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Al Assurance Needs a Systems Engineering Approach
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Abstract—As systems become increasingly composed of AI/ML
elements, the focus of assurance tends to shift from ‘‘safe use of
AI” to “safe AL In this position paper, we argue this is opposite
to what is required and urge a systems engineering approach.
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I. INTRODUCTION

There are general systems engineering principles for de-
pendable systems and their safety assurance that apply to Al
systems just as they do to traditional software and systems [/1]].
These principles are described in Section 1 of our report on
Al Dependability and Assurance [2f, but a central point is that
testing is not enough: we need to know how the system works,
how it fails, and why it has the critical properties required of
it. An “assurance case” allows us to understand and document
the evidence and arguments supporting this belief; we advocate
a recent formulation that we call Assurance 2.0 [3].

How the general dependability and assurance principles are
applied to Al depends on the purpose and architecture of the
system concerned. We propose a strong determinant at present
is the ratio of conventional software and systems engineering
to Al, and there is a continuum along this dimension from
“Al just does perception” to “Al does everything.” The basic
tension is then between “Safe use of AI” vs. “Safe AI” [4]]. As
more of the system is Al (and ML), so there is a tendency to
depend more on the second of these; that is, to attempt to make
the Al “trustworthy.”” We think this approach is intrinsically
difficult and typically provides little credible assurance.

II. EXTENT OF AI USAGE

We outline how concerns and assurance methods typically
evolve as more of the system is based on Al; these paragraphs
roughly correspond to the sections of our report [2].

At one end of the continuum we have autonomous systems
such as self-driving cars with plenty of traditional engineering,
although the AI may provide large added value and much
safety risk. The general principles apply here very similarly
to the way they apply to traditional safety-critical systems
(traditional software can be assured because we know exactly
how it works), with the exception that the AI/ML components
have to be regarded as untrusted black boxes (because we
do not know exactly how they work) and externally checked
or guarded at runtime. The guards may use highly assured
traditional software, or possibly AI/ML software that is diverse
from the mainline software (e.g., it is difficult to provide
perception without Al, so the guard itself may use Al).

Partially funded by City St George’s and SRI International.

John Rushby
Computer Science Laboratory, SRI International
Menlo Park CA, USA
Rushby @csl.sri.com

Next, we have systems that are engineered for some specific
purpose that is enabled by Al (e.g., logistics); typically the
Al elements are developed or customized for that purpose.
The fact that there is a specific purpose means that we can
identify the potential harms and hazards of the system, and
can quantify these and thereby derive the level of dependability
and assurance required of the system (as opposed to basing
assurance on generic properties of the AI). Knowing these
levels helps us design the system architecture and mitigations
for its hazardous elements. Again, these elements will include
the Al and ML components, which must be externally checked
or guarded. The architecture should generally provide defense
in depth, so that single failures cannot cause accidents. In ad-
dition to those due to component faults we must also consider
system failures due to overall complexity and coupling.

Then we have systems where most of the functionality is
provided by AI and ML, and the rest of the system is little
more than a wrapper around these. Increasingly, the Al is
provided by generic software such as an LLM rather than
specifically constructed. This means that general fallibilities
of the LLM must be considered as well as the specific harms
and hazards due to the system’s purpose. Furthermore, because
the LLM is the heart of the system, it is often expected that
mitigations should be programmed into the LLM rather than
provided externally. In this regard, it is important to realize
that everything an LLM does is a “hallucination,” otherwise
it would simply behave as a search engine over its training
data. The LLM is taught to suppress harmful and useless
hallucinations by reinforcement learning in secondary training
but this is bound to be imperfect because there are huge
numbers of individually rare defects. Fine tuning or prompt
engineering for mitigation will likewise be imperfect. The
consequence is that such systems cannot perform dependably,
nor be assured, without some form of external checking—but
since the function of the system is enabled by Al it is likely
that checking involves more Al (although some tasks that
require Al-generated solutions can be checked by traditional
software, and some other tasks can be probed—e.g., for bias—
by running multiple instances with slightly different inputs).

Finally, at least for the present, we come to systems that
are more extreme instances of those just considered. These
are systems that are basically a generic LLM initialized with
specific prompts and possibly an agentic interface (meaning
they can do things in the world, such as press buttons
on a computer screen, or string actions together as when



making travel reservations). They are used for purposes such
as software programming, customer relationship management,
research, correspondence, and so on: basically any task that is
currently performed by a human sitting at a computer. Here,
it is not easy to specify correctness, nor to check for it (“I
know it when I see it”), yet failures can have significant
consequences. Furthermore, harms and hazards may not be
due to Al failures but to the system’s capabilities. For example,
LLM-based research in the hands of bad actors may disclose
so-called CBRN threats (e.g., how to make a bio-weapon),
or may generate social network campaigns to sow discord or
influence elections, or may aid in the search for computer
vulnerabilities and assist in generating attacks.

Beyond the present is the possibility of AGI and superintelli-
gence. These would supercharge the hazards described above
and introduce “existential” harms, such as societal takeover.
These harms are the focus of several regulatory groups but
we are skeptical of their analysis. First, existential threats,
even at low probability, are of such significance that massive
assurance is required. Yet much regulatory attention is on
trivial tests and protections built into the LLMs themselves.
In reality, the mitigations and responses to these threats would
be outside the system: e.g., coordinated destructive resistance.
Second, we believe the threats are remote: AGI requires
real intelligence and current technology is a long way from
delivering that. Finally, it is not specifically intelligence that
empowers humanity, but cooperation, society, and culture.
We think the urgent concern is harms perpetrated by AFGI
systems (pronounced AFF-GEE, FG = Fairly Good or Fairly
General) only a little more powerful than those available
today, acting together with humans. We suggest that research
is urgently needed to mitigate these hazards by mechanisms
within and outside the system, and through societal adjustment
and adaptation that develops resilience against them.

III. CONCLUSIONS AND CALL TO ACTIONS

Engineers for traditional systems, especially those con-
sidered critical, are generally aware of the principles for
dependable systems, but may not yet have considered their
application to systems that are mostly Al; furthermore, Al
engineers are often unaware of these principles and instead
speak of making their systems “trustworthy” and “aligning”
them. We argue that “aligning” opaque AI/ML systems is an
intractable problem and the challenge of Al security and safety
should instead be reframed as a more tractable, albeit difficult,
systems engineering problem. Thus, our messages for policy
makers and shapers (governments, regulators, philanthropic
funders and specialized Al safety/security institutes) are:

o Focus on the application and system, not just the Al
model: regulation and policy should be targeted at the
deployed system and its application context. It should
encourage the development of systems-level assurance
cases to extend and enhance existing “Model Cards” [3].

o Prioritize the development of tools, technologies and evi-
dence to support risk owners in understanding the extent
of hazards, risks and benefits of Al-enabled systems.

e Mandate architectural resilience: incentivize or require
architectural principles such as external monitoring, di-
versity, partitioning, and fail-safe mechanisms, particu-
larly in high-risk applications.

e Prioritize near-term, high-impact threats: policy attention
and resources should focus on mitigating the clear and
present dangers of failures, misuse, and societal degra-
dation by capable, general-purpose Al (“AFGI”), rather
than being disproportionately directed toward speculative,
long-term existential risks (which we see as a distraction
amounting to regulatory capture). A focus on AFGI
provides a more concrete, actionable and relevant agenda.

This dependability view provides a crucial complementary
perspective to the Al-model-centric view of Al safety. It argues
that focusing on improving Al benchmark performance or
reducing “hallucinations” through internal tuning, while wel-
come and necessary, are insufficient approaches for building
Al systems that are truly dependable.

The key message for developers, engineers, and researchers
is the need to shift the mindset and practice from model-centric
evaluation to systems-level assurance. This implies embracing,
and extending classical systems engineering, specifically:

e Architecture: Prioritize architectures that feature defense-
in-depth, diversity, partitioning, robust monitoring, and
external runtime verification of Al components. Provide
APIs so that risk owners and application developers can
access assurance artifacts and integrate external checks.

e Analysis: Develop hazard analysis techniques to address
the plethora of potential harms, including acute vs chronic
risks. Recognize that Al systems may become deeply
embedded in their social context so the system boundary
is wider than anticipated, inviting failures due to Bak’s
“self-organizing criticality” and “highly optimized toler-
ance,” and leading to Perrow’s “normal accidents.”

o Multidisciplinarity: Foster integration between Al and
ML development and traditional dependability and safety
engineering practices.

o Verification Technologies: Invest in research and tools for
the external checking of complex Al outputs, including
Al-based checkers, that are diverse and demonstrably
more reliable than the systems they monitor.

Overall we should stop trying to align Al models in pursuit

of Safe Al and start engineering systems that Use AI Safely.
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