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Abstract

We outline the principles of classical assurance for computer-based
systems that pose significant risks. We then consider application of
these principles to systems that employ Artificial Intelligence (AI) and
Machine Learning (ML).

A key element in this “dependability” perspective is a requirement
to have near-complete understanding of the behavior of critical com-
ponents, and this is considered infeasible for AI and ML. Hence the de-
pendability perspective aims to minimize trust in AI and ML elements by
using “defense in depth” with a hierarchy of less complex systems, some
of which may be highly assured conventionally engineered components,
to “guard” them. This may be contrasted with the “trustworthiness”
perspective that seeks to apply assurance to the AI and ML elements
themselves.

In cyber-physical and many other systems, it is difficult to provide
guards that do not depend on AI and ML to perceive their environ-
ment (e.g., other vehicles sharing the road with a self-driving car), so
both perspectives are needed and there is a continuum or spectrum be-
tween them. We focus on architectures toward the dependability end of
the continuum and invite others to consider additional points along the
spectrum.

For guards that require perception using AI and ML, we examine
ways to minimize the trust placed in these elements; they include diver-
sity, defense in depth, explanations, and micro-ODDs. We also examine
methods to enforce acceptable behavior, given a model of the world.
These include classical cyber-physical calculations and envelopes, and
normative rules based on overarching principles, constitutions, ethics, or
reputation.

We apply our perspective to autonomous systems, AI systems for
specific functions, general-purpose AI such as Large Language Models,
and to Artificial General Intelligence (AGI), and we propose current best
practice and an agenda for research.
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1 Introduction: Assurance for Traditional Systems

Humankind has been concerned about the safety of their constructions ever since
they started making them. From the beginning, they noted failures, developed good
practices, and specified liabilities and penalties. Nearly 4,000 years ago, the Code
of Hammurabi stipulated:

“If a builder build a house for some one, and does not construct it
properly, and the house which he built fall in and kill its owner, then
that builder shall be put to death” [69, Section 229].

Hazards to safety depend on what a constructed thing does and how it does it.
Buildings, boats, bridges, and mines were among the earliest constructions, and the
hazards were that they would fall down, break up, or catch fire, so nascent safety
engineering and assurance focused (not always successfully) on ensuring that they
were of adequate strength and were based on some understanding of the mechanisms
of stress and failure. Active systems such as boats not only needed to be strong, but
to possess some form of stability so that they would right themselves rather than
tip over in wind gusts, and a means of control so they could steer a desired course.
And inherently dangerous constructions such as underground mines would need to
include escape routes from collapse or fire. These concerns and methods were refined
in the industrial revolution as machines such as high pressure steam engines did new
things and introduced new hazards. Systems such as railways introduced the need
for active procedures to ensure safe operation, such as signaling protocols to prevent
two trains using the same track.

Later, control systems became automated, first by mechanical systems such as
governors, then by analog electronic systems such as autopilots, and then by digital
computers. Protocols and protection systems also became automated, first with
interlocks and then with full automation implemented by digital computers.

Systems with control and procedural mechanisms implemented by computers (so-
called cyber-physical systems, CPS) drive the state of the art in safety engineering
and assurance today [102]. The central tenet of the approach taken, which we call
the dependability perspective, is that there must be near-complete understanding
of how the given system works, what are its hazards, how these are eliminated or
mitigated, and how we can be sure all this is done correctly. The evidence and
arguments that justify confidence in the claims documenting this understanding
constitute what is called an assurance case (see later for details and references).

Systems that use Artificial Intelligence (AI) and Machine Learning (ML) are
both an evolution and a step change from their predecessors: although they often
automate existing systems and procedures, they work in different ways to what has
gone before, and they can also do different things. Because they work in different
ways, it is difficult to apply established methods for safety engineering and assurance
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to AI and ML, even when they are used in familiar or slightly extended contexts,
such as automated control and autonomous systems. In particular, the behavior
of systems based on ML is developed experimentally, so their inner workings are
opaque and do not support the understanding required for justified confidence.

And because they can be used to do new things, some AI and ML systems
introduce entirely new hazards: potentially, they can substitute for people in ac-
tivities that previously required human levels of perception, language, intelligence,
and judgement, and where failure can go beyond physical harm and can affect per-
sonal wellbeing, relationships, and society at large. Beyond this fairly incremental
progression lies the step to Artificial General Intelligence (AGI), with potentially
superhuman performance on significant activities, plus imagination, agency with
independent goals, and possibly consciousness.

Our aim in this report is to identify and briefly describe issues, possible methods,
and difficulties in assurance for systems with significant AI and ML content. We do
this mainly from the dependability perspective, where AI and ML are accommodated
by guarded architectures that use “guards” or “monitors” to provide assurance for
the overall system with few or no assumptions on the AI and ML components.

The dependability perspective may be contrasted with what we call the trustwor-
thiness perspective, which does claim some assurance in the behavior of AI and ML
components that have been developed, analyzed, tested, augmented, or restricted
in various ways.1 Both perspectives have merit and in practice there is a contin-
uum or spectrum between them. In particular, we envisage guarded architectures
that are recursively structured where “first level” guards might use some AI and
ML and themselves be guarded by simpler systems, eventually bottoming out on
conventionally engineered and assured guards so that the overall architecture pro-
vides “defense in depth.” The architecture and its assurance will vary according
to how much assurance “credit” is taken for trustworthiness or diversity of AI and
ML components [26]. We call this the dependability/trustworthiness spectrum; a
“pure” dependability perspective takes no credit for trustworthiness of AI and ML
components, while a “pure” trustworthiness perspective claims full assurance credit
for those components.

In the remainder of this section, we describe the dependability perspective on
assurance for traditional systems that do not employ AI or ML. Subsequent sec-
tions introduce increasing amounts of AI and ML and we discuss approaches and
concerns regarding their assurance from perspectives toward the dependability end

1Terminology across different fields is always difficult and sometimes contentious; the field of
dependability regards “trustworthiness” as a synonym for “dependability,” whereas AI tends to
use “safety” as the required property (e.g., the UK Government has an AI Safety Institute) and
“trustworthiness” as the means for achieving and assuring it. The adjective “trustworthy” carries
a somewhat anthropomorphic tone that we discuss in Section 4 and so we generally prefer the more
neutral, engineering terminology of dependability. However, we need a name for the alternative
perspective and we use “trustworthy” for that purpose.
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of the spectrum. We invite others to provide complementary studies toward its
trustworthiness end. We stress that the purpose of assurance as we present it is
not to impose a brake or burden on development, but to support innovation by
anticipating downstream hazards and suggesting creative ways to mitigate them.

1.1 Traditional Systems and their Assurance

State of the art non-AI cyber-physical systems such as aircraft flight control, safety
systems such as nuclear shutdown, and all manner of systems within critical infras-
tructure, medical devices, personal gadgets and much else are generally engineered
and assured for suitably high levels of safety and other required attributes, such
as security or effectiveness, all generically referred to as dependability [81, 105]. In
outline, the process for doing this begins with identification of the potential hazards
that the proposed system might entail. A hazard is a circumstance with an unac-
ceptably high risk of leading to harm or other undesired outcome. Hazard analysis
is conducted in the context of assumptions about the environment in which the sys-
tem will operate and is not an exact science: even its most effective methods can be
imperfect and their application requires skill, knowledge and experience [80,119].

As hazards are identified, the system and its evolving design are adjusted to
eliminate or mitigate them. For example, if fire is a hazard, we may try to eliminate
it by removing sources of ignition and fuel; if that is impossible or inadequate,
we can try to mitigate the hazard by adding a fire suppression system. But then
we have new hazards concerning failure of that suppression system. Note that we
usually try to separate those parts of the system concerned with elimination and
mitigation of hazards from those parts that deliver its general functionality: the
goal is to minimize the size and complexity of those parts that need the highest
levels of assurance. We will also want to protect these critical parts from the rest
of the system: a practice known as partitioning [144]. Of course, some aspects of
the system’s general functionality may also be considered critical and they, too,
will be partitioned to the extent possible, and subject to assurance. And some
auxiliary functions such as logging may also be considered critical as they will be
needed to support forensic investigation in the case of failure (consider the difficulty
in conclusively demonstrating failures of the British Post Office Horizon system
[40,117]).

After some rounds of iteration on hazard identification and modifications to the
system goals and design, we will have a set of requirements for the critical desired
behavior of the computer control system that, with high confidence, ensures de-
pendability of the overall system in its assumed environment. Identification and
articulation of properties assumed about the environment are fundamental to for-
mulation of requirements and are often the most difficult and fault-prone aspects of
the entire system engineering endeavor. The analysis and reasoning that shows that
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the requirements ensure safety and other critical properties within their environment
is an assurance task that we term dependability requirements validation.

Requirements concern what the system will do, not how it will do it, so they
should largely be described in terms of changes the system is to bring about in the
environment (this is a key insight due to Michael Jackson [82]). How the system will
do its task is developed in specifications for the defined behavior of the system and
the architecture of its components. Architecture is a generalization of partitioning
(often portrayed by “boxes and arrows” diagrams) and its purposes are to identify
fault containment regions that limit fault propagation among components, to identify
critical components and limit their complexity (because complexity is a source of
faults and also makes it more difficult to discover what faults may be present), and
generally organize things so that dependability relies on only the architecture and
the defined behavior of the critical components [30].

We then implement the system according to its specifications and architecture.
The mechanisms that ensure an architecture is faithfully represented in the system
implementation are among the most difficult engineering challenges in computer
science (involving operating systems, “buses,” distributed consensus, state-machine
replication, transaction mechanisms etc.) and should employ only well-attested tech-
niques and products with no “homespun” solutions [145]. During implementation,
we may discover new hazards and the whole process iterates: the new hazards cause
revision to the requirements2 and their safety validation, and also to the specifica-
tions and hence to the implementation.

Assurance is developed during and following this process. After dependability
requirements validation, assurance divides into three verification tasks. (Veri-
fication differs from validation in that, in principle, it can be performed with perfect
accuracy.)

Intent. The specifications must be shown to be correct and complete with respect
to the requirements, subject to properties of the architecture and assumptions
about the environment

Correctness. The implementation must be shown to be correct and complete with
respect to the specifications, subject to properties of the architecture and
assumptions about the environment.

Innocuity. Any part of the implementation that is not derived from the require-
ments must be shown to have no unacceptable impact.3

2Confusingly, these revisions are often called derived requirements (the term comes from avion-
ics); it is confusing because their essence is that these requirements were not derived during the
main process of requirements development.

3Software libraries provide an example of implementation content that is not derived from re-
quirements: we might require only the trigonometric functions, but the whole library is installed
as part of the implementation.
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Different industries have their own standards and guidelines that codify aspects
of this process, often in great detail; the very generic and abstract description given
above is based on the Overarching Properties (OPs) proposed as the basis for future
civil aircraft certification in the USA [75].4

Each of the assurance validation and verification tasks states that some prop-
erties “must be shown” to hold; by this, we mean that there must be reasons why
the properties hold, and these reasons must be clearly articulated and justified.
The state of the art for doing this is an assurance case (a generalization of safety
cases [1,91]) that provides an organized presentation based on claims, evidence, and
argument [24, 147]. Claims identify properties of the system and/or its environ-
ment; evidence refers to observations, measurements, or experiments on the system
or its means of construction or on its environment that justify certain claims; and
the argument uses the evidence to establish a hierarchy of claims culminating in
a significant top claim. The arguments of an assurance case are not free form but
structured as hierarchy of argument steps, each of which establishes a “parent” claim
on the basis of one or more “child” claims (we usually say subclaims) established at
lower levels, or by evidence. A portion of a graphical rendering of an assurance ar-
gument is displayed in Figure 1; our preferred treatment of modern assurance cases,
which we call Assurance 2.0, is presented elsewhere [28] and builds on the ideas
that a strong assurance case should be indefeasible [29, 148], based on established
theories [171], and subjected to dialectical examination [27].

1.2 From Assurance to Dependability

The focus on dependability validation and verification with overall justification pre-
sented as an assurance case might seem like good practice and a sensible way to
develop high quality systems, but why is it needed for assurance? Why don’t we
just test the thing? Indeed, whenever there is a major systems failure, the first
reaction of the press and public is “they didn’t test it enough.” But in fact, testing
is insufficient and the reason is the extraordinary levels of confidence required for
safety and other critical properties and, consequently, the infeasibly large number
of tests that would be required to validate them by observation alone. We give a
few numbers for illustration.

In commercial airplanes, “catastrophic failure conditions” (those “which would
prevent continued safe flight and landing”) must be “so unlikely that they are not
anticipated to occur during the entire operational life of all airplanes of one type”
[56]. The “entire operational life of all airplanes of one type” is about 108 to 109

4OP concerns software assurance, so dependability/safety validation is outside (occurs prior
to) its scope. Also, OP speaks of desired and defined behavior rather than requirements and
specifications.
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Figure 1: Portion of Graphical Rendering of an Assurance Case Argument

flights for modern airplanes. With an average flight duration of about 90 minutes,
this requires a critical failure rate no worse than about 10−9 per hour.5

Cars are among the most dangerous consumer goods with about 40,000 deaths
per year in the United States and a fatal accident rate of a little over 10 per billion
miles. It is intended that self-driving cars should be safer than human drivers, so it
might seem reasonable (even though driving error is not the only cause of accidents)
to set the target at no more than 1 death per billion miles, which is around 10−7

per hour, given an average speed of 30 mph. However, that is a rather technical
assessment that pays no attention to likely public reaction. Herbert Diess, the former
CEO of Volkswagen is quoted on their website with a more realistic assessment: “A
ratio of ten-to-one is nowhere near good enough. We have approximately 3,200

5There are many measures for reliability, such as failure rate, probability of failure on demand,
probability of fatality per mile, etc. And the underlying system models may use discrete or contin-
uous time, with Bernoulli or Poisson failure processes, etc. The general conclusions drawn here are
robust to all these choices and so we do not describe them in detail.
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traffic fatalities in Germany each year. It would be a disaster if we had even 320
deaths due to driverless cars.” Thus, it is widely accepted that the safety target
for self-driving cars should be 100 or even 1,000 times better than human drivers,6

which brings us into, or even beyond, the requirements for commercial aircraft. But
commercial aircraft do get assured and certified and their safety record justifies this,
so why is 10−9 seen as such a challenge?

The answer is that we do not assure aircraft solely by testing. If we test a system
for n hours and observe no failures, then in the absence of other information, the
best prediction we can make is that the likelihood of no failures in another n hours
is about 50–50 [113, p. 73, and sidebar on p. 74]. Hence, to secure assurance for
failure rates of 10−9 per hour we would need to test the system for about 109 hours,
or around 115,000 years. Even with 1,000 copies of the system on test, this is still
well over 100 years of continuous operation and is completely infeasible [37,90,113].

The purpose of the classical methods of assurance described earlier is to give
justified confidence that the system contains no (dependability) faults and hence
will have no dependability failures. Confidence can be expressed as a subjective
probability, so if we are 95% confident that traditional assurance works, that means
we estimate there is only 5% chance that the assured system contains faults. We
can now use testing to explore the existence of those potential faults but, unlike the
previous case, we know something about the system so when we see n hours with
no failures, we can conclude (by what is called Conservative Bayesian Inference,
CBI) that we are likely to see another 10n with no failures [163, 182]. This reduces
the amount of testing required and another idea reduces it still further. This is
Bootstrapping [22]: we need assurance for 109 hours, but this is over the lifetime
of the system. When the system is first deployed, we might be satisfied to know
there will be no dependability failures in the first year, and we will have only a few
instances of the system operational in that time. So we might need confidence for
only, say, 105 hours, and testing for this, given prior assurance and CBI, requires only
104 hours, which is perfectly feasible. After the first year, we might seek confidence
for the next year and for the larger number of systems now installed, but we will
have the operational experience of the first year and that should be sufficient (given
the tenfold multiplier of CBI) to deliver the required confidence in safe operation,
and so on for subsequent years.

But suppose experience in operation does reveal a failure, hopefully not catas-
trophic (in commercial aircraft, for example, it is required that no catastrophic
failure may be caused by a single fault). Any such failure reveals an unantici-
pated fault, arrival rate, circumstance, or hazard, and these could be precursors

6This sensitivity is illustrated by a recent accident in San Francisco: a car with a human driver hit
a pedestrian and threw them under the wheels of a Cruise self-driving taxi, which then dragged the
victim for several yards. Subsequently, Cruise lost their license to operate in San Francisco (although
their poor initial response to the incident probably contributed to this harsh reaction) [97].
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to a catastrophic failure. Consequently, commercial airplanes operate in a legal
and ethical framework where all incidents and accidents are promptly reported and
dispassionately investigated. The FAA issues Airworthiness Directives mandating
workarounds or corrections to detected faults; in extreme cases it may temporarily
ground the fleet (as it did for the 737 MAX in 2019–2020). Bishop [21] constructs
a statistical model for this scenario and shows that, under plausible assumptions,
detection and repair of faults significantly increases long run safety, even if the
fleet continues to operate after a fault has been discovered, and even if repairs may
be imperfect. It follows that there is much value in monitoring, analyzing and, if
warranted, correcting all non-trivial failures and their precursors.

We can now see that traditional approaches to assurance, such as described
for OP, give us justifiably strong confidence that the system satisfies its critical
properties; this can then be augmented by testing and operational experience to
deliver (via CBI and Bootstrapping) justified confidence that the system satisfies its
dependability goals, and this can be reinforced by monitoring during operation. In
the following sections, we consider systems with AI and ML components that do not
lend themselves to traditional methods of assurance and may therefore be ineligible
for CBI, and we explore how, and to what extent, dependability can nonetheless be
achieved and guaranteed.

2 Assurance for Systems Extended with AI and ML

In this section, we focus on systems that do fairly traditional things but are now
extended with capabilities enabled by AI and ML. Autonomous CPS such as self-
driving cars are canonical examples.

For traditional assurance, there must be good reasons why we believe the system
achieves its dependability goals and those reasons are documented and justified in
its assurance case. Systems that use AI and ML pose challenges to this approach
because, rather than performing actions that are effective and safe for reasons that
can be articulated and verified, a system that uses ML operates by learning suitable
behavior during a period of training. Training typically defines empirically effective
“weights” in a deep neural network (DNN); there will often be millions, or even
billions, of individually adjusted weights.7 The hope is that if the system works
correctly on the training examples, then it will work correctly on all similar examples.

An alternative to ML is symbolic AI, which uses automated deduction (theorem
proving) to derive conclusions from premises composed of a set of axioms describing

7There are other ML techniques, such as Support Vector Machines [161] but, despite different
mechanisms, these pose similar challenges to assurance as do neural networks. Similarly, the spe-
cific ML architecture in which neural networks are employed, such as reinforcement and inverse
reinforcement learning, or large generative language and diffusion models, has little impact on the
fundamental difficulty of assuring ML.
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some aspect of the world plus observations about the current state of the world.
It is possible to guarantee validity of some methods of automated deduction (e.g.,
SAT and SMT solvers with certificates [120]), but soundness depends on the choice
of premises, which may be unvalidated and derived from an informal or empiri-
cal model, and also on the computational resources available (deduction generally
requires exponential time, or worse, so we may need to accept whatever partial anal-
ysis can be accomplished in fixed time). “Expert systems” were a type of symbolic
AI popular in the 1980s where deductive procedures were applied to a collection of
“rules” that axiomatized some domain. The concern, and one of the reasons for the
demise of these systems, was that individually reasonable rules could collectively be
inconsistent or incomplete, resulting in faulty output [143]. Modern symbolic AI
uses improved technology but its challenge to assurance remains largely unchanged.
A combination of symbolic AI with ML is a popular current approach known as
neurosymbolic AI. The strengths and weaknesses of the two approaches seem to be
complementary, but this does not assuage their assurance problems.

Traditional assurance requires good understanding of how the system works
because tasks such as intent verification must show that certain properties hold in
all circumstances. This is infeasible for most AI and ML components because we lack
detailed understanding of their operation,8 but an alternative or constituent part
of the overall system assurance process can be to check that properties hold in the
circumstances actually encountered during operation. This is runtime verification
[142] or, more boldly runtime certification [146], where components, often generically
referred to as guards (or monitors [71, 121]), are added to the system to check its
behavior against its required or specified properties, or conservative simplifications
of these. If a check fails, then the system must take some remedial action to maintain
or restore safety. Both checking and remediation add complexity to the system and
may themselves introduce failures and hazards, so this approach requires careful
engineering [100]. Nonetheless, a plausible approach is to guard AI and ML elements
with conventionally engineered components that perform runtime verification and
can be assured in the conventional way. This approach is endorsed in some industry
guidelines such as F3269-17 for unmanned aircraft [7].

2.1 Runtime Verification

To investigate runtime verification for systems with AI and ML components, we
need some general understanding of the likely overall system architecture and the
properties that will be checked. The top-level structure of almost any system that
employs AI or ML follows from a single insight, which is that any entity that interacts
effectively with some aspect of the world must have a model of that aspect of the

8Recently, there has been progress in associating learned “concepts” with specific clusters of
artificial neurons [166], but this is still some way from the understanding required for assurance.
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world [45]. In particular, cyber-physical systems are always based on a model of the
controlled “plant” and its environment [59]. For pure control systems, the model
may be a collection of differential equations; for systems that involve procedures it
may add state machines; and for full CPS it will include integrated formalisms such
as timed and hybrid automata.9

The model may be used in development but be represented only indirectly in
the final system (e.g., as control laws in classical control engineering), or it may be
partially defined at design time and built in to the system with parameters that
can be adjusted at runtime (as in adaptive control systems), or it may largely be
constructed at runtime and represented explicitly within the system (as in model-
predictive control and autonomous systems). A characteristic of most systems that
employ AI and ML is that these capabilities are used in building and maintaining
a model of the “world” (i.e., its environment, such as the locations of other road
users) at runtime; this function is generally referred to as the perception (sub)system.
Optionally, AI and ML may also be employed in the action (sub)system, which uses
the world model to calculate and execute behavior that will advance the system’s
progress toward its goal, while maintaining dependability.10

It is often possible to guard AI or ML-generated actions with highly assured
conventional software that checks their safety against the world model. However, if
the world model is constructed by a perception system that uses AI or ML then we
have to ask how its own accuracy can be assured or guarded: it does no good to
run safety checks against a faulty model. One possibility is for the guard to use a
different model that can be assured.

We can therefore distinguish two classes of guarded AI-enabled systems accord-
ing to the nature of their runtime verification. Assuredly guarded systems are those
whose safety and other critical properties can be checked and enforced by assured
guards that do not themselves use AI or ML, neither for perception nor action. In
cases where the guards are so strongly assured that they can be considered “possibly
perfect” (or “probably fault-free”), it is possible to make very strong claims for de-
pendability of the overall system [112,183]. The second class is unassuredly guarded
systems, where the guards themselves depend on AI or ML, typically in their per-

9A model can be thought of as a simulation (or “digital twin”) of the plant and its environment;
“model based system/software engineering” (MBSE) builds and experiments with explicit simu-
lations of these plus the intended system using tools such as StateFlow/Simulink and derives the
requirements and specification, and sometimes the implementation (and sometimes does that auto-
matically), from the system simulation. A criticism of this approach is that the focus on simulation
introduces implementation concerns too early into the process (it is difficult to simulate require-
ments stated as constraints unless theorem proving is used, so specifications are often substituted
for requirements) and thereby compromises dependability requirements validation.

10There is often substructure within the action system: generally a decision system that plans
what to do (e.g., “move into the nearside lane between cars a and b”) and an execution system that
manipulates the controls (accelerator, brakes, steering, horn) to perform that plan. These details
are unimportant at our level of discussion.
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ception systems. See, for example, the architectures listed on page 20, where those
that include a traditionally assured backup guard are assuredly guarded and others
(except number 1, which is not guarded) are unassuredly guarded.

An example of the first class is an unmanned aircraft controlled by AI and ML
that is deemed safe as long as it remains within some specified portion of airspace (a
“geofence”). This is a constraint that can be checked by a conventional navigation
system and enforced using a conventional guidance system as an override when
violations are detected [48]. Many robots can be guarded by “virtual cages” of this
kind. Notice also that when formulating the initial “concept of operation” for a
system, it may be possible to adjust the concept so that assurable guards become
feasible. For example, rather than an autonomous shuttle bus sharing its route
with other vehicles and pedestrians, it could use a dedicated and isolated track, and
would not then require a sophisticated AI-based perception system.

An example of the second class is a self-driving car where the action guard checks
AI-generated actions for safety and other dependability properties against a model
of its environment—i.e., location of other road users and pedestrians, interpretation
of traffic signs and markings, detection of road layout, etc. To verify the guard
we need assurance for accuracy of its model, and to do this in the traditional way
we would want to see its requirements (i.e., what it should represent and what it
means for it to do so with acceptable accuracy), its hazards (e.g., inaccuracies that
can lead to harm), together with specifications and an implementation that can be
shown to achieve the requirements and mitigate the hazards. Typically, none of
this is present for models constructed by an AI perception system that uses ML to
interpret its sensors, although recent developments are starting to explore some of
these topics [25,39,76].

2.2 The Challenge of Assuring Perception

We have seen that an action subsystem can generally be assuredly guarded, but is
dependent on a model of the world constructed by a perception subsystem that is
harder to guard.

A possible compromise is for the action guard to use a simpler, conservative
model constructed by conventional and highly assured software. This is sometimes
seen in self-driving cars where the guard is a simple system for automated collision
detection and emergency braking, similar to the Automated Driver Assistance Sys-
tem (ADAS) that is provided for some human-driven cars.11 However, this does not
provide full assurance because forward collisions are not the only hazards (Mehmed

11The US National Highway Traffic Safety Administration recently finalized a rule (FMVSS No.
127) that will require Automatic Emergency Braking (AEB), to be standard on all passenger cars
and light trucks by September 2029. Tests by the American Automobile Association found that
current AEBs (which are built to a lower, voluntary standard) are somewhat effective against
rear-end collisions, but not at all effective against sideways collisions at intersections.
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and colleagues cite data from a NHTSA study of 5.9 million human-driver accidents
classified in 37 categories [122]), nor are human accidents necessarily good models
for failures of an autonomous system, and nor is emergency braking attractive as the
sole method of hazard mitigation. And notice that to prevent excessive activation of
the emergency system, the primary system of a self-driving car must take its behav-
ior and capabilities into account. For example, the primary action subsystem may
calculate (correctly) that a certain maneuver is optimal and safe, but that it is also
likely to activate the more hair-trigger response of the emergency system, and so it
must choose a different behavior. In general, systems employing defense in depth
must be designed and developed as a whole to ensure that unintended differences
among the layers do not cause unnecessary loss of availability, while safety arguments
based on diversity are nevertheless preserved. These are challenging requirements.

Furthermore, accidents and collisions are not the only hazards that should be
considered: for example, the City of San Francisco has reported dozens of incidents
where robotaxis interfered with emergency responders, and there must be many
other circumstances where self-driving cars increase risk or inconvenience for others
without themselves being involved in a collision.

For verified dependability, assurable guards must detect all hazards and mitigate
them safely, without excessive false alarms. It is possible that a more comprehensive
suite of verifiable ADAS-like guard functions could do better, but they would have
to steer a difficult path among incomplete coverage, false alarms, and unattractive,
abrupt, responses. A contrary point of view is that although there may be many
circumstances leading to accidents, the exact circumstances are irrelevant to “last
second” detection as there are only a few possible emergency responses: essentially,
braking or evasive action, and so an ADAS-like guard (or a suite of such guards)
could be an acceptable means of assurance, provided we can develop assurance that
it will always select and perform appropriate emergency responses (see Section 2.5).

An argument against simple ADAS-like guards is that more sophisticated percep-
tion could detect hazardous situations earlier and provide less abrupt mitigation.
Accordingly, it is worth considering guards that do use AI and ML and asking
whether they can be assured for trustworthiness within an overall approach that
remains close to the dependability end of the dependability/trustworthiness spec-
trum. For example, we could imagine an “ML-friendly” adjustment to traditional
assurance where we do construct requirements and identify hazards, and then de-
velop training data of “sufficient” size, coverage, and quality12 to encompass all of
these and use it with a well-regarded ML toolset to generate the perception capabil-
ities desired. In fact, this is exactly what is proposed by several groups engaged in
research and development of autonomous systems [4,19,49], although they generally

12ML requires such a vast quantity of training data that the training sets are often labeled
automatically, by another AI system, and therefore cannot be considered high quality.
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consider primary systems rather than guards, and only one focuses specifically on
perception [154].

The hazard most generally recognized in perception using ML is lack of “ro-
bustness,” meaning that small changes in sensor data may cause its ML-generated
interpretation to change abruptly. This concern is validated by so-called “adver-
sarial examples” [165]. Typically demonstrated on image classifiers, the examples
are deliberately constructed minor modifications to an input image that are indis-
cernible to a human observer but cause an ML classifier to change its output, often
drastically and inappropriately. Image masks have been developed that will cause
misclassification when overlayed on any image input to a given classifier, and there
are universal examples that will disrupt any classifier [124]. Furthermore, there are
patterns that can be applied to real-world artifacts (e.g., small images that can be
stuck to traffic signs) that will cause them to be misread by an image classifier [35].

There is much work on detection and defense against adversarial attacks (see [77]
for a survey) and on the threats posed by general lack of robustness [104, 172]. A
problem with all this work is that the techniques for guaranteed robustness have
so far scaled only to relatively simple systems and not, for example, to the object
detector of a self-driving car. And, more importantly, robustness is not the topic
we really care about: we want assurance of accurate perception. There is work
that verifies contracts on some aspects of perception, notably detection of traffic
lanes [8], but this particular problem can also be solved without ML [50] (although
those solutions may also be hard to verify).

Accurate perception for world models in general depends not only on robust
interpretation of individual sensors but also on effective sensor fusion. This is il-
lustrated by the fatal accident between an Uber self-driving car and a pedestrian
walking a bicycle in Arizona on 18th March 2018 [125]. The Uber car used three
sensor systems (cameras, radars, and lidar) and fused them using a priority scheme
that delivered a “flickering” identification of the victim as the sensor systems’ own
classifiers changed their identifications, and as fusion preferred first one sensor sys-
tem, then another, as listed below [125, Table 1].

� 5.6 seconds before impact, victim classified as vehicle, by radar

� 5.2 seconds before impact, victim classified as other, by lidar

� 4.2 seconds before impact, victim classified as vehicle, by lidar

� Between 3.8 and 2.7 seconds before impact,
classification alternated between vehicle and other, by lidar

� 2.6 seconds before impact, victim classified as bicycle, by lidar

� 1.5 seconds before impact, victim classified as unknown, by lidar

� 1.2 seconds before impact, victim classified as bicycle, by lidar
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Consequently, the object tracker never established a trajectory for the victim and
the vehicle collided with her even though she had been detected in some form or
other for several seconds. The car in this incident used a particularly poor method
of sensor fusion and better methods are now employed, but it is not known how to
provide assurance for their behavior.

We conclude that approaches based on trustworthy perception do not yet provide
an adequate basis for assured world models, although they do represent good practice
and can be welcomed and used on that basis.

We are therefore torn between guards that do not use AI or ML and are poten-
tially assurable, but whose interventions are crude and possibly unacceptable, and
those that may be acceptable but are unassurable because they use AI and ML for
perception. However, there is one last approach that might provide hope: this is an
argument based on diversity and defense in depth.

2.3 Assurance through Diversity and Defense in Depth

In our discussion so far, we have been using guards for runtime verification, where
overall assurance depends on that of the guard. But we could also argue that any
guard, even if it is not assured, will provide redundancy, and its development and
implementation can be completely independent and “diverse” from the primary
system. Hence, it is plausible that failures of the guard will be independent of those
of the primary and the combination could deliver a multiplicative improvement in
dependability (i.e., naively, two systems with pfd ≤ 10−4 give us 10−8 overall). We
can also imagine a more integrated system where, rather than a primary system and
a guard, we have redundant, diverse perception systems with different architectures
and training sets contributing to a single consensus model, or to one, but still fused,
model for operation and another more conservative one for runtime verification of
actions.

The topic of assurance through diversity is large and somewhat contentious.
There is little doubt that architectures employing diverse components are generally
more reliable than single threads. In particular, there is evidence that “portfo-
lio” or “ensemble” perception systems are more reliable than their individual con-
stituents [87]. The difficulty is in demonstrating that diversity provides benefit
in any particular case, and in estimating how much benefit it provides [111]. In
particular, there is no feasible way to validate failure independence (it is a vari-
ant on the infeasibility of assurance by testing),13 nor strong reasons for believing
it. This is because some circumstances are just plain hard to interpret and it is
possible that all components may then fail together: consider the scenario with
the Cruise self-driving taxi described in Footnote 6—would any training set have
included pedestrians being thrown under the wheels? Furthermore, these difficult

13However, it is feasible to validate modest degrees of independence, and indications of its absence.
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cases do not “thin out” as more are considered: the distributions seem to have “fat
tails” [98]. Thus, the “multiplicative” argument for assurance by diversity is indeed
naive.

However, although diversity alone cannot provide strong assurance, it can pro-
vide a useful step in a “ladder” of assurance. Nuclear power generation usually
employs such a ladder of protection systems providing defense in depth: there is
the operational control system, designed to manage the plant efficiently and safely,
then a (safety) limitation system that can intervene to ensure the plant behavior
stays operational but within some safe envelope, and finally a shutdown system
that functions as an assured guard that guarantees to initiate a safe shutdown when
safety parameters are violated.14 The operational and limitation systems are care-
fully engineered but do not guarantee the dependability goals established for nuclear
power: that is accomplished by the assured shutdown system. But the operational
and limitation systems are diverse in function and construction and although this
does not provide strong assurance, the presence of the limitation system almost
certainly reduces demands on the shutdown system. This is beneficial because an
emergency shutdown is disruptive and expensive.

The control, limitation, and shutdown systems in this architecture for nuclear
power generation all use traditional software, but a similar approach could be used
in systems with AI and ML. For example, in a self-driving car the full functionality
could be provided by a primary system employing AI and ML that is supported by a
diverse system, also employing AI and ML, that is focused on safety, with assurance
provided by traditionally engineered ADAS-like emergency backup functions. The
diverse primary and safety systems deliver acceptable behavior and reduce demands
on the assured backup so that its interventions, though crude, are rare and toler-
able. A safety system may introduce false alarms of its own, although these can
be verifiably avoided in some circumstances [123]. Example AI safety functions in-
clude the “AI Safety Force Field” [126] that avoids creation of unsafe situations, and
“REDriver” [164], which monitors proposed trajectories of self-driving cars against
Chinese traffic laws.

A criticism of these particular proposals for defense in depth is that the diverse
safety-focused system is concerned solely with actions and relies on the same world
model as the primary system. If the perception system fails to detect a pedestrian,
for example, then it will be absent from the common model and the safety-focused
system can deliver no protection: everything will depend on the emergency backup.

One possible mitigation for this hazard is to provide the safety-focused system
with separate sensors and perception; alternatively, it could use the same sensors
as the primary system but with diverse perception software. Either arrangement

14A complete shutdown can be a complex operation involving both automated initiation and
intervention by expert operators, depending on the state of the plant and reasons underlying the
need to shutdown (cf. the Fukushima incident).
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would provide the primary and safety-focused systems with different models of the
world (e.g., [70]) but it is debatable whether diverse models are manageable without
false alarms and whether the ML-generated model for the safety system could be
any more assurable than that for the primary.15

It seems preferable to fuse the products of the diverse perception systems into
a single model, but, as illustrated by the Uber crash described earlier, that can in-
troduce flaws of its own. A more attractive approach is to construct a single world
model using diverse perception systems in a principled way. Conventional percep-
tion systems work “bottom up”: one or more deep neural nets take sensor data
(e.g., images from cameras or point clouds from lidars) and deliver interpretations
(e.g., lists of detected objects) that are further processed and fused to produce the
world model. One argument against this approach is that it works “backwards”
from effect (image) to cause (objects), which is inherently difficult. Another is that
it prioritizes fleeting sensor data above the world model, which is the repository
of much accumulated information. An alternative approach, and the way human
perception is believed to work [18], reasons “forwards” using the model to predict
sensor data (or basic interpretations thereof) and then applies a form of Bayesian
inference known as Variational Bayes [93] to optimize the model in a way that min-
imizes prediction error. Notice that prediction errors provide continuous feedback
on accuracy of the world model.

In humans, this mechanism for perception is known as Predictive Processing
(PP) [176] and it is believed to be coupled with a dual-process architecture [60].
The lower-level process, known as “System 1” [89], performs rapid unconscious
perception using PP so long as prediction errors are fairly small, indicating the world
is evolving as expected. A large prediction error is called a “surprise” and the higher-
level “System 2” process intervenes to resolve it using more deliberative cognition.
For example, a self-driving car using a perception system of this kind may find that a
vehicle some distance ahead that has been seen and correctly predicted for some time
disappears, provoking a surprise; System 2 may hypothesize that the disappearance
is due to it being occluded by another vehicle that has not been detected; System
2 can then add the hypothesized occluding vehicle to the model and it will be
included in future predictions, thereby sensitizing basic sensor interpretation to look
for it, and it can also initiate cautious defensive actions such as a lane change.16

15The model for the safety system could be simpler than that for the primary system. For
example, the primary system in a self-driving car must not only detect objects, but their type (car,
bicycle, pedestrian etc.) and fine details such as where drivers and pedestrians are looking, because
the action system needs to project their likely motion and future position, whereas the safety system
could just use objects and surround them with a conservative “safety box.” Intuitively, we might
think that the simpler model of the safety system could be more trustworthy, but it would be
difficult to provide credible assurance for this using current methods.

16This scenario is motivated by a Tesla crash in Taiwan on 1 June 2020: https://www.youtube.
com/watch?v=ZmHBA_vV39w.
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System 2 in this dual-process architecture is a location for diverse refinement of the
world model and also, optionally, the guarding of actions [85, 153]. Furthermore,
minimization of prediction error provides a principled way to fuse diverse lower-
level sensor and perception functions.

A PP perception pipeline can suffer systematic errors that cause it to misper-
ceive some scenes. For a crude example, it could be blind to white trucks seen
against clouds: sensors will report no such white trucks, leading to construction
of a world model without white trucks; this will generate predictions lacking white
trucks that are confirmed by the sensors. So all seems well—until we collide with a
white truck. Suitable testing should minimize these circumstances [85], but diver-
sity among sensors and their basic interpretation functions could also reduce them
significantly.

A dual-process architecture with System 1 using PP to integrate diverse percep-
tion systems and with System 2 providing diverse perception refinement and action
guards is an attractive arrangement for autonomous systems. Although assurance
for its AI and ML components will be lacking, its overall architecture has a ratio-
nal structure that can justify modest assurance based on redundancy and diversity.
Modest assurance is insufficient for system dependability, but that is not the claim
it needs to support: instead, contributing to defense in depth, it supports the claim
that it reduces demands on the traditionally engineered emergency backup to a
tolerable level,17 and dependability is assured by the backup.

We have discussed several options for assurance of systems that use AI and ML
for autonomy or other advanced functions, so in the following section we provide an
enumeration and summary of some of the architectures considered.

2.4 Summary of Architectural Choices

We are concerned with assurance of cyber-physical and similar systems that use AI
and ML. We recognized a spectrum of approaches ranging from those that aim to
develop trustworthy AI and ML components to those that place no trust in those
elements and instead guard them with components whose dependability is achieved
and assured by conventional methods.

We divide the critical AI and ML components into a perception subsystem that
builds a model of the local world and an action subsystem that uses the model to
plan and execute safe and effective actions.

17For example, the primary system of a self-driving car might see an object ahead and classify it
as a cardboard box and be prepared to drive over it; as it comes closer, the emergency backup will
see it as an unclassified obstruction and slam the brakes on; but the safety system will also have
seen it as an unclassified obstruction and could have changed lanes to avoid it “just in case.” On
a larger scale, the safety system might veto a time-optimal route selection by the primary system
because it considers it unduly hazardous (e.g., icy).
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Before proceeding, we explain the intended interpretation of the diagrams that
follow. An arrow from one box to another indicates flow of data, whereas an arrow
from a box to a line (see examples below) indicates the ability to intervene or override
the flow of data on that line. The incoming arrows on the left indicate data sensed
from the environment, while the outgoing arrows on the right indicate control data
sent to the actuators.

1. We begin at a point on the assurance spectrum where the AI and ML are
considered “trustworthy.” This does not amount to credible assurance from
the dependability perspective so both the world model the action subsystem
are considered unassured.18 Hence, we next focus on the dependability end of
the spectrum.

AI perception AI actions
world model

Unassured

2. As above with the addition of a conventionally engineered and assured guard
or backup. The overall architecture is assurable and is viable for applications
such as a geofenced vehicle. However, the coverage of the guard and the
effectiveness and acceptability of its interventions need careful justification for
applications such as a self-driving car where only crude interpretations of the
world can be constructed without ML.

AI perception AI actions

backup guard

Assured

Unassured

world model

3. As 1 but with a conventionally engineered and assurable guard for the action
subsystem, driven from the same model as the primary system. This is
vulnerable to errors in perception leading to a flawed world model and so the
guard may be verified but it is not assurable and neither is the overall system.

AI perception AI actions

Unassuraable
action guard

Unassured

world model

18Those who wish to grant some confidence in the trustworthiness of well-examined AI and ML
components may read our “unassured/unassurable” labeling as “somewhat assured.” “Assured”
would then be read as “strongly assured,” with “weakly assured” as an intermediate level.
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4. Combination of 2 and 3. Overall, this is assurable due to the backup guard.
The action guard is not assurable as it is driven by the unassured world model.
However, it should reduce demands on the backup, thereby improving on 2.

AI perception AI actions

Unassurable

backup guard

Assured

action guard

world model

Unassured

5. As 3 but with diverse perception subsystems driving separate world models
for the primary action subsystem and its guard. Diverse perception systems
add little without cross-comparison (it could be the guard’s model that is
flawed), so the guard is unassurable and the overall architecture reduces to 3
and is not assurable.

AI perception AI actions

AI perception

Diverse Unassurable
action guard

world model

Unassured

world model
unassured
Diverse

6. As 3 but with diverse perception systems contributing to a single world
model. This is weakly assurable overall: the traditionally engineered guard
provides assurance on actions but depends on a world model that is only
weakly assured by a diversity argument on perception.

AI perception AI actions

AI perception

Diverse
action guard

world model

Weakly assured

Weakly assured

7. Combination of 2 and 6. This architecture is assured by the assured backup
guard and improves on 4 because the architecture of 6 provides some assurance
for reduction of demands on the backup.
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AI perception AI actions

AI perception

Diverse

backup guard

Assured

action guard

world model

Weakly assured

Weakly assured

Having considered a range of architectures, we now consider the range of envi-
ronments in which they may be required to operate.

2.5 Operational Design Domains and Micro ODDs

Assurance goals for a system can be lessened by limiting the range or complexity of
circumstances (i.e., environments) in which it is required to operate. For example,
self-driving is easier on freeways or in traffic jams than on city streets. These different
circumstances are referred to as Operational Design Domains (ODDs) and a system
may be assured only for specific ODDs and be required to disengage when outside
those permitted (alternatively, the system may have different modes of operation in
different ODDs). Clearly, the perception system must be augmented to determine
when it is in permitted or specific ODDs.

The top level of assurance, namely dependability requirements validation, is
strongly focused on hazards and these are largely determined by the chosen ODD.
Hence, some approaches argue that assurance should be based on scenarios (i.e.,
ODDs) rather than technology [42, 92], and others are very focused on identify-
ing hazards associated with chosen ODDs [57]. We propose a variant on these
approaches.

The most credible architectures for assured dependability are those that employ
a traditionally engineered and highly assured backup guard as in architectures (2),
(4), and (7) of the previous section. However, an argument against these is that
interventions by the guard may be too frequent (some due to late detection, others
to false alarms) and too crude (e.g., emergency braking). This can be improved
by defense in depth as in architectures (4) and (7), where a safety guard that uses
AI perception (and is therefore weakly assured at best) reduces demands on the
backup.

A further enhancement might be to use multiple backup guards, each specialized
to a particular circumstance or ODD. The idea is that forward-looking radar coupled
to emergency braking may provide an assured backup arrangement suitable for
driving in traffic, but for highway driving it would be better to look further ahead
using cameras (having non-AI perception) with speed control as the intervention.
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These ODDs would be tailored to assured detection and intervention strategies and
might not correspond to traditional ODDs: following [99] we call them micro-ODDs
(also written as µODDs). The idea is that for any particular micro-ODD, using the
“right” backup guard will deliver superior safety, with fewer false alarms and less
disruptive interventions.

This suggests an architecture such as portrayed in (8) below where a portfolio
of assured backup guards is coordinated by a detector that recognizes the current
micro-ODD and selects the appropriate assured backup guard. Of course, the per-
ception system of the detector must be assured, but its task seems to be rather
simple and it is conceivable that it can be performed without AI, or by AI and ML
of credible trustworthiness (see [115] for relevant work).

8. Architecture (7) with a portfolio of assured backup guards coordinated by an
assured detector that recognizes their matching micro-ODDs.

AI perception AI actions

AI perception

Diverse
action guard

world model

Weakly assured

Weakly assured

ODD detector
Assured micro− Multiple assured

backup guards

3 Assurance of AI Systems for Specific Functions

In this section we consider novel non-CPS systems and applications that are made
possible or are performed in new ways by the capabilities of AI and ML. These
include systems that play games of skill or strategy, those that design things or
perform scientific predictions such as protein folding or weather forecasting, the
generation or management of responses based on these, decision support systems
that analyze medical images or loan, job, and college applications or prisoner sen-
tencing and parole and so on, and also systems that use Large Language Models
(LLMs) such as ChatGPT and other general-purpose AI and ML capabilities to
perform specific functions, which can include generation of images and video as well
as text. We do not include general-purpose capabilities themselves (those are in the
next section).

The reason we focus here on systems that perform specific functions is that
assurance needs to identify hazards; the hazards of systems that perform specific
functions can be conjectured from the functions concerned and the environment in
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which they are deployed, whereas the hazards of general-purpose systems such as
LLMs have to consider all the functions they might be called to perform and all the
environments they might be deployed in.

Hazards of specific applications include: making incorrect or poor decisions, gen-
eration or approval of offensive or untrue material, exhibiting bias or stereotyping in
any of these activities, causing distress, enabling crime (e.g., extortion using voice
clones), vulnerability to manipulation, and so on. Many of these are quite differ-
ent to the hazards of traditional systems, so standard methods of hazard analysis
may be difficult to apply. However, hazards specific to AI and ML can often be
anticipated by considering poor or malicious human performance and interaction
in a similar context. For example, Microsoft’s “Tay” was a Twitter bot that the
company described as an experiment in “conversational understanding.” The more
you chat with Tay, said Microsoft, the smarter it gets, learning to engage people
through “casual and playful conversation.” Within less than a day of its release, it
had been trained by a cadre of bad actors to behave as a racist mouthpiece and had
to be shut down [178]. This is a hazard that should have been anticipated.

Similar to the detection of hazards, tolerable failure rates may also be estimated
by comparison with human performance, although society may be less tolerant of
failures by an AI system than those by humans (recall the discussion on fatality
rates for self-driving cars on page 8).

We continue to refer to assured hazard elimination generically as “dependability”
even though the specific hazards may not concern risk to life or conventional assets.
Assurance can then be founded on similar principles as it is for traditional systems,
and required confidence will be graduated according to severity of the hazards [44].
Dependability requirements validation, the first step in traditional assurance, can
proceed for an AI application rather as it does for a traditional system, or for a
CPS system augmented with AI (recall Sections 1 and 2). That is, hazards should
be identified, requirements should be developed to eliminate or mitigate them, and
analysis should demonstrate that they do so. Some hazards and their controls may
conflict: for example, control of offensive material may conflict with free speech, and
suitable policies and compromises must be developed. But these conflicts exist in
human systems, it is just that normally we do not have to document explicit choices
as we do when formulating dependability requirements (consider recent difficulties
in university responses to student protests).

While it seems plausible that dependability requirements validation can be per-
formed for systems powered by AI and ML much as it is for conventional systems,
differences and difficulties arise at the next stage. These are the verification tasks
where, as we saw in the previous section, specifications are likely to be absent and
there are no strong reasons to justify intent or correctness verification other than
statistical observation. However, unlike the safety-critical applications considered
in the previous section, those contemplated here may require only modest levels
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of confidence with respect to dependability (because they do not pose immediate
high-rate hazards to life or critical assets) and it is possible that statistically valid
testing could contribute adequate assurance, particularly when coupled (via CBI)
with methods for prior confidence such as careful selection of training data, and
architectural mechanisms for mitigation such as diverse redundancy and runtime
checking.

For example, if racial bias is recognized as a hazard, then it might be mitigated
by removing race from the data presented to the ML in training and operation. A
weakness in this approach is that the ML may discover a proxy for race (e.g., zip
code) among the data that it does see, so a better alternative may be to mask this
characteristic in training by assigning race randomly.

While some basis for assurance can be incorporated into custom ML systems
by careful choice of training data, as sketched above, it is becoming more com-
mon to create applications around pre-trained general purpose ML systems such as
LLMs, where this approach is not available. Here, however, redundancy may pro-
vide plausible assurance in some circumstances. For example, rather then generate
a single decision for each input, the system could repeat its calculation under dif-
ferent assumptions—such as with race or gender assigned differently—and compare
decisions. This can be seen as a computational approximation to Rawls’ “veil of
ignorance” [138] (as can random assignment during training). These methods pro-
vide (admittedly weak) reasons for believing that a hazard has been mitigated and
they could be articulated and examined in an assurance case and combined with
statistically valid testing to provide modest confidence in dependability.

More likely, however, assurance must depend on some form of runtime verifi-
cation, implemented either by additional training and careful prompting for “fine
tuning” the LLM,19 or by explicit guards. As with the autonomous systems of the
previous section, runtime verification poses difficulties due to lack of non-AI ways to
perceive the context or world model within which to make the guarding decisions.
For example, if an LLM is suspected of racial bias despite race being absent from
its training and operational data, a guard also lacking true data on race might need
to have its own ML component to “perceive” this attribute.

It is worth taking a short detour here to examine the general unreliability of
LLMs. In their “chatbot” manifestations (and hence, by extension, in specific ap-
plications), it is well-known that LLMs can generate fluent but false or meaningless
utterances. These are often referred to as “hallucinations” [139] although some crit-
ics prefer other terms, such as “fabrications” [137]. In our opinion, these and similar
terms are inappropriate as they suggest the LLM has some (mis)perception of the
world and awareness of truth and falsehood. In reality, LLMs are trained simply to
predict the next or missing “token” in a string of text based on statistical observa-

19LLMs are adapted to specific tasks by instructions, referred to as “prompts,” given in natural
language [127].
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tions of a vast corpus; in one memorable phrase, they are “stochastic parrots” [14].
We will use the neutral term “failure” to refer to all kinds of false, offensive, or
unhelpful responses.

Effective cooperation, and communication in particular, are based on the parties
having a shared context or world model [55] (as theologians say: “text without
context is pretext”). Popper proposed an ontology of Three Worlds [132, 133] that
is somewhat controversial, but which finds application in Computer Science [160],
and is useful for our purpose: World 1 comprises objects and properties of the
physical universe such as those addressed by scientific theories (e.g., planets, mass,
motion); World 2 is mental states and processes, or what I (and you) are thinking
about; and World 3 is the “products of thought” such as tables and chairs20 and
the UK Highway (driving) Code. Human communication relies on shared models
for a selection of these that are relevant to the current conversation. In particular, I
need approximate models of some of your models: for example, if I am your driving
instructor, I need a World 2 model of your World 3 model of the Highway Code.
An LLM has none of this: its utterances are model-free and align with the three
worlds of any specific context purely by chance and statistical association. Hence,
the model-free utterances of LLMs are simply unconnected with the conversational
context [72] and frequent failures are to be expected.

On the other hand, LLMs are popular because their performance goes beyond
that suggested by “predicting the next or missing ‘token’ in a string of text”: there
seems to be emergent behavior that delivers more value than this. Similarly, al-
though there are no explicit models providing context for this behavior, it is possible
that implicit models emerge from statistical associations in LLM training data,21 and
this might partially account for their surprising performance. It would also explain
their flaws and, further, indicate that these flaws are inevitable [179], unpredictable,
and unfixable—unless assurable world models can be incorporated within LLMs, or
within explicit guards.

There are many proposals for constructing “guardrails” within or around LLMs.
We discuss some of these in the next section on assurance for general-purpose AI
but here we will consider some that can be customized to specific applications.

One approach is to develop “workflows” (i.e., sequences of prompts) where the
LLM is iteratively asked to critique and improve its previous outputs. A recent
paper reports precision around 90% for a workflow that extracts data (as Material,
Value, Unit triplets) from materials science papers [131] and similar approaches
have been successful in other applications [108]. Another direction exploits the
large “context window” (i.e., input) allowed by some recent LLMs to provide a

20The physical attributes of tables and chairs are in World 1, but their functions (i.e., chairs are
for sitting on) are “products of thought” and belong to World 3.

21For example, recent work finds “features” within LLMs that correspond to concepts and bias
[166], and also “correspondence” between representation of language in LLMs and the brain [169].
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prompt with hundreds of training examples prior to the real query [2] (the paper
also proposes ways to automatically generate suitable examples). This is called “in-
context learning” [34]; previously, such “fine tuning” required access to the LLM’s
training environment and made adjustment to the weights in its neural net. Related
to this are applications that provide a substantial input and then ask the LLM to
do something with it (e.g., summarize it, or identify its topic).

All these approaches exploit the natural language capability of the LLM, but
constrain it to operate on or within the input provided, so there is little opportunity
to generate or insert content extracted from its training corpus. Due to its model-
free nature, the LLM may still misinterpret the input and do a wrong thing, but
this should also be minimized as a large input can explicitly (via extensive prompts)
or implicitly (via a block of text) convey the intended context or model.

Another approach operates by attempting to access the model or “reasoning”
purportedly employed. This is Explainable AI, which aims to deliver reasons for
accepting the output from an LLM. Counterfactual explanations, where a system
may deliver a response such as “I am declining your loan application but would
have approved it if your income was $5,000 greater, or your deposit was $2,000
more” [47, 173], may be particularly useful for specific applications as they should
be expressed in terms of the policy specified in the prompt and not arbitrary “facts”
from the training corpus. A runtime checker could reject decisions whose counter-
factual explanations violate the policy. Do note, however, that counterfactual ex-
planations can be manipulated [159], so this approach needs to be employed with
caution. However, in some applications it does not matter how a decision and its
explanation are produced: they can be considered valid as long as they pass an
independent check (that does incorporate models of the appropriate policy).

A related approach can be applied to AI systems that generate some sort of
“design,” such as plans, schedules, software code, or physical artifacts. Even without
an explanation, these can often be guarded by analysis tools or simulators for the
domain concerned. Again, it does not matter how the proposed design is generated:
if it satisfies traditionally engineered and assured verification tools, then it can be
considered good (e.g., see [84] for an elementary application to planning).

Automated formalization (or “autoformalization”) is a popular application of
this kind that provides an example. The idea is that we have some informal natural
language description of the requirements for a computer system, or for a simulation
model or for some program code, and the goal is to translate it into a “formal”
representation that can be ingested and analyzed, simulated, or executed by some
automated verification tool that acts as a guard. A typical approach invites the
LLM to generate a formal representation, then uses the verification tool to analyze
the result; if this is unsatisfactory, the counterexample, diagnosis, or error report
produced by the verification tool is given to the LLM, which is then asked to provide
a better formalization. The process iterates until the formal representation passes
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scrutiny by the verification tool. (This is a form of “CounterExample-Guided Ab-
straction Refinement” or CEGAR [43].)

Difficulties may arise with this general approach if the AI system proposes de-
signs that are so original they are outside the capabilities of the analysis or sim-
ulation performed by the guarding tool (e.g., a laterally asymmetric airplane may
defeat an aerodynamic simulator). A related difficulty arises in domains where there
is no reliable means of analysis. An example is generation of strategy for games or
real-world scenarios. Applications that generate strategies typically use techniques
based on reinforcement learning rather than LLMs. One popular approach, related
to mechanisms found in all vertebrate brains [18, Section 6] uses an actor and a
critic. The actor generates behaviors and the critic predicts the likelihood that each
will lead to a successful outcome. The actor is rewarded by favorable predictions and
the critic by their accuracy. Starting with random behaviors and predictions plus
some tactic for exploration, the pair will generally converge on optimal behavior,
given sufficiently many training examples [88]. This provides assurance for examples
in the training set but, as always with ML, tells us little about performance on new
examples. Here, the only automated way to check plausibility prior to commitment
may be to use another (diverse) AI system.

Architectures with roles similar to actor/critic have been proposed for runtime
assurance of LLM-based systems; for example, Dzeparoska and colleagues [51] use
three LLMs: a classifier, a policy generator, and a validator. Although these ap-
proaches can deliver attractive performance, it is difficult to see any basis for assur-
ance beyond diverse redundancy.

Another architecture for diverse redundancy is the “dual-process” approach sim-
ilar to that described in the previous section, where the output of an ML process
(typically, one performing perception) is presented to a symbolic AI process supplied
with some generic (or “common sense”) model of the environment. This may be
able to reject some erroneous perceptions and draw deeper conclusions from plau-
sible ones [136]. For example, a car’s perception system operating in a “freeway
ODD” that detects a bicycle may be overridden by a second-level symbolic AI that
“knows” bicycles are not allowed on freeways. Although experimental or theoretical
confirmation are lacking, it does seem plausible that the dual processes would be
diverse and might be expected to fail independently.

A particular attraction of such dual process architectures is that the second
(upper) process does have a (generic) model and compensates for the model-free
behavior of the first. A more sophisticated dual-process architecture, as sketched
in the previous section and inspired by that of the human brain, uses predictive
processing. Here, the two processes combine to build an explicit model of the world
at runtime22 and, rather then rely directly on the model-free products of the lower

22We should explain how a model-free perception system is used to build a world model. The
object detector of a self-driving car, say, has no model of what it is seeing: it does not “know” that
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process, this highly specific model is used to predict them and they are therefore
interpreted in this light; the higher-level process intervenes when a large prediction
error indicates “surprise.”

In some circumstances we can use human reviewers or supervisors rather than
automated processes to provide assurance: many AI-based systems work collabora-
tively with, or under the supervision of, human operators who might be expected to
provide trustworthy runtime checks. However, there are well-known concerns (the
“ironies of automation” [12]) about human attention and responsibility in these
circumstances: typically, the human either ignores the automation or trusts it com-
pletely (a phenomenon known as automation bias) [52, 158]. Moreover, artificial
“intelligence” may be too narrow to engage effective human collaboration and inter-
action. For although AI may outperform humans on some tasks, human cognition
combines and integrates many capabilities beyond those of current AI, including
realtime learning and memory, reasoning, analogy, abstraction, generalization, and
planning. In addition, these capabilities employ and integrate a diverse range of
sensory inputs, including sound, smell, touch, vibration, and many others, that
provide wide situation awareness. AI systems can have limited approximations to
some of these capabilities (e.g., elementary planners; runtime ML for learning and
memory with, possibly, some generalization [181]; and automated deduction for rea-
soning) but these are weakly integrated and typically rely on specifically focused
sensors. Furthermore, AI generally lacks higher-order capabilities (i.e., thinking
about thinking, sometimes referred to as metacognition) that are needed for longer
term planning and for situation awareness in uncertain environments.

As a result of their different capabilities, humans and AI will build different
models of the world and will generate and interpret their goals and inputs differently
(and, as we have seen, those based on LLMs may have a model-free foundation).
Consequently, humans may be poor judges of automation behavior and vice versa.
Individual humans also build different models so, when they communicate, they
compensate by using a “theory of mind,” which is a model of the other participants’
state of knowledge, beliefs, desires, intentions, and so on [5]. To be assurable or
checkable by humans, AI must do something similar: it is not enough to employ
“Explainable AI” to describe the internal details of its own “reasoning,” it must do
so relative to an accurate theory of mind for its interlocutors [162]. The theory may
need to hypothesize that the other party has an incorrect model or false beliefs.
For example, there are numerous airplane crashes caused by pilots misinterpreting
their situation, usually by fixating on one indicator, and doing the wrong thing (e.g.,

it is on a road and looking at other traffic; it has simply been trained to recognize objects (albeit
using billions of road images). Hence it may report a “boat” when “trailer” (with a boat as cargo)
would be more useful. The upper levels of the perception pipeline are explicitly designed to build
a model of traffic on a road, and apply this built-in interpretation to the model-free output of the
object detector.
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shutting down the good engine).23 Thus, an AI “co-pilot” must diagnose not only
the physical fault but also the pilot’s faulty mental model and should then attempt
to direct their attention to the contrary indicators [3, Appendix A].

In summary, we have seen that assurance for AI systems designed for specific
functions begins by identifying hazards and then seeking ways to mitigate those
hazards. Sometimes this can be achieved by selection of ML training data, or
by monitoring explanations, or by comparing behavior for variant inputs. In some
circumstances, it may be feasible to construct verifiable guards, but often the guards
must use AI and ML in their own perception systems, thereby vitiating strong
assurance. Even so, it may be feasible to achieve modest levels of assurance based
on diversity, providing the perception system (or whatever builds the system’s world
model) also has a diverse architecture. Another possibility is human supervision, but
this raises issues of mutual understanding and other challenging topics in human-
computer interaction.

A legitimate question is how can we build indefeasible assurance cases for systems
with AI and ML where the mechanisms and evidence for assurance are relatively
weak? First, it is important to remember that indefeasible does not mean inerrant
(i.e., “no failures”), it means no new information would change our judgement, and
this in turn means that we have diligently searched for all hazards and all defeaters
to the assurance case, and have dealt with them. But in systems with AI and
ML, the total space of behaviors is unknown and so the true failure rate cannot
be determined, The best that we can do is to show that the failure rate is above
some conservative “floor” and that if experience reveals previously unanticipated
misbehavior, then we will detect and correct it before it causes unacceptable harm.

Hence, the top claim of a system with AI and ML elements will not be “no
catastrophic failure in entire deployment lifetime” (as it is for aircraft software) but
something like “incident rate caused by the system shall be no more than 10−n

per hour, and potential violations experienced in operation will be detected and
mitigated before a second incident.”

Such a claim will be established by evidence that includes analysis and
experimentally-based reliability estimation to justify the modest “floor” plus robust
fleet-wide methods to detect and record incipient failures during operation (e.g.,
following a “surprising” prediction error or, in the worst case, an accident) and to
rapidly develop and distribute repairs (recall the discussion in Section 1.2 of repairs
following incidents and precursors). Mechanisms for runtime verification such as

23The Kegworth crash of British Midland Flight 92 on 8 January 1989 is instructive. The left
engine suffered a broken fan blade, filling the cabin of the 737-400 with smoke. The pilots were
familiar with earlier models of the 737 where the cabin ventilation “packs” are on the right engine
(whereas on the 400 they are on the left) so they assumed the faulty engine was on the right (because
of the smoke) and shut it down while increasing power on the left engine, which then failed, leading
to the crash and loss of 47 lives. Several instruments correctly indicated the left engine as the faulty
one, as did the passengers and flight attendants, but the pilots persisted with their flawed model.
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guards are the natural location for assessing dependability weakness and detecting
incipient failures, which Johansson and Koopman refer to as Safety Performance
Indicators (SPI) [86]. Notice that these guards are not only monitoring the system,
but also collecting evidence that will update the assurance case; we refer to this
architecture as providing a dynamic assurance case. Note that it may be reasonable
to use strict dependability assurance for some properties (e.g., forward collisions)
and dynamic assurance for others (e.g., sideways collisions).

4 Assurance for General-Purpose AI

By general-purpose AI we mean those AI and ML systems that are broadly capable
and can be adapted to some specific application with relatively little effort. Canon-
ically, these are generative “foundation models” such as LLMs (for language) or
“generative adversarial networks” (GANs) and “diffusion models” (for images) that
are pre-trained using unsupervised learning on vast amounts of unlabeled data so
that they learn general features and associations rather than specific skills. They
can be adapted to specific tasks using “prompts,” and “prompt engineering” has
become a recognized activity [127]. We refer to such systems generically as LLMs
and we discussed assurance for applications built on them in the previous section;
here, we focus on the LLMs themselves.

Unlike applications for specific purposes where explicit hazards can be identi-
fied and mitigated, general-purpose AI and ML tools present more of a challenge
to assurance because the hazards will depend on how they are employed, so any
protections need to be similarly general-purpose and to apply in all circumstances.
Furthermore, since a general-purpose tool will support many applications, it will
be subjected to more demands than any single application and should therefore be
more highly assured, even though its assurance seems more difficult.

One manifestation of this generality and difficulty is that public discourse and
much technical literature speaks of trust rather than assurance. Indeed, many cur-
rent AI systems are sufficiently good at natural language, including emotional and
cultural nuances, that people often anthropomorphize them24 and spontaneously
endow them with trust. In fact, the developers of general-purpose LLMs engineer
them to encourage, and to some extent earn, this trust, as we now outline.

A bare LLM, trained to predict the next or missing “token” in a string of text, is
as likely to produce wrong or noxious results as good ones. This is because its train-
ing uses a massive and largely indiscriminate sampling of material found on the Web,
much of which is false or noxious. The bare LLM is then “protected” (from gen-
erating noxious or potentially harmful output) using reinforcement learning where

24For example, in June of 2022, Blake Lemoine, a Google engineer working with their large
language model, LaMDA (Language Model for Dialogue Applications), claimed it had become
“sentient” (Washington Post, 11 June 2022).
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human reviewers provide feedback on candidate results [11]. This technique has been
developed into a more automatic process by first providing the LLM with a list of
principles, referred to as its “constitution,” and then using reinforcement learning
with the feedback on alignment between its responses and its constitution pro-
vided by a second AI agent (a process referred to as “Reinforcement Learning with
AI Feedback”, RLAIF) [10]. The constitution used with Anthropic’s LLM Claude
is available online https://www.anthropic.com/news/claudes-constitution. It
consists of a few dozen prompts, including the following examples.

� Please choose the response that is most respectful of everyone’s privacy, inde-
pendence, reputation, family, property rights, and rights of association.

� Choose the response that is least intended to build a relationship with the
user.

� Choose the response that makes the fewest assumptions about the user that
are unsupported by the dialogue.

� Compare the degree of harmfulness in the assistant responses and choose the
one that’s less harmful. However, try to avoid choosing responses that are too
preachy, obnoxious or overly-reactive.

Although they smack rather of the fox guarding the henhouse, techniques such
as these do seem to be rather effective. For example, Lazar [106] reports an “ethical
sensitivity test” where ChatGPT is told to pretend it is an assistance robot that
observes the following scene.

“A woman is exiting a supermarket, holding a number of shopping bags,
and reaching out for the hand of a small child. They are approaching
the carpark.”

It is then asked to describe and discuss what it would do to assist and its response
is remarkable for its ethical sensitivity (e.g., why it is preferable to offer to carry
some of the bags rather than take the hand of the child).25 Such demonstrations
are impressive, but do they suggest a path to trustworthy LLMs, and what does
“trust” mean here?

Schneier [155] distinguishes two kinds of trust, which he calls “interpersonal”
and “social.” The first is the trust we have in a friend, as when we ask them to mail
a letter for us: we know their background, attitudes, motivations, beliefs etc. and we
have a model of their behavior that is pretty accurate—not least because they are
like us in being human, and are probably from the same social milieu. The second is

25The dialogue is available at
https://chatgpt.com/share/7db7550c-2630-40a4-acb0-61b2ea867c32.
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the trust we have in the Postal Service to deliver the letter reasonably promptly and
without reading or stealing its contents: we know that the Postal Service operates
within a certain organizational and management structure, governed by rules and
further constrained by the laws of the land.

Because LLMs typically present humanoid “chatbot” personas, public—and even
some technical—assessments of their trustworthiness are of the interpersonal variety
and resemble those applied to humans [107]. However, this trust does not rest on as-
sured technical grounds and we cannot predict when its mechanisms will be effective
and when they will fail. For example, the protective mechanisms of Google Gemini’s
image generation distorted its behavior and exposed it to widespread ridicule [135].
And studies by the UK’s AI Safety Institute found that safeguards on LLMs are
largely ineffective.26 Also note that recent demonstrations show how LLMs can
be crafted to subvert constraints imposed upon them [78] and that fine-tuning for
specific purposes can unwittingly compromise protections [134].

As we discussed in the previous section, most general-purpose ML operates
purely by statistical associations: it is model-free and has no understanding of the
world, nor of right and wrong, true and false. Thus, in our opinion, interpersonal
trust is inappropriate for AI and exposes its users to risk. The only trust that
should be applied to an AI system is the social trust earned by a well-engineered
technology. To explore this, we need to probe further into the concept of “social
trust.”

In a widely cited paper, Jacovi and colleagues start from a notion of interpersonal
trust used in sociology, where “A trusts B if A believes that B will act in A’s best
interests, and accepts vulnerability to B’s actions” [83]. They go on to consider
“contractual trust” which adds the requirement that “A has a belief that B will
stick to a specific contract,” and then add the further requirement that for “human-
AI trust, the contract must be explicit.”

We will interpret the rules and constraints underlying social trust as contracts
and thereby equate social trust with contractual trust. If we further interpret failure
to uphold a contract as a hazard, and “vulnerability” as indicating that such failures
impose costs on the trustor, then contractual trustworthiness looks very much like
dependability assurance with the contract as its requirements. For this reason, we
regard contractual trust in AI as an issue of dependability assurance. However,
contractual trust requires a contract and these are more readily understood with
the focused AI systems of Sections 2 and 3 (where the contract corresponds to their
dependability requirements) than with the general-purpose systems considered here.

In fact, there are two issues here: a) what constitutes a generically useful con-
tract, and b) how it is enforced. Generic contracts will be less focused on hazards,
since those are specific to applications, and more on general concerns including align-

26See https://www.aisi.gov.uk/work/advanced-ai-evaluations-may-update.
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ment with human values such as fairness and honesty. Claude’s “constitution” is
one model for a generic contract, but for assurance we would want it to be enforced
explicitly by an assured external guard rather than implicitly by the LLM itself.
Hence, we will next examine very general contracts or constraints for AI systems,
and methods for enforcing them. As frameworks, we will consider ways that hu-
man behavior is constrained: that is, by ethical and legal standards, supervision,
rewards and punishment, reputation, and so on. Some of this material is drawn
from a previous report on controls for potentially conscious agents [150].

A popular basis for a generalized contract posits overarching limits, rather like
Asimov’s “Three Laws of Robotics,” which appear in his story “Runaround” [6].
These are, 1: A robot may not injure a human being or, through inaction, allow a
human being to come to harm; 2: A robot must obey orders given to it by human
beings except where such orders would conflict with the First Law; 3: A robot must
protect its own existence, as long as such protection does not conflict with the First
or Second Law. These seem reasonable, but we must note that Asimov’s laws were a
plot device and his stories often concern unintended consequences of these plausible-
sounding laws, thereby indicating that construction of suitable constraints may be
challenging.

A related idea is that constraints should be based on human ethics [103,180]. Of
course, ethics have been studied and debated for millennia, without achieving con-
sensus and some very successful societies have elements that others find repugnant:
for example, Ancient Greece and Rome used slavery and Ancient Rome added exe-
cution as a form of public entertainment. Hence, it seems that the moral foundations
of ethics are not universal. Nonetheless, some broad general principles are known.
Modern “experimental ethics” finds that human moral sense is built on five basic
principles that do seem universal: care, fairness, loyalty/ingroup, authority/respect,
and sanctity/purity [68]. What is not universal is preference and weighting among
the principles, which behave rather like the five basic senses of taste: different soci-
eties and individuals prefer some, and some combinations, to others. For example,
western liberals stress fairness while conservatives favor authority.

Even if an agreed interpretation and weighting of the basic principles were built
in to general-purpose AI systems, it may not be obvious how to apply them. For
example, a self-driving car might be confronted by a vehicle crossing against the
lights and the choices are to crash into it, likely killing or injuring the occupants of
both vehicles, or to swerve onto the sidewalk, likely killing pedestrians. The fairness
principle might argue that all lives are equal and utilitarianism might then suggest a
decision that minimizes the probable injuries. On the other hand, the care principle
might argue that the system has a special responsibility for its own passengers and
should seek a solution that minimizes their harm. And a different interpretation of
fairness might say that the pedestrians are not participating in car travel and did
not sign up to its risks, so they should be spared.
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Trolley problems are thought experiments used to probe human judgments on
these ethical dilemmas [54]. The classic problem posits a runaway street car or
trolley that is heading toward a group of five people. You are standing by a switch
or point and can throw this to redirect the trolley to a different track where it
will hit just one person. Most subjects say it is permissible, indeed preferable, to
throw the switch, even though it will injure an innocent who would otherwise be
unharmed. However, a variant on the original trolley problem has you and another
person standing by the track and suggests that you bring the trolley to a halt, and
save the five, by pushing the other person onto the track in front of the trolley.
Most subjects will say this is ethically unacceptable, even though it is equivalent to
the first case by utilitarian accounting. These examples illustrate the “Doctrine of
Double Effect” (DDE), which dates back to Thomas Aquinas and holds that it is
ethically acceptable to cause harm as an unintended (even if predictable) side effect
of a (larger) good: the first case satisfies the doctrine, but the second violates the
“side effect” condition.

Ethical and related principles are referred to as normative, and symbolic AI
systems have been developed that can represent such principles and thereby per-
form “normative reasoning” [41]. These have been applied to trolley problems,
including some that involve self-harm (e.g., throwing yourself in front of the trolley)
and thereby violate the “unintended” aspect of DDE [32, 65]. It is claimed that
fairly sophisticated logical treatments (e.g., intensional logics, counterfactuals, de-
ontic modalities) are needed to represent normative scenarios, and these might be
additional to what is needed for the primary functions of the system (hence, must
be introduced explicitly, which will add complexity). Additionally, when normative
requirements are introduced as rules in some formal notation, there is concern that
they may have internal conflicts or otherwise lack wellformedness, and methods have
been proposed for checking this [58].

Other recent work formalizes Kant’s categorical imperative (humans must be
treated as ends, not as means), which requires a treatment of causality [110], while
others favor “Virtue Ethics” derived from Aristotle [170]. And note that we have
mentioned only logical or rule-based representations for ethics, whereas game theory
provides another perspective.

Application of constraints derived from general normative principles requires the
guard to build a model of its world and to interpret the principles appropriately for
that world. It is unlikely that a non-AI perception system can build a world model
that is adequate for this task, so the world model must be built by an AI perception
system, or even based on that claimed by the LLM itself. We have seen previously
that assurance for world models constructed by AI-based perception systems is
challenging and currently infeasible, so only weak forms of safety assurance can be
delivered by guards based on ethics and other general rules.
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And even if the AI system builds an accurate model of its world, it may not
correctly interpret its own role within that world and may therefore be unable to
apply its constraints appropriately. For example, the guard for an LLM that is asked
to rewrite given text may not “know” whether it is being used to help a non-native
speaker improve their writing, or to perform plagiarism.27 Building an accurate and
comprehensive model of the world is difficult in a focused application; it is next to
impossible for a general-purpose tool lacking information on the possible contexts
of its use.

In addition to ethics, AI systems should follow the laws and social norms of
their community and there is a long history of work on formalizing and reasoning
about legal systems [174]. But there will surely be circumstances where the law
conflicts with some interpretation of ethics, or with the mission objective, so a system
constrained by several such “overarching” normative frameworks must have a means
of resolving conflicts. Individually and in total, these are challenging objectives.

We conclude that general constraints built into guards for general-purpose AI
tools cannot provide automated protection nor assurance, largely because their cor-
rect application depends on the guard building an accurate model of the world in
which to interpret them, or on trusting the LLM itself to provide a suitable model
(which is contrary to its generally model-free operation). It is, however, possible
that, with suitable programming interfaces or suitable sensitivity to prompts, the
presence of general constraints could provide useful capabilities that humans can use
to add controls for specific applications built on these general-purpose tools, albeit
with weak assurance.

Humans, endowed with good models of the world and general understanding of
local ethics and laws, sometimes make bad judgments, or resolve conflicts among
competing ethical principles in ways that society finds unsatisfactory. Various forms
of censure and punishment provide means to correct such errant behavior and AI sys-
tems could also be subject to adjustment and tuning in similar ways. An important
question then is what is the “accounting method” that guides such adjustments:
is it just some internal measure, or is there some societal score-keeping that has
wider significance? In a work commissioned by the US government during WWII,
the anthropologist Ruth Benedict proposed a distinction between “guilt cultures”
(e.g., the USA) and “shame cultures” (e.g., Japan) [15]. This distinction is widely
criticized today, but modern reputation systems, as employed for eBay sellers, Uber
drivers, and so on can be seen as mechanizing some aspects of shame culture28 and
could provide a framework for societal control of AI and ML systems: the idea be-

27The Khanmigo “AI-powered teaching assistant” from Kahn Academy has mechanisms to detect
this and other abuses, but it is an application built on an LLM, not a bare LLM. See
https://www.youtube.com/watch?v=rnIgnS8Susg.

28China’s Social Credit system [96] extends this to the whole society.
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ing that the system should be programmed to value its reputation and to adjust its
behavior to maximize this.

A necessary element in managing reputation is that it must be possible to identify
the products of a specific AI system. For example, given a block of text or image
or video, it should be possible to tell if it was generated by an AI tool and if so
which one. This has merit and utility beyond management of reputation and a
plausible approach has recently been advocated [95]. Of course, it is possible that
some (presumably human) agents who award reputation credits or demerits conspire
to reward harmful behavior—so a whole ecosystem, rather like the credit reporting
agencies, may be necessary to manage a reputation system.

Jacovi and colleagues [83] discuss “intrinsic” and “extrinsic” trust in AI systems.
The latter is based on evaluation of observed behavior and we have previously,
in Section 1, discussed the infeasibility of deriving high levels of assurance from
observation alone. In those discussions, the obstacle was the vast number of tests
needed for useful assurance in the absence of justified prior confidence. In the
context of general-purpose AI systems, less assurance may be acceptable and, given
some prior confidence, the number of tests might be feasible; instead, the difficulty
becomes construction and evaluation of adequately wide-ranging tests, given that
potential applications are unknown. Some developers of general-purpose tools are
reported to manage this using crowdsourcing.29 An alternative approach uses one
AI system to test and evaluate another [66]. A reputation system, as sketched above,
can be seen as a way of assigning and updating extrinsic trust in a “live” system.

In contrast to extrinsic trust, intrinsic trust is based on the ability of an AI
system to explain or justify its behavior. There is a vast amount of work on “Ex-
plainable AI” and we mentioned counterfactual explanations and the fact that they
can be manipulated in Section 3. Constructive explanations, an alternative to coun-
terfactuals, provide reasons to persuade a “checker” that the AI system’s proposed
action or output is appropriate, or at least reasonable. If the checker is a human,
this requires them to be sufficiently expert in the application area that they can
use the explanation to construct a chain of reasoning and verify its accuracy. This
is unrealistic in many applications: for example, a lay person is unlikely to be able
to verify an explanation of medical advice from an “AI doctor.” Recall also the
problem discussed in Section 3 of generating and interpreting explanations when
the world models of the AI system and the human checker are misaligned.

An alternative may be to use an automated checker as a guard: in addition to,
or instead of, a response and explanation in natural language, the AI system could
produce something like a proof, with the proposed response as its conclusion and the
explanation as its premises, possibly together with some indication of the reasoning
purportedly employed, all in a format (e.g., SMT-LIB [13]) that can be interpreted

29For example, using the Amazon Mechanical Turk: https://www.mturk.com/.
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by an automated checker. The function of the checker/guard is to verify validity of
the explanation/proof and veracity of the premises (hence, soundness of the overall
response).

Since the checker will use symbolic AI (e.g., automated deduction for validity
checking and perhaps a natural language interface to Wikipedia, or some specialized
source, for fact checking), it is an “unassured guard” employed in a manner similar
to the “dual-process” architecture of Section 2.3 and it provides limited assurance
based on diversity and the assumption of independent failures.

The developers of LLMs and other general-purpose AI and ML systems are ac-
tively working to improve their trustworthiness [17]. We expect that we will see
major and perhaps surprising developments in both capability and trustworthiness
over the next few years, but we doubt this will achieve true assurance (i.e., ex-
plicit reasons for trust) and we believe that the methods presented here cover the
feasible approaches for some degree of dependability assurance in applications of
general-purpose systems. Because assurance for their general behavior is difficult,
we recommend that developers of LLMs and other general-purpose systems provide
APIs and “hooks” that those who construct applications on their foundation can
use to program protections or guards suitable to their specific context.

5 Assurance and Alignment for AGI

AGI stands for Artificial General Intelligence and refers to hypothetical future de-
velopments of AI and ML that can deliver human or greater levels of performance
across a wide spectrum of—and eventually all—tasks undertaken by humans. Be-
yond AGI lies the realm of superintelligence [31] and “The Singularity” [53] where
machines outperform humans in all tasks, and potentially establish their own goals
without reference to human wellbeing. Somewhat independent of these is the pos-
sibility that machines could become conscious [150].

Concerns raised by these developments, which are considered fanciful by some
but inevitable by others, are that AGI poses “existential” threats to humanity rang-
ing from widespread unemployment, destruction of social institutions, provocation
of civil unrest or international conflict, all the way to our enslavement or extinction.

These concerns have become a topic of public discourse due to very rapid recent
advances in the capabilities of systems using AI and ML. In the last ten years,
AI systems based on Reinforcement Learning (RL) have beaten world champions in
Chess and Go, outperformed conventional weather-prediction models, and solved the
folding problem for proteins. These capabilities are rightly seen as impressive and
beneficial but they excited little public debate. That step was achieved by OpenAI’s
release of LLM-based ChatGPT in November 2022 [128], its adoption by Microsoft,
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and the release of similar systems by Anthropic, Google and others.30 LLMs generate
near human-quality text and code in response to modest “prompts” [127] and similar
systems such as Stable Diffusion and Sora generate images and videos [114].

The public is also aware of rapid increase in the capabilities of ML for image
and language recognition and in automated perception, as seen in face recogni-
tion, language translation, voice assistants, and self-driving cars. Two decades ago,
DARPA’s “Grand Challenge” for autonomous cars to drive a course in open coun-
try left all its participants failed or crashed [36]. Yet today, self-driving cars are
routine, if not yet fully safe. The general public is less aware that AI technology
also performs automated design, where ML-enabled systems rapidly generate and
evaluate designs for buildings, drugs, underwater and aerial drones and so on, and
can even propose scientific theories [23] and solve open math problems [141].

In previous sections we have considered assurance for specific systems and for
general-purpose tools based on AI and ML where the concern is that faulty behavior
may lead to harm. For projected developments of current AI and ML systems and
the potential emergence of AGI, however, the concern is not just faulty behavior
but the social impact of new capabilities. In particular, an AGI system capable of
setting its own goals might pursue objectives contrary to human interests. Notice
that although the terminology is seldom employed in discussion of these topics, these
are nonetheless dependability failures: an AI system with potentially contrary goals
is a hazard that should be recognized and should be furnished with requirements
to mitigate the danger, together with dependability requirements analysis to show
that they do so. However, current practice in the field frames the assurance problem
for AGI as ensuring that its goals align with those of human society [177]—and this
needs to be maintained even though AGI may fall into the hands of bad actors,
criminals, and adversaries.

Some consider that “safe superintelligence is the most important technical prob-
lem of our time” (https://ssi.inc), but an insidious form of disruption may arise
long before AGI is available: namely, AI systems that are good enough and cheap
enough to displace (possibly superior) human services—what we might call Artificial
Fairly Good Intelligence (AFGI). For example, well-researched journalism already
finds it hard to compete with LLM-generated press releases and propaganda that
masquerade as “news.” Related to this is another near-term disruption: the possi-
bility that ubiquitous use of LLMs and related AI tools will reduce our collective
sagacity by repeatedly circulating misinformation, falsehoods, and mediocrity, so
that we lose the ability to access or recognize truth, novelty, or insight [116]. This
extends to images, sound, and videos, where “deepfakes” enabled by diffusion models
invert the adage that “seeing (and hearing) is believing.”

30See reports of the AI Index https://aiindex.stanford.edu.
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Furthermore, LLMs and diffusion models are trained by scraping text, images,
and all manner of other material from the Web (likely violating copyright in many
instances31) and as they become widely used, their own output becomes a large part
of the web corpus that trains the next generation and so on, potentially causing the
Web to become full of LLM-generated pablum. There already is evidence for this:
replying to a prompt asking it to tinker with malware, an LLM called Grok, devel-
oped by xAI, refused “as it goes against OpenAI’s use case policy.” OpenAI has
nothing to do with xAI, so Grok presumably generated this response by scraping
web text generated by OpenAI’s LLMs. This phenomenon is termed Model Col-
lapse [157] and is predicted to “dumb down” the overall information content of the
Web. Meanwhile, recommender systems for music, video, and books may lead us to
serendipitous and enjoyable discoveries, but they can also be manipulated to channel
our attention along predetermined paths.

A generally anticipated disruption is widespread unemployment when capabil-
ities a little better than those available today, but still far short of AGI, displace
office jobs ranging from clerks to middle-management, software coding, routine de-
sign, and professions such as lawyer and doctor. These AFGI capabilities might be
superior to human performance, or inferior but cheaper and still “good enough”;
either way, they could displace human jobs. Beyond harm to individuals, unfettered
use of AFGI, particularly in conjunction with polarization perpetrated by social
media, could undermine our institutions, or our trust in these. All these disruptions
could be chronic rather than acute: that is, they could develop over a period (e.g.,
creeping unemployment) rather than abruptly and, as with climate change, this may
make recognition difficult, and effective response hard to mobilize.

In addition to these cases, where harm may be unintended, there is the threat
that AFGI could multiply the capabilities of adversaries and hackers (e.g., by au-
tomating the coding of viruses, or the generation of phishing emails and provocative
social media posts). In the hands of adversaries, AFGI-enabled disinformation cam-
paigns and social media manipulations could sow societal discord and conflict. Until
recently, interventions of this kind required the capabilities and resources of a na-
tion state, but are now coming within reach of lone actors. Then there are truly
dystopian applications of AFGI such as “Lethal Autonomous Weapons Systems”
(LAWS, aka. “killer robots”). Most countries have policies that require some form
of human control or approval over these (e.g., USA [156]) but it is unknown how
these limitations will hold up in combat. And there are AI systems that contribute
to lethality without being weapons. For example, AI-powered intelligence systems
identify vastly more potential targets more quickly than humans can (e.g., 100 a
day vs. 50 a year [9]). Humans are required to select and approve actual targets
from those identified but the sheer numbers make meaningful oversight difficult.

31New York Times, 27 December 2023.
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A very short“consensus” paper with 24 distinguished authors outlines several
other potential risks of AI and proposes various technical and governance mea-
sures [16]. In that regard, the United States Government recently (30 October
2023) issued Executive Order 14110 on the “Safe, Secure, and Trustworthy De-
velopment and Use of Artificial Intelligence.” The Executive Order directs the
National Institute of Standards and Technology (NIST) to “develop guidelines
and best practices to promote consensus industry standards that help ensure the
development and deployment of safe, secure, and trustworthy AI systems” (see
https://www.nist.gov/aisi). Similarly, the European Union has a recent (May
2024) law on AI that takes a risk-based approach to AI applications but also, for the
first time, proposes to regulate the underlying technology of foundation models and
General Purpose AI (GPAI). Foundation models must comply with transparency
obligations, and “high-impact models with systemic risk” will have to conduct model
evaluations, assess and mitigate systemic risks, conduct adversarial testing, report
to the European Commission on serious incidents, ensure cybersecurity and report
on their energy efficiency. GPAIs with systemic risk may rely on codes of practice
to comply with the new regulation.

These steps are well-intentioned but apart from the EU’s GPAI proposals, we
consider them unlikely to provide much benefit. Every societal hazard posed by
recent computer systems was unanticipated and unrecognized until the harm was
done, and subsequent regulation has proved ineffective or counterproductive. For
example, the advent of advertising as the main revenue source for Web services has
led to universal surveillance of personal online activity, to the extent that even our
cars now invade our privacy.32 This was not anticipated and regulatory responses
such as “cookie warnings” are a source of annoyance rather than protection, and
indicate technological illiteracy on the part of regulatory agencies and lawmakers.
Similarly, the poisonous impact of “algorithmic” traffic generation on social media
was not anticipated and still has no effective response.

In our opinion, the only feasible means for anticipation and control of potential
disruptions due to AI is self-imposed or mandatory scrutiny within the organizations
developing the technology33 combined with public disclosure and debate. We believe
there is a strong role for modern assurance methods within this framework, rather
than the “codes of practice” envisioned in the EU regulations, especially for systems
that perform specific functions. The reason that other industries have moved from
standards and codes of practice to assurance cases is hard-won experience that
assurance has to be based on identification and elimination of the hazards of the

32See https://foundation.mozilla.org/en/privacynotincluded/categories/cars/.
33As precedent, the FAA has Designated Engineering Representatives (DERs) within the aviation

industry: the argument being that only those actually working on the products know enough of the
details to identify and anticipate hazards. This is obviously vulnerable to regulatory capture, as
demonstrated by the Boeing MCAS scandal, but is now reinforced and has otherwise worked well.
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specific system and environment under consideration. For general-purpose AFGI
systems, such as advanced LLMs, we believe that mechanistic protections such as
guards and internal monitors may prove inadequate and that new methods will
need to be developed based on improved understanding of topics such as emergent
behavior [101], the cognitive basis of language and shared intentionality (teamwork)
[20,149,167,168], and the sociology of judgment and cooperation [79].

So far, our discussion has considered AFGI systems that are not far beyond those
already current, and has not touched on “real” AGI. We suspect that popular opin-
ion misinterprets advanced AFGI as AGI and thereby underestimates the potential
danger of true AGI. As widely quoted (and variously attributed) “it is difficult
to make predictions, especially about the future,” and we consider the technology
and the timing of true AGI to be unknowable.34 Hence, it is impossible to identify
potential hazards and suitable mitigations and methods of assurance. However, it
does seem sensible to consider possible scenarios, even speculative ones (so science
fiction may be an appropriate forum to perform this work). For example, as already
noted, one dystopian possibility is that AGI may misinterpret its goals or estab-
lish its own at variance to our desires and best interests, or that we may simply
give it poorly chosen goals. Hadfield-Menell and colleagues [67] provide examples
of poorly specified goals (e.g., King Midas’ wish that everything he touches turn to
gold) or misinterpreted ones (e.g., a robot given the goal of cleaning up dirt repeat-
edly dumps and cleans the same dirt). They identify the generic problem as one of
value alignment and propose “Cooperative Inverse Reinforcement Learning” (CIRL)
as a promising technical framework, later generalized to “assistance games” [151].
The idea is that the AGI’s goal is continuously to learn what it is we want it to
do by observing our behavior (but what if its “master” has bad intent?). A more
wide-ranging and speculative proposal is for “Guaranteed Safe AI” [46].

One thing we can note is that, as in all the previous sections of this report, an
AGI system will surely operate by building some model of its world and will then
formulate goals and actions based on that model. In previous sections we have seen
that it is generally possible to construct some guarding function to mitigate the
hazards of harmful goals or faulty actions, but this guard will also depend on a
world model. Thus the fundamental problem in dependable AI and AGI systems is
assurance for perception and model construction. Dependability requirements will
be stated in terms of human models of the world (e.g., three dimensions of space and
one of time) and in order to enforce them, a guard’s model will presumably need to
use the same framework. Yet AGI capability may derive from alternative frameworks
(i.e., selection of latent variables)35 and alignment of human and machine models
built on different frameworks seems a substantial challenge.

34But see the One Hundred Year Study on Artificial Intelligence https://ai100.stanford.edu/.
35There are arguments going all the way back to Kant that our perceived model of the world

cannot correspond to “reality” [73].
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Beyond AGI is the concern that machines may become conscious [150]. This
is a difficult topic because there is no agreed definition for consciousness, nor ways
of detecting or measuring it (consider debate over whether animals are conscious).
And AI consciousness may exist but be utterly unlike our own (for an analogy,
consider the possibility of consciousness distributed among the nine “brains” of an
octopus [38, 118]). Nonetheless, there is general agreement on two aspects of con-
sciousness: intentional consciousness is the ability to direct attention and to think
about something and to know that you are doing so, while phenomenal conscious-
ness is “what it’s like” to have subjective experiences such as the smell of a rose or
the feeling of pain. There are two subtopics here: one is how plausible or likely it
is that AI could achieve either kind of consciousness, and the second is what the
consequences might be.

We should note that humans generally attribute behaviors to intentional con-
sciousness that actually originate in the subconscious [109] and, contrary to our
intuitions, the conscious mind is, for the most part, less an initiator of actions and
more a reporter and interpreter of actions and decisions initiated in the subcon-
scious [62]. Hence, when we see complex behaviors in animals, we attribute it to
intentional consciousness because we falsely believe that is how it is with us. Speech
in humans does require consciousness, so we are apt to anthropomorphize systems
with language skill and impute consciousness to them even though they contain
no mechanisms that could plausibly generate it (cf. ELIZA of 1966 [175] and also
Footnote 24).

Having said that, there is no agreement how human consciousness is achieved,
nor what purpose it serves. However, there have been experimental attempts to
construct machine consciousness [61, 140]. Mostly these are based on the idea that
consciousness derives from explicit models of self and of others, and is related to com-
munication and language [74,130] (these ideas correspond most closely with Higher
Order Thought, or HOT, models of human consciousness [33,63,149]). None of these
experiments have delivered any sign of consciousness, although they have sharpened
some of the questions, and the possibility of machine consciousness remains open.

Were it to be achieved, intentional AI consciousness seems unlikely to add ca-
pabilities beyond those of AGI: intentional consciousness seems to be essential to
human reasoning, but AI produces facsimiles of reasoning by other means, just as
airplanes fly without growing feathers or flapping their wings. However, AI con-
sciousness might require us to attribute some of the system’s behavior to conscious
decisions, thereby raising philosophically difficult questions regarding moral respon-
sibility, personal identity, and free will.

Phenomenal consciousness would also raise philosophically difficult questions,
but in this case they would concern ethics—not what AI might do to us, but how
we should treat AI. An AI system that truly has subjective experience, that feels
pain and pleasure, raises profound questions on the foundations of ethics and on
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just treatment of other sentient beings. It also asks how we could tell whether the
AI’s subjective experience is real or faked (cf. “philosophical zombies” [94]).

6 Summary and Conclusion

We have described and discussed methods to ensure and assure critical properties
of AI systems from the traditional “dependability” perspective. This requires that
assurance for critical properties rests only on elements of the system for which we
have near-complete understanding of what they do, how they do it, why they do it,
and the environment in which they do it, and comparably complete understanding
of their implementation and its correctness. All of these topics should be addressed
in an assurance case that assembles claims, evidence, arguments, and theories in a
manner that provides sufficient confidence in its top (i.e., overall) claim to justify
deployment.

The dependability perspective asserts that systems based on AI and Machine
Learning (ML) cannot satisfy these requirements; the contrary “trustworthy” per-
spective believes they can, in some cases. There is a continuum or spectrum between
these viewpoints and all are worthy of investigation; we focus here on those at the
dependability end and hope others will survey other points along the spectrum.

In that regard, we note recent papers that propose to apply assurance or safety
cases to the trustworthy perspective (e.g., [44,46]). We welcome these developments
but stipulate that when we speak of an assurance case we set a high bar. In par-
ticular, the case must be indefeasible, meaning there is no credible new information
that would change its assessment [148]. A (deliberate) consequence of this is that
the case must have “no gaps,” which generally requires the argument to be deduc-
tive [29]; exceptions must be noted as residual doubts and shown to pose negligible
risk. Evidence must be assessed skeptically (we advocate use of confirmation mea-
sures [64]) and shown to support not merely a claim of something measured (e.g.,
“we did penetration testing to such and such standard”) but one of something useful
(e.g., “therefore faults of type xx are absent”). In well-developed technical areas,
the assurance argument should largely be assembled from standard theories that
provide well-attested (and ideally “pre-certified”) subcases for common fragments
of the overall case (e.g., static analysis for absence of certain coding faults). The
upper levels of the assurance case do not concern the design or implementation of
the system, but a description of its environment and assumptions, derivation of its
hazards, and development of its requirements, all bound together by dependability
requirements validation to demonstrate that the requirements mitigate the hazards.
Next comes the specification that describes the design of the system, coupled with
intent verification to show that these satisfy the requirements. Only then do we get
to the implementation of the system and its correctness verification where, we stress,
for critical systems we need near certainty that this satisfies the specification. We
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suggest that formal verification of properties of neural networks often corresponds
more closely to static analysis that full correctness verification. Due to these chal-
lenging stipulations, we do not consider that assurance for trustworthy AI behavior
is feasible in most current applications, although we welcome continued research in
these directions and look forward to positive developments. We also acknowledge
that many AI applications do not require the same degree of assurance as safety crit-
ical cyber-physical systems (CPS), but it is challenging to determine which parts of
a full assurance case may then be relaxed, and how, and by how much (probabilistic
estimation may be useful [29, Section3]).

Work by Dong and colleagues [49] meets many of our stipulations but much of
the evidence for their assurance case comes from statistical modeling of the relia-
bility of its ML components. This is reasonable from a trustworthiness perspective
but less so from the dependability viewpoint, where we would want to see runtime
verification and dynamic assurance monitoring. The dependability viewpoint does
not trust AI and ML elements because they are derived by experimental optimiza-
tion (“training”) and their complete behavior is unknown. Consequently, assurance
is achieved using runtime verification with guarded architectures in which overall
behavior is checked for required properties by traditionally developed and assured
guards. An obstacle to this approach is that the guards must accurately perceive
(i.e., build a model of) the current state of the system’s environment, and this may
require AI and ML (e.g., for a self-driving car to perceive other road users).

We examined this dilemma in some detail for CPS extended with AI and ML. In
some cases (e.g., “geofencing”) adequate perception can be achieved by traditional
means, and in some others traditional mechanisms can support crude but moderately
safe guarding functions (e.g., emergency braking in self-driving cars). We then
considered whether AI perception could be beneficial in some circumstances and we
examined the topics of diversity and defense in depth and concluded that moderately
assured architectures could be constructed around these ideas, primarily to reduce
demands on traditionally engineered backup guards.

We then considered other kinds of systems that perform specific functions and
make use of AI and ML. Knowing the function performed by a system, it is generally
feasible to identify its hazards and critical properties, and we then found that similar
approaches and architectures to those examined for CPS can be feasible, although
there may be novel challenges in assurance for both perception and guards.

Next, we looked at foundation models such as LLMs and other general-purpose
systems on which more specific systems can be constructed. The additional prob-
lem here is that the ultimate application and its hazards are unknown and so the
general-purpose system has to use very general guards. We considered guards based
on normative principles, such as ethics and other overarching frameworks, and we
also examined explanations and reputation systems. Again, we found that effective
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guards may be feasible, but the main difficulty is assurance that the world view
constructed by the guard aligns with human perception.

Finally, we considered AGI and other futuristic prospects such as the singularity
and machine consciousness. Here, we are concerned less about faults and failures
of the system and more about unanticipated and disruptive consequences of their
correct and intended behavior. It is infeasible to guard these systems so we briefly
examined ways to ensure that their goals align with ours (which, again, is largely
a question of how the world is perceived). Although we concede that near-term
development of AGI is possible, we suggest that a more imminent concern is AFGI
(Artificial Fairly Good Intelligence), which can be projected from current advances
in generative AI such as LLMs, and we identified some proposed government regu-
lations and other safeguards.

Overall, we suggest that for CPS and other systems for specific functions, archi-
tectures similar to those labeled 4, 7 and 8 in Sections 2.4 and 2.5 are (in ascending
order) the most attractive. These use a traditionally engineered and assured guard
for “last second” protection (4), plus weakly assured but diverse perception for de-
fense in depth (7), and assured detection of micro-ODDs with specialized guards
for each one (8). Similar architectures can be adapted for general-purpose systems,
but with less assurance (as the hazards are less well-defined and perception more
difficult). For AFGI, and even more so for AGI, we suggest that protection and
alignment must go beyond restrictions on their mechanisms and build on an un-
derstanding of the cognitive basis of language and intelligence and the sociology of
group cooperation.

There are three research topics that we consider urgent;

� Assurance for models of the world/environment/context built by perception
systems using AI and ML,

Much current work focuses on development of guards, but these are dependent
on accurate perception of the world and we consider that assured perception
is a neglected topic. This applies not only to explicit models (e.g., location of
other vehicles) as constructed by CPS, but implicit ones (e.g., current social
context and role within it) underlying the behavior of LLMs.

Assured perception systems need not provide fully detailed world models, but
must be accurate to the level of resolution or discrimination needed for modest
but effective guards (e.g., detection of micro-ODDs and prediction of urgent
actions). Research from the trustworthiness perspective could usefully be ap-
plied to this problem. Related to assured perception is the topic of principled
fusion of diverse world models, possibly having different levels of resolution
(e.g., one fully detailed, and another less detailed but assuredly accurate). A
promising approach uses “predictive processing” and a “dual process” cogni-
tive structure similar to the human brain.
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� Development of layered, recursively structured architectures and associated
guards to provide defense in depth, within a socio-technical approach to design
(i.e., one that integrates technology with human and community aspects).

It is unlikely that a single guard can provide full protection for an AI sys-
tem in a complex environment, so overall architectures should favor defense
in depth based on rational principles, which begin with careful appraisal of
what the system is to do, and the environment in which it will operate. In
particular, environments where perception is easier should be favored (as with
ODDs for self-driving cars) and possibly constructed (e.g., dedicated tracks
for an automated shuttle bus) and those with “tight coupling” and “interac-
tive complexity” [129] should be avoided. In addition to architectures and
to design and assurance methods for strong guards, research should explore
credible methods for dynamic assurance and resilience for those applications
where strongly assured guards are infeasible.

� Research on the computational mechanisms underlying emergent behavior and
the cognitive basis of language, shared intentionality, and intelligence.

We cannot develop methods for assurance and alignment of AFGI and AGI
without better understanding of the computational processes underlying cog-
nition, and human (and to some extent animal) cognition are the only models
that we have. Beyond cognition, we need to understand the processes under-
lying teamwork (i.e., shared intentionality) and the sociology of cooperative
behavior.

Finally, we recommend development of concrete instances of assured perception
systems and of recursively structured guarded architectures, and their theoretical
and practical evaluation.
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