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Abstract—All interactive systems need a model of their world
that they can use to calculate effective behavior. For assurance,
the model needs to be accurate but, in autonomous vehicles and
many other AI applications, the model is built by a percep-
tion system based on machine learning and the dependability
perspective maintains that its accuracy cannot be assured. We
outline this perspective and methods for providing assurance
using guards and defense in depth, and we also outline predictive
processing as a possible way to construct assured models. We
then discuss LLMs, which typically lack explicit models of the
world, and suggest possible mitigations for their correspondingly
unpredictable behavior. Finally, we consider models in AGI.

Index Terms—assurance, predictive models, autonomy, LLMs

I. INTRODUCTION: THE DEPENDABILITY PERSPECTIVE

This paper outlines two of the themes developed in our
recent technical report on Assurance for AI systems [1]; please
note that we deliberately reuse some of its text. A major theme
of the report is to distinguish what we call the dependability
and the trustworthiness perspectives on AI assurance. The
dependability perspective derives from successful traditional
methods for construction and assurance of critical systems.
Its basis is that those who develop, assure, and evaluate such
systems must have near-complete understanding of how the
given system works, what are its hazards, how these are
eliminated or mitigated, and how we can be sure all this is
implemented correctly. The evidence and structured arguments
that justify indefeasible confidence in the claims documenting
this understanding constitute an assurance case [2].

AI and, particularly, Machine Learning (ML) components
do not conform to these requirements because they are de-
veloped heuristically: their implementation (e.g., weights in a
large neural net) is constructed experimentally by “training”
on a set of examples. The hope is that if the system works
correctly on the training examples, then it will work correctly
on all similar examples. The dependability perspective asserts
there is no way to provide strong assurance for this: the
implementation is opaque and not amenable to analysis, while
testing cannot probe more than a fraction of the real example
space in feasible time. The contrary trustworthiness perspec-
tive does claim some assurance is possible for the behavior of
AI and ML components that have been developed, analyzed,
tested, augmented, or restricted in various ways (e.g., formal
methods can verify low-dimension neural networks [3] but not
those of the scale and complexity of interest here, which also
lack formal specifications).

Both perspectives have merit and there is a continuum or
spectrum between them and potential value in their combi-
nation. Our report and this paper focus on points toward the
dependability end of the spectrum; we invite others to consider
additional points along the spectrum.

II. MODELS

Models are another theme of our report; they are ubiquitous
in science and engineering and are used for many different
purposes (e.g., to understand the world or describe a design)
[4]; our focus is on the predictive models that guide a system’s
behavior. Any system that interacts with the world must have
such a model of relevant aspects of the world [5]. Its model
allows the system to predict the evolution of the world and
hence to select actions that will advance its goals. For example,
the model for a simple control system will be a set of differ-
ential equations that describes the interaction of its controlled
plant and its environment. Typically, these simple models will
be used during design but will be represented only indirectly,
as control laws, in the actual system. More complex systems
will add state machines to their models, while cyberphysical
systems will use integrated formalisms such as timed and
hybrid automata, and sometimes high-fidelity design models
will be employed, as in “digital twins” [6]. Some elements
of these models will be represented directly in the system
and some may even be determined or adjusted at runtime,
as in adaptive and model-predictive control. And sometimes
the entire model will largely be constructed at runtime and
be represented explicitly within the system, as in autonomous
systems.

In an autonomous system, and we will take self-driving cars
as an example, the model will represent the local road layout
and the locations and relevant attributes of other road users,
pedestrians, and obstructions. Unlike a traditional system that
determines the state of its model with sensors that can be
“read” directly, a self-driving car must build its model with
a perception system that uses AI and ML to interpret sensors
such as cameras and lidars. The lower levels of perception are
model-free: the camera does not “know” that it is looking at
a road and its ML-based object classifier has only an implicit
model (because its training was composed entirely of road
images). The predictive model is built by higher levels of
perception that are deliberately programmed to interpret the
classified objects as meaningful entities on and around a road.
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A separate action system uses the model to calculate and
execute driving decisions that are safe and will advance a
(human-defined) goal. This action system may also use AI and
ML but it is possible to build a guard or monitor that checks
its output for safety. The guard can be built using traditional
methods and can be highly assured from the dependability
perspective, but it will depend on the model (because it
essentially simulates proposed actions against the model and
checks their safety).

This approach does not provide full assurance: for that
we must either provide assurance for the model, or base the
guard on some other, assured model. We will tackle the latter
approach first.

III. ASSURED GUARDS

One idea is to provide very simple guards, rather like the
Automatic Emergency Braking (AEB) that will be required on
new passenger cars and light trucks in the USA by September
2029. This is basically a classical control system, with a simple
sensor (e.g., radar) and control laws derived from a model of
vehicle dynamics. It is feasible to provide strong assurance for
AEB within a limited Operational Design Domain (ODD),
which we will call a µODD (pronounced micro-ODD) [7],
such as “forward collisions on highways at less than 80 mph.”

An argument against this approach is that it can trigger
unnecessarily, either as a false alarm (perhaps being outside
the intended µODD, or because the primary self-driving sys-
tem was planning some other avoidance maneuver), is harsh
(modest speed reduction might have done the job if triggered
earlier), does nothing for other hazardous µODDs, and may
even be hazardous itself (e.g., precipitate a rear-end collision).

One mitigation for unnecessary and harsh interventions is
to provide defense in depth by introducing a safety system be-
tween the primary and emergency systems. The safety system
uses AI and ML to build an alternative (e.g., simpler) model
than the primary system and can override it (if implemented as
part of a dual-process architecture, to be discussed in Section
IV) or be fused with it. For example, the primary system of
a self-driving car might see an object ahead and classify it as
a cardboard box and be prepared to drive over it; as it comes
closer, the emergency system will see it as an unclassified
obstruction and slam the brakes on; but earlier, a safety system
could have seen it as an unclassified but possibly hazardous
obstruction, and caused the action system to change lanes to
avoid it “just in case.”

Because it uses ML, the model in the safety system can-
not be assured from the dependability perspective, but it is
reasonable to suppose (and to attempt to ensure) that it is
diverse from the primary model, and likely to fail somewhat
independently.1 Furthermore, the claim that the safety system
needs to support is not that it ensures safety (that is assured

1The topic of assurance through diversity is large and somewhat con-
tentious. There is little doubt that architectures employing diverse components
are generally more reliable than single threads. The difficulty is in demonstrat-
ing that diversity provides benefit in any particular case, and in estimating
how much benefit it provides [8].

by the emergency system), but that it reduces demands on
the emergency system. Defense in depth poses challenging
problems in design: generally all layers of the system must be
developed as a whole to ensure that differences among them do
not cause unnecessary loss of availability, while nevertheless
preserving system safety arguments based on diversity.

An enhanced variant on defense in depth provides multiple
emergency systems for different µODDs (e.g., for forward
collisions on highways vs. in city traffic). There may be an
unacceptable risk of false alarms if all are active, so we can add
a selector to switch among them, or to inhibit those considered
inappropriate. The selector will likely require ML to detect
the appropriate µODDs, but this seems a simple function
requiring only an elementary model where the trustworthiness
perspective may provide adequate assurance [9].

IV. ASSURED MODELS

Guards with elementary models can provide only crude
protection and the model of an intermediate safety system may
be difficult to fuse with the primary model; a better solution
is to find a way to assure the primary model.

Conventional perception systems work “bottom up”: one
or more deep neural nets take sensor data (e.g., images from
cameras or point clouds from lidars) and deliver interpretations
(e.g., lists of detected objects) that are further processed and
fused to produce the world model. A fundamental problem
with this approach is that it works “backwards” from effect
(images) to cause (objects), which is inherently difficult and
therefore prone to failure, as exhibited by adversarial examples
[10]. Another problem is that this approach prioritizes fleeting
sensor data above the world model, which is the repository of
much accumulated information.

An alternative approach, and the way human perception is
believed to work [11], reasons “forwards” using a model to
predict sensor data (or low-level interpretations thereof) and
then applies a form of Bayesian inference to optimize the
model in a way that minimizes future prediction error (this is
rather like a Kalman Filter, but for complex data). Notice that
predictions provide sensors with the model that is lacking in
bottom-up interpretation (e.g., the model tells the lane detector
where to start looking for the markings), while prediction
errors provide continuous feedback on accuracy of the world
model. Furthermore, minimization of prediction error provides
a principled way to perform fusion over diverse lower-level
sensor and perception functions.

In humans, this mechanism for perception is known as
Predictive Processing (PP) [12] and it is believed to be coupled
with a dual-process architecture [13]. The lower-level process,
known as “System 1” [14], performs rapid unconscious per-
ception using PP so long as prediction errors are fairly small,
indicating the world is evolving as expected. A large prediction
error (e.g., the unpredicted appearance of an obstruction) is
called a surprise and the higher-level “System 2” process
intervenes to resolve it using more deliberative cognition or
an alternative model. We recommend this architecture for
autonomous systems [15].
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V. MODELS IN LLMS AND SIMILAR TOOLS

We have described how world models are essential to
autonomous systems and sketched how assurance can be
developed for systems whose primary models are constructed
using AI and ML. Similar architectures and methods can
be applied to other systems that are developed for specific
purposes and use AI and ML: the specific purposes (and
corresponding assumptions and context) allow us to determine
the hazards and hence the safety claims for which the system
must be assured and for which it must build models that its
guards and backups can use to monitor the action system.

Matters become more difficult when we consider general-
purpose AI building blocks such as Large Language Models
(LLMs) and Diffusion Models (for images), partly because we
do not know the context of their possible deployments, and
hence cannot anticipate specific hazards and their mitigations.
In our report, we describe how general-purpose systems can
be weakly guarded for very general properties, such as ethics,
law, and reputation, and internally constrained by additional
training against a “constitution” [16].

Here, we focus on the fundamental problem of general-
purpose AI, which is that LLMs, for example, are model-free.
Effective cooperation and communication among humans is
based on the parties having a shared context or world model
and some awareness of each other’s version of that model. For
example, if I am your driving instructor, I need a model of
your model of the UK Highway Code. An LLM has none of
this: its utterances align with the world models of any specific
context purely by statistical association. Hence, the utterances
of LLMs are unconnected with the collaborative context; they
are what philosophers call bullshit [17] and frequent failures
(misleadingly called “hallucinations”) are to be expected.

On the other hand, LLMs are popular because their perfor-
mance goes far beyond that suggested by their training goal
to “predict the next or missing ‘token’ in a string of text”:
they have emergent behavior that delivers more value than
this. Similarly, although there are no explicit models providing
context for this behavior, implicit models possibly emerge from
statistical associations in LLM training data, and this might
partially account for their surprising performance. It would
also explain their flaws (implicit models are unpredictable)
and, further, indicate that these flaws are irregular, inevitable
[18], and unfixable—unless assurable world models can be in-
corporated within explicit guards or within LLMs themselves.

One approach is to examine the implicit model and pur-
ported reasoning that the LLM does employ, which it can
be engineered to disclose as an explanation [19]. In some
applications (e.g., generation of formal text such as designs
or code), the explanation may be sufficient to guide an
external simulator or verifier to assure the output (e.g., prove
a generated program is correct). If the verification fails, then a
counterexample can sometimes be constructed and returned to
the LLM with instructions to try again (and again). Variations
invite the LLM to critique its own output, or to follow a step-
by-step plan that reflects the user’s own model.

A variation subjects the LLM output to scrutiny by a
diverse AI system. Typically this will use symbolic methods
such as deduction over a (human-generated) model for the
intended application domain, possibly augmented with the
ability to lookup trusted Web sites. Some applications of LLMs
are already incorporating these techniques as “plugins” (e.g.,
Microsoft’s Bing is reported use over 100 plugins [20]).

These approaches use external models to guard LLMs.
Other approaches constrain the LLM to apply a model that
is explicitly provided. One such method exploits the large
context window (i.e., input) allowed by some recent LLMs
and provides a prompt with hundreds of training examples
prior to the real query. This is called in-context learning [21];
previously, such “fine tuning” required access to the LLM’s
training environment and adjusted the weights in its neural
net. Related to this are applications that provide a substantial
input and then ask the LLM to do something with it (e.g.,
summarize it, or identify its topic). These approaches constrain
the LLM to operate on or within the context provided, so
there is little opportunity to generate or insert inappropriate
content extracted from its training corpus. Due to its model-
free nature, the LLM may still misinterpret the input and do
a wrong thing, but this should also be minimized as a large
input can explicitly (via extensive prompts) or implicitly (via
a block of text) convey the intended context or model.

Notice that sometimes it may be desirable to adjust the data
presented to an AI or ML system as a way to manipulate its
implicit model. For example, if racial bias is recognized as
a hazard, then it might be mitigated by removing race from
the data presented to the ML in training and operation. A
weakness in this approach is that the ML may discover a
proxy for race (e.g., zip code) among the data that it does
see, so a better alternative may be to mask this characteristic
in training by assigning race randomly. An alternative could
be to repeat queries under different assumptions—such as with
race or gender assigned differently—and compare decisions.
These methods can be seen as computational approximations
to Rawls’ “veil of ignorance” [22].

All these approaches provide compensation for the model-
free behavior of LLMs and other general-purpose AI systems.
The utility and safety of these systems would be greatly
improved if methods were developed to incorporate suitable
models into their construction and behavior. In the interim, the
external methods sketched here do have the merit of diversity
and can provide limited assurance on that basis.

VI. ARTIFICIAL (FAIRLY) GENERAL INTELLIGENCE

In previous sections we have considered assurance for
specific systems and for general-purpose tools based on AI
and ML where the concern is that faulty behavior may lead
to harm. However, for projected developments of current AI
and ML systems and the potential emergence of Artificial
General Intelligence (AGI—a hypothesized capability where
AI performance exceeds that of humans on many tasks), the
concern is not just faulty behavior but the social impact of new
capabilities. In particular, an AGI system capable of setting its
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own goals might pursue objectives contrary to human interests.
Notice that although the terminology is seldom employed in
discussion of these topics, these are nonetheless dependability
failures: an AI system with potentially contrary goals is a
hazard that should be recognized and it should be furnished
with safety requirements to mitigate the danger, together with
assurance that they do so, and are implemented effectively.
However, current practice in the field frames the assurance
problem for AGI as ensuring that its goals align with those of
human society—and this needs to be maintained even though
AGI may fall into the hands of bad actors, criminals, and
adversaries.

In our opinion, current AI and ML technology will not lead
to AGI, precisely because it is model-free: a true AGI needs
an accurate predictive model of its world. What we consider
of more urgent concern is Artificial Fairly General (or Fairly
Good) Intelligence (AFGI) that is a modest projection of the
technology already available. These are AI systems that are
good enough and cheap enough to displace (possibly supe-
rior) human services. For example, well-researched journalism
already finds it hard to compete with LLM-generated press
releases and propaganda that masquerade as news. Further-
more, by repeatedly circulating misinformation, falsehoods,
and mediocrity, these systems impair our own ability to
discriminate truth, novelty, and insight, and they contaminate
the training data consumed by the next generation of LLMs,
possibly leading to model collapse [23].

In our report, we develop these and other dystopian possi-
bilities, and also the hazard of AI system becoming conscious.
However, we are unable to suggest mitigations other than
voluntary or regulated vigilance by those involved in their
development. But we do stress that provision of world models,
and AI perception systems that construct assured models, will
be the central concern.

VII. CONCLUSIONS

We identified a spectrum of approaches to assurance for AI
systems, ranging from the traditional dependability perspec-
tive, which holds that AI and ML lack the predictability re-
quired for assurance and must instead be externally guarded, to
the trustworthiness perspective, which believes these systems
can sometimes be adequately assured directly.

We focused on methods toward the dependability end of
the spectrum and argued that the central issue is assurance
for the predictive models of the system’s local environment
that are used to drive its behavior. Because the accuracy of
models constructed by an AI perception system cannot be
guaranteed, the dependability perspective favors guards that
use simpler, but assured models. In autonomous systems, these
guards may be safe but disruptive, so we recommended a
near-term strategy of defense in depth using architectures with
diverse assured guards. Longer term, development of assured
perception, possibly based on predictive processing, is the
important challenge.

For LLMs, the concern is not that they misperceive the
world and build inaccurate models, but that they have no world

model at all and are therefore completely unpredictable. In the
near term, diverse external guards that do employ a model can
provide some mitigation, but the longer term challenge is to
develop LLMs that infer explicit and checkable world models
from their training, or that have suitable models imposed upon
them during their development. Finally, we glanced at AGI and
suggested that dystopian future prospects should not distract
from the near-term hazards of fairly good AI that is fragile.
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