or doubt (i.e., 1 - probabilistic confidence) which indicate
how strongly we believe the assessment of soundness.
These can be aggregated from evidence through the
steps of the argument using various kinds of probability
logic. Their purpose is to support graduated assurance
where less costly (and presumably weaker) evidence and
argument are used for elements that pose less risk (as
with the Design Assurance Levels - DALs of DO-178C).

(ii) Negative Perspective: involves active search for
and resolution of doubts and defeaters. We refer to any
concern about a case as a doubt; as we explore the origin
and nature of a doubt we will refine it to a defeater
that invalidates a claim through a specific (counter)claim
or challenge that can be attached to a particular point



in the argument. A defeater to an assurance case is
rather like a hazard to a system: that is a conjecture
why things might go wrong. This defeaters-cognizant
approach ensures positive perspective does not become
optimistic and helps guard against confirmation bias.

Defeaters can be investigated via their own assurance
sub-cases. Those that are sustained indicate something
is wrong with the primary case or with the system
itself, and these must be repaired. Refuted defeaters
are retained as commentary on the case that can help
evaluators or subsequent developers, who may have
similar doubts of their own. Assurance 2.0 values quality
and diligence of defeater nomination and exploration, but
not their sheer quantity.

Defeaters can also be employed for eliminative ar-
gumentation [14], [15], which is a contrary approach
to assurance, favored by some, that uses a negative
argument to refute all reasons why the top claim could
be false (i.e., rather than show the system is safe, we
show that it is not unsafe).

(iii) Residual Risk Perspective: It is possible that not
all doubts and defeaters are fully resolved at the time of
decision by the evaluators. In this consideration, we ex-
plore consequences and likelihoods of unresolved doubts
and defeaters and thereby assess risk (their product).
Some of these residual risks may be judged unacceptable
and thereby prompt a review of the evidence, argument,
or system (e.g., additional mitigation), but others may
be considered acceptable or unavoidable. We support
detailed examination of these issues and can propagate
probabilistic valuations in several ways to assist different
stakeholders. The purpose is not to deliver a verdict but
to support and record thoughtful assessment.

Confidence in Evidential Support for Claims: The
argument of an assurance case is logically valid when all
its leaf claims are supported by evidence and the claims
supporting and delivered by interior steps “match up” to
provide a coherent graph structure. We say the argument
is fully valid when, in addition, all its steps are (judged
to be) deductive, and there are no unresolved defeaters
other than those marked as residual risks. A fully valid
argument is sound when human evaluators attest that
the residual risks are negligible, that the justification for
each interior step is indefeasible, and that the weight of
each evidential step is sufficient to justify its “something
useful” claim.

Confirmation Measures are attached to Evidence In-
corporation argument blocks to indicate weight of confi-
dence in evidence justifying leaf level claims in a CAE
graph. A natural measure of confidence in a claim C
given the evidence E is the subjective posterior probabil-
ity P(C|E), which may be assessed numerically or qual-
itatively (e.g., “low”, “medium”, or “high”). However,
confidence in the claim is not the same as confidence that

it is justified by the evidence. For the latter, while we
explore many possibilities in [10], we limit to primarily
two confirmation measures:

1) Keynes(C,E): how much does the evidence increase
my confidence in the claim indicated by log P(C|E)

P(C)

2) Good(C,E): how well does this evidence distin-
guish between the claim and counterclaim indicated
by log P(E|C)

P(E|¬C)

Confidence Propagation: the assessment criterion or
“stopping rule” for an assurance case in Assurance 2.0
is indefeasible soundness (which includes full validity).
Indefeasibility means we must be confident that no
new information would change our assessment or, in
other words, that we have thought of everything. But
even so, we must have some threshold on the evidence
and reasoning that we use to show that everything has
been dealt with satisfactorily: e.g., if we use testing to
establish some claim, how much testing is enough? In
Clarissa, we use subjective probabilistic assessments of
confidence to record and propagate these judgements.

The purpose of confidence is not to question or rein-
force indefeasibility, but to help apportion effort suitably.
Confidence is propagated from evidence, and we may
generally assume that more confidence requires more or
better evidence and that more or better evidence costs
more money and effort. Thus, within a single argument,
we will generally want to see approximately equal
confidence across all claims or, perhaps, an allocation
according to risk. Across different cases, we will likely
want to see confidence calibrated according to perceived
risk posed by the system concerned, thereby supporting
graduated assurance as seen in the DALs of DO-178C.

As mentioned above, when assessing soundness
of evidential claims we use a confirmation measure
Keynes(C,E) or Good(C,E) rather than the posterior
probability P(C|E) because we wish to evaluate the dis-
criminating power, or “weight” of the evidence, and con-
firmation measures do this. But once we have assessed
soundness, it is reasonable to use the posterior as our
measure of probabilistic confidence in the claim C and
it is this that will be propagated through the probabilistic
valuation of the case. The propagation rule we favor is
sum of doubts which estimates the probabilistic doubt
(i.e., 1 - probabilistic confidence) of a parent claim as
the sum of probabilistic doubts over its sub-claims and
side-claim. This is conservative but requires only weak
assumptions. More detailed discussions are available in
[10] for different methods of probabilistic confidence
propagation and their application to each of the five
Clarissa argument building blocks.

Theories: Definition and their Application: Science
and engineering are fundamentally built around theories
and models and assurance cases constructed in Clarissa



follows that approach. In assurance of safety/security
critical aerospace systems, we tackle many different
topics and use different models with different tech-
niques and different justifications, e.g., hazard analysis,
requirements based testing, structural code coverage, re-
liability growth, human reviews, tracing, static analysis,
architecture, time-space partitioning, fault-tolerance, etc.
Many of these topics are relatively self-contained and
can have their own assurance theory that includes model
plus technique with underlying justification. Theories are
essentially an assurance sub-case, defined as a reuseable
template but with semantics and justifications, that can
be applied to various assurance cases. The motivation is
that an overall assurance case for a complex system can
then mostly be built by instantiating various theories plus
integrating arguments. Theories then provide a method
to control the size of the argument through composi-
tional reasoning and aids development of the overall
assurance case in a modular fashion. Self-contained
models and theories, with objective analysis that are
better developed, analyzed, justified, and evaluated (i.e.,
pre-certified) separately without cluttering the main as-
surance case, can be separately managed by experts and
presented and assessed by the scientific and engineering
methods traditional to their fields. This approach is akin
to function definitions and function calls in computer
programming.
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Fig. 3. MC/DC Testing Theory Example

The properties that can directly be stated and ob-
served about the system and its low-level models (e.g.,
percentage of objects correctly identified by a vision
system under test) will generally be far removed from
the properties about which we seek assurance: those
will generally concern emergent properties stated about
highly abstract models (e.g., safety of an autonomous
car). It follows that a central task of an assurance
case is to connect properties of the system and its low
level models to those of high level models, and this is
accomplished by argument steps that iterate through a
series of intermediate models that generally align with
steps in the design and development of the system, as
in the classical “V” Diagram. A typical step of this

kind will seek to justify, which is an opportunity for
a “theory” that a property A of some model P ensures
property B of a next higher model Q.

An example theory is that underlying Modified Con-
dition/Decision Coverage (MC/DC) for requirements-
based tests[11]: such a “MC/DC Testing Theory" must
explain this method of testing and coverage evaluation,
how is it performed, why is it useful, what issues need to
be considered, and what claims it can support as shown
in Figure 3. The theory could then be used and applied
within a context of side-claim to the parent argument
which explains how MC/DC coverage of executable code
can justify a claim that the code contains no unintended
functions. Alternatively, we could have composed an-
other theory for side-claim justification layered along
with MC/DC Testing Theory. When applying a theory
defined elsewhere (in the current assurance case or out-
side of it), the argument, where theory is (re)used, must
provide justification that it is suitable and credible, and
that it is applied appropriately. Theory and its definition
is not required to be present as part of the argument:
it merely references the previously defined theory and
instantiates it for a particular application within the con-
text of the arguments being made in the given assurance
case. For example, the MC/DC theory may be referenced
within an assurance case demonstrating compliance to
DO-178C DAL C structural code coverage objectives.

Defeaters and their beneficial utility: The primary
criterion for a satisfactory assurance case in the Assur-
ance 2.0 methodology is that it should justify indefeasi-
ble confidence in its top claim, meaning that in addition
to confidence that the claim is true, we must also be
confident that there are no overlooked or unresolved
defeaters that could change that judgement. A doubt or
defeater node indicates concern about an argument and
contains a claim indicating the nature of the concern
(e.g., “I think there is something wrong here”) and points
to the argument node in question. At some point, we
must return to investigate the nature and origin of the
doubt and will either dismiss it as unwarranted, or refine
and sharpen it into a defeater with a possibly more
specific counter-claim (e.g., “the justification for this step
is inadequate”) and whose investigation is recorded in a
sub-case attached to the defeater. Thus, a doubt is simply
a defeater that has not yet been investigated (i.e., has
no sub-case) and so we will generally refer to both as
defeaters. Detailed treatment of defeaters can be found
elsewhere [15], [10] but we briefly summarize it here.

Investigation and resolution of defeaters serves two
purposes: firstly, it is the primary means to avoid con-
firmation bias and drive the case toward soundness and
indefeasibility; secondly, it helps reviewers comprehend
the case as they find their own doubts have been antic-
ipated and answered. Furthermore, recording defeaters



and their resolutions in an active manner for an evolving
assurance case indicates: developer diligence through
defeaters proposed and examined during development
and assessor diligence during assessment of the refuted
defeaters and residual risks posed by sustained defeaters.

If a defeater is supported by an assurance sub-case that
is adjudged to be sound, so that its claim is true, then
the defeater is said to be confirmed or sustained and the
primary case, and possibly the system it is about, must be
modified to overcome the flaw that has been identified.
The defeater sub-case can be retained as commentary in
the revised primary case, but it should no longer be sus-
tained and may be hard to interpret. Instead, we suggest
it should be adjusted to become a refuted defeater (see
below) for the revised case. Alternatively, the sustained
defeater may be explicitly accepted as a residual doubt,
provided it is judged suitably insignificant and retained
with commentary in the original primary case.

If a defeater is a false alarm or is one that has
been overcome by modifications to the original case
(as above), then its sub-case should be refuted and the
primary case can remain unchanged. One way to refute
a defeater is to provide a second defeater that targets the
first one or some part of its sub-case. If the assurance
sub-case for that second defeater is adjudged to be good,
then the first defeater is said to be refuted and it and its
sub-case play no part in the interpretation of the primary
case, but both first and second level defeaters can be
retained as a commentary to assist future developers and
evaluators who may entertain doubts similar to those
which motivated the original defeater. Another way to
initiate refutation of defeater is by means of counter-
evidence: that is, evidence that contradicts the claim it
is meant to support. We have extended Clarissa tools to
include refutational reasoning that handles defeaters at
several levels.

Prior to the introduction of defeaters, Clarissa con-
sidered only positive arguments and did so using NLD.
Assessment of logical validity and soundness is fairly
straightforward in such cases. But this determination
becomes a little more complicated when we have to ac-
count for defeaters, and also wish to allow incompletely
developed arguments. In these cases, we cannot always
expect the top claim to be adjudged true; instead, we can
ask which claims are true and which are unsupported
(i.e., have contested or incomplete sub-cases), and we
can do this by propagating logical assessments upward
from the leaf nodes. In refutational reasoning with de-
featers, we need to consider the additional possibility that
claims may be false in order to handle counter-evidence
and multi-level defeaters. The Clarissa tools use a three-
valued logic to support these analyses.

Assurance 2.0 also allows support for eliminative
argumentation [16] whereby instead of allowing argu-
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mentation to sustain a positive claim: e.g., “system is
safe”, we instead attempt to refute a negative claim:
“system is unsafe”. A successful refutation will establish
the negation of that claim, namely “the system is not
unsafe”. As an approach to arguing that claim, one
could consider all reasons the system could be unsafe,
and then provide arguments to eliminate each one. This
encourages a more skeptical viewpoint and reduces
confirmation bias. Eliminative Argumentation requires
similar reasoning to refutation of defeaters as discussed
above. To do this, we introduce exact defeaters, which a)
point to a node that is either a claim or another defeater
that is b) lacking a subcase, and c) whose own claim is
the negation of the one pointed to. The previous kind
of defeater is now called an exploratory defeater and
differs from an exact defeater in that its claim need not
negate the claim it points to (and it may point to nodes
other than claims and defeaters), but merely call it into
question. Clarissa’s support for refutational reasoning is
extended to deal with exact defeaters, and its notation is
augmented by introduction of a new disjunctive decom-
position argument block to complement the conjunctive
decomposition argument block discussed earlier as one
of the five building blocks. Figure 4 illustrates a lot of
the defeaters concepts through an example.

III. CLARISSA TOOLS AND AUTOMATION

Clarissa Tools Architecture is shown in Figure 5,
which consists of: (i) Assurance and Safety Case Envi-
ronment (ASCE) [12] which is the most widely adopted
commercial software for the creation and management
of safety and security assurance cases, and (ii) a goal-
directed top-down solver for Constraints Answer Set
Programs s(CASP) [17], [18] for reasoning about assur-
ance cases using an enhanced Prolog engine. ASCE has
full support of Assurance 2.0 framework and enforces the
methodology while it also facilitates systematic creation
of Assurance 2.0 cases leveraging theories, ensuring the
validity and soundness of the logical arguments with
justifications while enabling active search for defeater
and either sustaining or refuting them. Libraries of
theories and defeaters are maintained as active repos-



itory of knowledge and known vulnerabilities. ASCE
also performs structural analysis to ensure their cor-
rect and complete construction while automatically an-
alyzing specific syntactic elements of assurance cases
including adherence to notations, grammar/spell-checks
within natural language descriptions. ASCE also auto-
matically converts the assurance case to an equivalent
logic program to support systematically reasoning with
the s(CASP) engine. The s(CASP) engine reasons over
the semantics or underlying meaning of the claims, argu-
ments, and evidence presented in assurance cases which
includes various properties of the assurance case such as
consistency (i.e. absence of logical contradictions), inde-
feasibility (i.e. absence of defeaters) and completeness
(i.e. state of encompassing all the requisite elements),
etc.
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Fig. 5. Clarissa Tools Architecture

Claims-Evidences Formalisms with Prolog Export:
To a large extent, assurance cases traditionally rely
primarily on free-form natural language to document
claims, arguments and evidence. Hence, despite being
well-structured and syntactically correct, ensuring
semantic correctness (the top-level claim logically
follows from its sub-claims, arguments, and evidence),
and that there are no logical inconsistencies or fallacies is
intellectually demanding for both authors and evaluators,
due to the inherent ambiguity, and inconsistency of
natural language. Consequently, automating semantic
reasoning would greatly reduce human effort and
enhance the quality and confidence in these cases.
While free-form natural language is not conducive to
such automation, fully formal notations are impractical
to represent the vagaries of claims-arguments-evidences
descriptive texts. Hence, we define a balanced approach

that presents details in an intuitive and “minimally”
formal way that is also easily extensible. We take a two-
step approach[19], where we first categorically specify
the terms used in the descriptions – in terms of objects
of the system, properties they possess, and optional
environments in which the properties of the given
objects are valid. e.g., the claim: “software is correct
w.r.t requirements” can be expressed in the object-
property-environment formalism as object(software),
property(correct_wrt_requirements), environment(env)
and claimstmt(software,correct_wrt_requirements,env)).
Then, in the second step, the assurance case is
transformed into a logic program notation (see
bottom of Figure 5), that can be subject to various
formal analyses at the back-end using the s(CASP)
system. Every Assurance 2.0 concept in an assuarance
case can be mapped to an s(CASP) constructs. e.g,
Argument ≡ Rule, Claim ≡ Predicate, Evidence ≡ Fact,
Justi f ication ≡ Proo f , De f eaters(variants) ≡
classical negation(¬)ornegationas f ailureto prove(not),
Validity ≡ Querying. The claim/evidence language
formalisms and the assurance case transformation to
logic programs are detailed in [19].

Automated Theory and Defeater Synthesis: Initially
when architecting a case from scratch or regenerating
a case with changes, ASCE provides an expert guided
synthesis approach for applying pre-defined theories and
associated defeater templates. The idea is that we first
define specific set of theories with structure that includes:
(i) theory preconditions (ii) evidence obligations (iii)
defeater templates and (iv) all claims/evidences hav-
ing object-property-environment types. We next define,
within the assurance case, specific claim where the
desired theory needs to apply to, with appropriate object-
property-environment instances. ASCE then supports
ability to synthesize sub-case of theory application while
ensuring object-property-environment instances match
with the appropriate types specified in the theory def-
inition and also populates the associated potential de-
featers associated with such a sub-case that need to be
addressed. This simplifies the construction of assurance
cases from reusable theories and defeaters through sub-
case templates.

IV. ILLUSTRATIVE EXAMPLE

To evaluate and demonstrate the concepts and capa-
bilities of our approach we use the open-source Ar-
ducopter flight system [20] platform as a case study.
Arducopter is an advanced, and reliable autopilot soft-
ware system, capable of controlling avionic vehicles
such as conventional and vertical take off and landing
(VTOL) airplanes, multi-rotors, etc. The mission goal for
the Arducopter is to perform autonomous surveillance
while flying within a pre-configured operational safety



perimeter or geofence. A subset of this Arducopter
system, the safety-critical software component of an
autonomous battery-powered Arducopter that performs
surveillance missions was implemented and formally
verified by a group of researchers as a part of the
ARCOS program [21]. Our interest is to construct a
rigorous assurance case for that part of Arducopter.

Integrated Safety and Security Assurance 2.0 Case
The goal of developing an assurance case for Ar-

ducopter is to investigate if justifiable confidence can
be provided for its safety and security for certification
purposes given the evidence. The overall structure of
the Arducopter assurance case is based on the principles
of Overarching Properties (OPs) [9]. The OP approach
allows organizing assurance arguments in a way that
demonstrates that the system in consideration possesses
the three fundamental properties—namely intent, cor-
rectness, and acceptability—that are necessary for the
safe and secure operation of the system. Hence, we
structured our case with three main branches, such that
the hierarchical composition of the evidence and the
claims deduce that the three overarching properties are
met in the Arducopter software, which in turn implies the
top-level claim “Arducopter Software is fit for purpose”.
In particular, our focus was on demonstrating how well
the safety and security claims are specified and supported
by evidence in the assurance case.

To that end, the overall claim of the intent overarching
property (that requires the defined intended behavior
to be correct and complete with respect to the desired
behavior), is supported by sub-claims on the functional
and non-functional requirements capturing the desired
behavior. While the claim about Safety Requirements
is established by showing evidence of compliance with
standards such as ARP 4754 and 4761, the claim about
security requirements is argued via a rigorous ontology-
based approach that was followed by the development
team. Similarly, the claim about the correctness of over-
arching property that requires that the implementation
is correct with respect to its defined intended behavior
is supported by sub-claims on the correctness of the
Functional and Non-Functional specifications, traceabil-
ity, software architecture as well as the source and exe-
cutable object code correctly implementing the software
requirements and architecture. These sub-claims were
adequately supported by various verification artifacts
such as testing, formal verification, and review evidence
provided by the development team. The claim of the
third leg of the assurance case—acceptability branch—
requires showing that the software does not have any
unacceptable impact. Since our focus was on safety and
security aspects, this branch establishes through evidence
of various formal analyses that no known hazards and
vulnerabilities are present in the software implementa-

tion due to adequate safety and security controls.
In all these three branches, unlike the traditional

monolithic, composition of arguments and evidence,
Assurance 2.0 advocates a principled, integrated ap-
proach to assembling a major portion of assurance cases
using theories. We have defined several theories and
have instantiated them appropriately in the Arducopter
Assurance case in all the three main OP branches of
the assurance case. For instance, consider one of the
theories ‘Theory of Static Analysis of Code’ that is
used in the acceptability branch. Figure 6, shows its
definition (right side of figure) and its instantiation in
the Arducopter Case (left). Some texts are abstracted in
the figure to cope with the page size, but an interested
reader is referred to [22] for complete details. The
theory’s top-level claim states that ‘Tool T guarantees by
static analysis of Code C of type X (Source/Binary) for
Software Component S that the code satisfies property P
in Environment E’. This claim is supported by a set of
sub-claims and evidentiary obligations all relating to the
type or class of the entities referred to in the top-claim.
This theory is used in the Arducopter case to support
the claim relating to the results of the static analysis
performed by a specific technique called the ‘Checker
Framework’. Hence, we instantiated the theory Tool X
to ‘Checker framework’, Code C to ‘Arducopter’, Type
T to Binary, etc. Further, in the instantiation, we attached
all the necessary Arducopter evidence as required by the
theory (shown by green-colored evidence blocks in the
leaf nodes in the figure). In the full Arucopter case, we
have defined and used a total of four such theories.

Further, since Assurance 2.0 supports active explo-
ration and recording of potential defeaters, we system-
atically identified and recorded them throughout the
Arducopter assurance case. The majority of the defeaters
were concerned with the inadequacy of the justifications
and the lack of additional evidence for certain claims.
All the evidence provided for the Arducopter case was
available from various sources such as online resources,
information stored in structured repositories, etc. Our
assurance case assembles the evidence hierarchically to
substantiate the top-level claim.

Structural Analysis and Semantic Analysis
At its core, a correct Assurance 2.0 case is one in

which the top-level claim is precise and logically fol-
lows from the composition of its sub-claims, arguments,
and supporting evidence. However, even for systems
of moderate complexity such as the Arducopter, the
case is large with extensive sets of arguments and a
substantial body of evidence, all expressed in natural
language. Hence, the task of verifying the correctness
of the arguments and evidence as well as ensuring they
logically support the stated claims about the system is
time-consuming and intellectually challenging for both



Fig. 6. Theory of Static Analysis and Its Application

authors and evaluators; the risk lies in the possibility of
approving flawed assurance arguments and consequently
certifying systems that are unsafe or insecure.

To cope with this challenge, our approach provides
automated tool-supported structural and semantic analy-
sis capabilities for Assurance 2.0 cases. While the ASCE
tool performs structural analysis based on Assurance 2.0
core concepts, we leverage s(CASP) to reason about
semantic properties of the assurance case.

Structural Analysis in ASCE: The ASCE tool is built-
in with the capability to perform various structural and
syntactic analyses on assurance cases, including:

• Assurance 2.0 Methodological Enforcements: en-
sures that the core Assurance 2.0 concepts are
upheld and reports errors in the way claims, ar-
guments, theories, and evidence are specified or
associated. For instance, claims not supported by ar-
guments, missing evidence nodes, incomplete dec-
laration of attributes, missing side claims, etc., are
all reported by the tool.

• Indefeasibility: report all unretired/unresolved de-
featers in the case.

• Natural Language Deductivism: ensures arguments
are valid, sub-claims deductively entail claims, and
reasoning steps are logically true and sound.

• Structural Checks: A number of structural checks
such as the validity of embedded links among
nodes is established at the time of assurance case
creation; validation of Dynamic Narrative Region
elements, that are established to link evidence stored
in repositories, etc., are checked by the tool.

• Confidence: capability to assess quantitative and
qualitative confidence (high, low, medium) at both
node level and for the overall case.

Semantic Analysis with S(CASP): While the complete

details of the assurance case transformation to a logic
program and its analyses are described elsewhere [19],
the following are some of the semantic properties of the
assurance case that are analyzed.

• Indefeasibly Justified: Possessing this semantic
property, fundamental to an assurance case, implies
that (a) the top-level claim is sufficiently supported
by well-founded arguments and evidence, ensuring
justification, and (b) there are no unresolved de-
featers that potentially alter the decision regarding
the top-level claim, establishing indefeasibility.

• Theory Application Correctness: This property
guarantees that the theories are precisely instanti-
ated in the assurance case; in particular, the proper-
ties and the instantiations (objects and environment)
align with their respective theory definitions.

• Property-Object-Environment Definition Consis-
tency: Inconsistencies within the specifications of
properties, objects, and environments in the nodes
of an assurance case can pose a problem as they
may lead to flawed validation of assurance argu-
ments. Hence, the absence of contradictions in the
property-object-environment definitions is a crucial
property that is checked in Assurance 2.0 cases.

• Evidence Validity and Adequacy: Existence and
appropriateness of all evidence to support their
respective claim are inevitable in a well-defined
assurance case. By defining domain-specific rules
about validity and adequacy for classes of evidence
(For e.g., test-case artifacts should also always
have an associated coverage analysis report), we
automatically detect and report the issues such as
missing evidence nodes, and incorrect or inadequate
evidence within the evidence node.

• Completeness: Completeness refers to the state of



encompassing all the necessary elements. By defin-
ing say, a “domain completeness” rule that required
every property-object-environment combination be
used at least once in a claim or evidence node, we
can evaluate the completeness of the assurance case.

• Harmonious Composition of Theories: when mul-
tiple theories are linked and applied within an
assurance case, there is a risk of conflicting prop-
erties among their definitions or in their concrete
applications. We are currently exploring approaches
to define novel rules and will allow s(CASP) to
check for the presence of conflicts, or determine
that the theories can harmoniously coexist within
that assurance case and can be composed correctly.

In summary, the realm of automated structural and
semantic analysis relieves humans from repetitive tasks,
leading to improved decision-making about assurance
cases.

V. CONCLUSION

Assurance 2.0 framework aims to develop the science
underpinning assurance cases and to improve confidence
in their construction and assessment which in turn should
increase their adoption in different certification regimes.
The assurance case tools and automation and analysis
support we have built in the CLARISSA project and de-
scribed in this paper will go a long way towards fulfilling
this objective. Our future work, among others, includes
developing a sentencing dashboard for supporting asses-
sor verdicts of the assurance cases, utilizing Large Lan-
guage Models (LLM) support for conversion to object-
property-environment formalism from natural language
statements and support for automated assurance case
synthesis with associated theories and defeaters.
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