
Presented at the 1st International Workshop on Argument for Agreement and
Assurance (AAA 2013), Kanagawa Japan, October 2013. Appears in Springer
LNAI Vol. 8417, pp. 304–318.

Mechanized Support
For Assurance Case Argumentation

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA

Abstract. An assurance case provides an argument that certain claims
(usually concerning safety or other critical properties) are justified, based
on given evidence concerning the context, design, and implementation of
a system. An assurance case serves two purposes: reasoning and com-
munication. For the first, the argument in the case should approach
the standards of mathematical proof (though it may be grounded on
premises—i.e., evidence—that are equivocal); for the second it must as-
sist human stakeholders to grasp the essence of the case, to explore its
details, and to challenge it. Because of the scale and complexity of as-
surance cases, both purposes benefit from mechanized assistance. We
propose simple ways in which an assurance case, formalized in a mech-
anized verification system to support the first purpose, can be adapted
to serve the second.

1 Introduction

An assurance case provides an argument that certain claims about a system
(usually concerning safety or other critical properties) are justified, based on
evidence concerning its context, design, and implementation [1, 2].

The assurance case for a real system is a massive artifact: typically thousands
of pages of documentation, diagrams, analyses, and tests. It is surely difficult to
evaluate the argument that binds such a large amount of evidence together and
connects it to the claims. Greenwell and colleagues examined three industrial
safety cases and discovered logical fallacies in all of them [3]. Furthermore, each
case was examined by two reviewers and there were considerable differences in
the flaws detected by each reviewer.

Thus, it seems that human review is not particularly reliable for assurance
case arguments and that mechanized support could add precision to their con-
struction and analysis. Modern formal verification systems (such as Acl2, Agda,
Coq, Isabelle, or PVS) provide notations adequate to the formalization and spec-
ification of complex systems and the automation (based on theorem proving and
model checking) to analyze them (see, e.g., [4–6]). As we will explain, verification
is a narrower problem than system assurance, but it seems plausible that the
application of formal verification systems might be extended from verification

1



to the analysis of assurance case arguments, and there are proposals for doing
this [7–9].

These proposals presuppose that the argument of an assurance case should
be deductively sound, but there are differing views on this. Some believe such
arguments are quintessentially inductive: they provide strong evidence that the
conclusion is highly probable, not proof that it is certain [10]. My view is that
we may have doubts about some of the premises (i.e., evidence) used in the
argument, but that the reasoning, given these premises, should be logically or
deductively sound. I call this the reasoning aspect of the assurance case and argue
that formal verification methods can eliminate logic doubt concerning this aspect
of the argument, allowing attention to be focused on epistemic doubt about the
accuracy and completeness of our knowledge of the system, as represented in the
premises to the argument [11].

But, whereas logic doubt can be eliminated by mechanized verification, epis-
temic doubt requires human review. There is much evidence that human in-
dividuals and groups are prone to confirmation bias, so reviews should actively
challenge and explore the assumptions and claimed knowledge underlying a case.
Prior to, and in addition to, review, a case also serves as a vehicle for communica-
tion and shared understanding among its stakeholders and these purposes, too,
are likely to be best served by active exploration and “what-if” inquiry, rather
than passive appraisal. Thus, the reasoning aspect of a case is complemented by
a communication aspect that focuses on exploration of its epistemic foundation.

In support of its communication aspect, the epistemic foundation of an as-
surance case will be explored, modified, and revised—possibly many times—and
its reasoning aspect will be adjusted correspondingly. Thus, seen in the large, the
reasoning in an assurance case, although it can be supported locally by the tools
of formal verification, is not a proof, but an argument : the distinction being that
an argument is defeasible—i.e., it is subject to revision in the light of objections
or new information, or for the purposes of exploration. Just as the reasoning
or deductive aspect of an assurance case can benefit from mechanized support,
so can its communication or defeasible aspect—and, of course, the mechanized
support for each aspect must somehow coexist with the other.

In the following section, I review some topics in applying mechanized support
to the reasoning and the communication aspects of an assurance case, respec-
tively. Then, in Section 3, I propose a simple way in which a formalized assurance
case, whose mechanization is primarily intended to support reasoning, can be
augmented to allow defeasibility and used to support the communication aspect
also. The proposal is illustrated with a simple example. Section 4 provides brief
conclusions and suggestions for further research.

2 Mechanized Support for Assurance Cases

Assurance cases are large and complex artifacts and so it is necessary to have
automated support for managing the overall structure of a case, and for providing
representations in graphical notations such as GSN [12] to aid comprehension.

2



Several such tools exist [13,14], and there are emerging standards to assist their
interoperation [15,16].

However, my focus here is on mechanized support for the logical aspects
of an assurance case. In the next subsection, I review some topics in applying
mechanized support to the reasoning or deductive aspect of an assurance case,
and in the subsection that follows I review topics in providing support for the
communication or defeasible aspect of a case.

2.1 Mechanized Support for Reasoning in Assurance Cases

Modern formal methods tools such as verification systems, model checkers, and
SMT solvers have sufficient expressiveness and automation to undertake the
task of providing mechanized support to the reasoning or deductive aspect of
an assurance case. But just as its deductive aspect is not the whole purpose of
an assurance case, so classical formal verification is not quite the same as the
deductive part of an assurance case, so some care is needed in the way in which
an assurance case is represented as a formal verification.

A formal verification differs from the deductive aspect of an assurance case
in that verification takes the specification (i.e., premises) as given and verifies
correctness of the conclusions that are derived from it, whereas an assurance
case must also justify (often by citing the evidence of the case) the premises and
rules of inference that it uses, and it must also justify that the verified conclusion
bears an interpretation that is relevant to the claim of the case. For example, in
applying formal verification to an assurance case we might use a proof rule that
says “a system is safe if it is shown to be safe for each of its hazards”; in applying
this rule we would show safety for each hazard that has been explicitly identified
and would have a premise that says these are all the hazards. Justification
of this premise would be a major part of the safety case, yet is outside the
formal verification. In [7], I proposed a way in which an assurance case can be
represented in a formal verification system so that these aspects are at least
recorded. In essence, I conjoin to each premise a predicate that is set true only
when a reviewer accepts its supporting evidence, which can be attached to the
predicate as a comment. A formal verification system such as PVS requires small
enhancements to fully support this proposal (basically, support for referencing
documents as comments), but recent tool-integration frameworks such as the
Evidential Tool Bus (ETB) [17] allow nonformal justifications to be attached to
claims as a basic capability.

The premises to an assurance case represented within a formal verification
system record our knowledge about the system or, to use a fancier term, its
epistemology. The soundness of the deductive aspect of an assurance case rests
on two pillars: how complete and accurate is our knowledge about the system,
and how accurate is our reasoning about the case, given our knowledge. Concern
about the second of these (logic doubt) is largely eliminated by the soundness
guarantee of formal verification, so concern should mainly focus on the first item
(epistemic doubt), especially its completeness.

3



As suggested above, justification for many of the premises in a formalized
assurance case will be references to the evidence of the case. In developing a
formalized assurance case we can choose how abstractly to represent the system
and, in consequence, the granularity of the evidence that is explicitly represented.
Since evidence is opaque to the formal analysis, there is much to be said for
refining the level of abstraction and breaking large items of evidence into more
tightly focused pieces connected by explicit reasoning. In essence, this means we
should represent our knowledge in logic. Software is logic, so there is, in principle,
no obstacle to representing its epistemology (requirements, specification, code,
semantics) in logic: that is why formal verification is feasible—and increasingly
practical and cost-effective—for software.

The world with which the software interacts—the world of devices, ma-
chines, people and institutions—has not traditionally been represented in logic,
but indirectly it is becoming so, for it is increasingly common that system
developers build models of the world using simulation environments such as
Simulink/Stateflow. These models represent their epistemology, which they re-
fine and validate by conducting simulation experiments.

It is feasible to import models from simulation environments such as State-
flow/Simulink into verification environments (see, e.g., [18]). However, simula-
tion models are not the best representation of the epistemology for an assur-
ance case. Simulation models are designed for that purpose and simultaneously
say too much and too little for the purposes of assurance and minimization of
epistemic doubt. For example, the Simulink model for a car braking system will
provide equations that allow calculation of the exact rate of deceleration in given
circumstances (which is more information than we need), but will not provide
(other than indirectly) the maximum stopping distance—which is an example of
a property that may be needed in an assurance case. The crucial point is that
it should be easier to resolve epistemic doubts about a simple constraint, such
as maximum stopping distance, than the detailed equations that underlie a full
simulation model.

A proposal, developed in [11], is that for the purpose of recording the epis-
temology of a safety case, models should be expressed as systems of constraints
rather than as simulation models. Until fairly recently, it would have been diffi-
cult to validate systems of constraints: unlike simulation models, it was not feasi-
ble to run experimental calculations to check the predictions of the model against
intuition and reality. But now we have technology such as “infinite bounded
model checkers,” based on highly effective constraint solvers for “satisfiabil-
ity modulo theories” (SMT) that allow effective exploration of constraint-based
models [19].

2.2 Mechanized Support for Communication in Assurance Cases

As noted earlier, a formal verification is not the same as an assurance case and,
even with the adjustments proposed above, there are purposes served by an
assurance case that are not supported by its embedding in a formal verification
system, as currently envisaged.

4



In particular, an assurance case is not purely about deductive reasoning: it is
also about communication and, ultimately, persuasion. That is, an assurance case
is constructed by humans and embodies their understanding and beliefs about
the system and these need to be communicated to other stakeholders, including
regulators and certifiers. Effective communication is unlikely to be one-way; it is
more likely to be a dialog and the process of developing a common understanding
may lead to revisions in the assurance case. The revisions may adjust some of
the premises at the bottom of the argument, and they may adjust some of the
reasoning expressed in its rules or axioms.1

In addition to revisions that represent adjustments to the argument, review-
ers of the case may wish to temporarily change elements of the argument (i.e.,
conduct “what if” experiments) to assist their comprehension of the case. These
permanent and temporary revisions to an assurance case suggest that its argu-
ment should be viewed as provisional, or contingent, and should therefore be
developed in a framework that supports such “defeasible” reasoning.

Defeasible reasoning is well-studied in philosophy and in AI (where it is
generally referred to as nonmonotonic reasoning), and there are rich bodies of
work on belief revision, commonsense reasoning, truth maintenance, and so on.
Closely related are the fields of reasoning under uncertainty, where we find fuzzy
logic, Dempster-Shafer belief functions and so on, and probabilistic methods,
where we find probabilistic and Markov logics, Bayesian Belief Networks (BBNs)
and so on.2 The field of Argumentation frames similar issues in a (generally) more
abstract setting [21] where different agents may employ different sets of premises
so that a premise of one may “defeat” that of another, and entire arguments may
“attack” one another.

Most of these methods for defeasible reasoning, and the tools that support
them, are framed as augmentations to propositional logic, whereas we earlier
made the case that mechanized support for deductive reasoning in assurance
cases should build on the much more powerful logics and theories of modern
verification systems, model checkers, and SMT solvers.

One could imagine a two-pronged approach to mechanized support for devel-
opment and evaluation of assurance cases: a powerful deductive system for an-
alyzing the reasoning in detail, and a defeasible or argumentation-based system
to support exploration and experiment on the overall argument at an abstract
level for the purposes of understanding and communication. Such an approach
could be viable, and it might even be possible to automate abstraction from the
deductive to the defeasible levels of detail (though the reverse might be more
difficult), but I believe there could be benefits in augmenting the representation

1 There are persuasive claims that human consciousness evolved to enable communica-
tion and cooperative behavior, and that reasoning evolved to evaluate the epistemic
claims of others [20]. Thus, argument is a fundamental human capability, construc-
tive reasoning is an epiphenomenon, and confirmation bias is intrinsic.

2 I prefer not to cite specific works from the vast repertoire of articles and books on
these topics; an Internet search will provide many good references.

5



and tools proposed for deductive analysis of assurance cases so that they can
also support the defeasible level. This is the topic of the following section.

3 Supporting Defeasible Reasoning in Mechanized
Verification

In defeasible reasoning, we may draw a conclusion based on a state of knowledge
that is subsequently revised, invalidating the previous conclusion. A standard
example is

(1) Tweety is a bird,
(2) Birds can fly,
(3) Therefore Tweety can fly.

Subsequently, we learn that Tweety is a penguin and penguins cannot fly.
This new information contradicts our prior knowledge and there are many

proposals how to adjust our logic and our reasoning to accommodate such re-
visions. Often, we will have both a general rule “birds can fly” and a revision
“penguins cannot fly” that each apply to Tweety, who is both a bird and a pen-
guin, and we need some method (such as “circumscription” [22]) for resolving
the apparent inconsistency and preferring one conclusion over another. In other
cases, a revision may flatly deny some prior rule (e.g., Tweety is not a bird but a
bat) and defeasible reasoning provides ways to handle these inconsistencies, too.

While this kind of sophistication is valuable when representing commonsense
reasoning, or when resolving arguments where different parties advance different
premises, I do not believe it is necessary or desirable in the evaluation of assur-
ance cases. In evaluating an assurance case about Tweety, we would wish to be
alerted to the potential inconsistency in our epistemology concerning his ability
to fly, but would surely then seek to reach consensus on the point and then
reason classically from there. That is to say, rather than rely on logics for de-
fault or defeasible reasoning to cope with inconsistencies resulting from different
opinions or conflicting evidence, we would revise our assurance case to resolve
or eliminate the inconsistencies so that classical deductive reasoning provides a
single conclusion (this is similar to Pollock’s notion of a “warrant” [23]).

I propose that one simple way to allow exploration and challenge while still
using classical reasoning is to introduce explicit “defeater” predicates into the
premises of an assurance case.3 Then, our premises concerning Tweety become

(1) Absent a defeater about Tweety, Tweety is a bird, and
(2) Absent a defeater about flying, birds can fly.

More formally, any premise p becomes ¬dp ⊃ p where dp denotes the defeater
for p (and ¬ and ⊃ are logical negation and implication, respectively). Initially,
all defeaters are absent (i.e., false) and we conclude that Tweety can fly. A
reviewer who has doubts about the universality of the premise “birds can fly”

3 Some treatments of defeasible reasoning distinguish “undercutting,” “undermining,”
and “rebutting” defeaters, but the distinctions are not sharp and are not used here.

6



may turn on its defeater, observe the consequences, and revise the argument
by adding additional premises and constraints about penguins. I provide an
example below where the consequences of a defeater are a little less obvious, and
the benefits more significant.

In addition to turning defeaters on and off and then reasoning “forwards”
to deduce the consequences, we could instead assert that Tweety is a bird but
cannot fly, and then reason “backwards” to seek an explanation. Observe that
this is exactly the basis for model-based diagnosis [24], where our “defeater”
predicates take the role of the “abnormal” predicates used in diagnosis (and the
related “reconfig” predicates used in model-based repair [25]). Some of the tools
that underlie modern model checkers and formal verification systems provide
capabilities that directly support this kind of examination. For example, our
Yices SMT solver [26] not only can generate counterexamples as well as verify
large formulas in a rich combination of theories (i.e., it does sat as well as unsat
for SMT), but it can also generate unsat Cores, and perform Weighted maxsat
for SMT.

In the following section, I illustrate the use of explicit “defeater” predicates,
and also some of the other points made earlier, in a simple example.

3.1 Example

I illustrate the proposal above using a small example from [27]. Below, I repro-
duce the “structured prose” rendition of the assurance case from that example,
to which I have added paragraph numbers.

(1) This argument establishes the following claim: the control system is acceptably
safe, within the context of a definition of acceptably safe. To establish the top-
level claim, two sub-claims are established: (a) all identified hazards have been
eliminated or sufficiently mitigated and (b) the software has been developed to the
integrity levels appropriate to the hazards involved.

(2) Within the context of the tolerability targets for hazards (from reference Z) and
the list of hazards identified from the functional hazard analysis (from reference
Y), we follow the strategy of arguing over all three of the identified hazards (H1,
H2, and H3) to establish sub-claim 1, yielding three additional claims: H1 has
been eliminated; H2 has been sufficiently mitigated; and H3 has been sufficiently
mitigated.

(3) The evidence that H1 has been eliminated is formal verification.
(4) The evidence that catastrophic hazard H2 has been sufficiently mitigated is a fault

tree analysis showing that its probability of occurrence is less than 1 × 10−6 per
annum. The justification for using this evidence is that the acceptable probability
in our environment for a catastrophic hazard is 1× 10−6 per annum.

(5) The evidence that the major hazard H3 has been sufficiently mitigated is a fault
tree analysis showing that its probability of occurrence is less than 1 × 10−3 per
annum. The justification for using this evidence is that the acceptable probability
in our environment for a major hazard is 1× 10−3 per annum.

(6) We establish sub-claim (b) within the context of the list of hazards identified from

the functional hazard analysis in reference Y, and the integrity level (IL) process

guidelines defined in reference X. The process evidence shows that the primary

7



protection system was developed to the required IL 4. The process evidence also

shows that the secondary protection system was developed to the required IL 2.

I present a few highlights from a formalization of this argument in PVS [28,29].
As soon as we start to formalize the argument, we recognize that paragraph

(6) is not well connected to the rest of the case. This illustrates one of the
benefits in applying mechanized checking to an assurance case: we are forced to
ensure that the argument “connects up” and is deductively sound. Presumably,
a more fully developed version of the argument would say that part of the fault
tree analysis cited in (4) is an assumption that the software of the primary
protection system has a failure rate below some threshold, and development to
Integrity Level 4 (IL4) is considered to ensure that. Similarly for paragraph (5)
and development of the secondary protection system to IL2.

To formalize this in PVS, we introduce the enumerated types hazlevels and
intlevels to represent hazard and integrity levels respectively, and we provide
axioms asserting that hazard H2 is catastrophic and that process evidence
attests that the system was developed to integrity level IL4 with respect to this
hazard, and similarly for hazard H3 (we omit specifications for the signatures of
the functions hazlev and process).

hazlevels: TYPE = { minor, major, catastrophic }
intlevels: TYPE = { IL2, IL4 }

H2hlev: POSTULATE hazlev(system, H2) = catastrophic

H3hlev: POSTULATE hazlev(system, H3) = major

H2ilev: POSTULATE process(system, H2) = IL4

H3ilev: POSTULATE process(system, H3) = IL2

We use the keyword POSTULATE to indicate premises justified by evidence;
in contrast the keyword AXIOM indicates premises that represent the reasoning
or “proof rules” employed. PVS treats these keywords as synonyms, but the
distinction is useful for communication with human readers.

Next, we provide the “proof rule” axiom pr that relates hazard and integrity
levels to the claim that a given hazard is adequately “handled.” Here sy and hz

are variables ranging over systems and hazards, respectively.

pr: AXIOM

(hazlev(sy, hz) = catastrophic AND process(sy, hz) = IL4

OR hazlev(sy, hz) = major AND process(sy, hz) = IL2)

=> handles(sy, hz)

From these we can prove the lemmas that hazards H2 and H3 are adequately
handled. There is a similar (omitted) treatment for H1 on the basis that it has
been formally verified.

H1OK: LEMMA handles(system, H1)

H2OK: LEMMA handles(system, H2)

H3OK: LEMMA handles(system, H3)

8



We then assert that H1, H2, and H3 are all the hazards for this system and
claim in this context

H1, H2, H3: hazards

hazard_ax: POSTULATE

allhazards(claim, system, context) = {: H1, H2, H3 :}

We employ the argument strategy that a system is safe if each of its hazards
is adequately handled. Here cl and co are variables ranging over claims and
contexts, respectively.

strategy: AXIOM

LET hset = allhazards(cl, sy, co) IN

(FORALL (h: (hset)): handles(sy, h))

IMPLIES safe(cl, sy, co)

With these specifications, we can easily prove that the system is safe.

sysOK: THEOREM safe(claim, system, context)

Skeptical reviewers who examine this formalized assurance case might sug-
gest that the level of abstraction is too high: they might be concerned about
independence of H2 and H3 and be disappointed that the fault tree analyses
are opaque items of evidence.4 This illustrates the point made in Section 2.1
concerning epistemic doubt and the granularity of evidence.

There are two plausible approaches at this juncture: one is to elaborate the
formalized case to include the top levels of the fault tree analyses so that the
crucial topic of independence is exposed in the formal representation of the case;
the other is to introduce a new hazard H23 that represents joint occurrence of
H2 and H3. We will pursue the latter course here.

The developers of the assurance case might then introduce a premise that
states that the joint hazard H23 is catastrophic and must be mitigated to a
probability of occurrence less than 1 × 10−6 per annum, and claim that this is
ensured by the combination of process evidence of IL4 for the primary system
and IL2 for the secondary. The relevant changes are shown below and the formal
verification of the case succeeds as before.

hazard_ax: POSTULATE

allhazards(theclaim, system, context) = {: H1, H2, H3, H23 :}

H23hlev: POSTULATE hazlev(system, H23) = catastrophic

H23pr: AXIOM

handles(system, H2) AND handles(system, H3)

=> handles(system, H23)

H23OK: LEMMA handles(system, H23)

4 The prose description in [27] suggests that the system under consideration has a
primary and a secondary protection system; a standard concern in these kinds of
system is that both protection systems fail on the same demand [30].

9



Reviewers might be skeptical that the conjunction of process evidence for
the primary and secondary systems, each considered in isolation, is sufficient to
ensure mitigation of the joint occurrence represented by H23. To explore this they
could turn on the defeater dfH23pr for premise H23pr. (To keep the presentation
simple, I have not included the defeaters until now.)

dfH23pr: boolean = TRUE

H23pr: AXIOM NOT dfH23pr =>

handles(system, H2) and handles(system, H3)

=> handles(system, H23)

The formal verification now fails to guarantee safety.
The developers of the case could then introduce new evidence that the com-

bined primary and secondary system has been used previously in a different, but
similar context (with a system called otherS and hazard otherH).

previous: POSTULATE

similar((otherS, otherH),(system, H23))

AND handles(otherS, otherH)

They assert this is sufficient to claim that the present system handles H23.

dfprior23: boolean = FALSE

prior23: AXIOM NOT dfprior23 =>

similar((otherS, otherH), (system, H23)) AND handles(otherS, otherH)

=> handles(system, H23)

They turn off the defeater for this new premise and are once again able to verify
safety.

We now have two ways to justify safety of the system: one citing evidence of
integrity levels and fault tree analyses, and another citing prior experience. In
a conventional formal verification there is little purpose in such redundancy of
argument, but in an assurance case it can be useful. Here, the reviewers might
be skeptical of the evidence by prior experience because they are uncertain that
the context of the previous system is sufficiently similar to the present one, and
so they turn on the defeater for this argument.

dfprior23: boolean = TRUE

Once again, the formal verification fails to guarantee safety. But now the
developers might argue that although both lines of safety justification have their
flaws, in combination they constitute a “multi-legged” case (with independent
legs) that is surely sufficient. The reviewers might accept this and can adjust
their intervention in the formalized assurance case to state that either defeater
may be true, but not both together.

dfH23pr, dfprior23: boolean

notboth: AXIOM NOT (dfH23pr AND dfprior23)

10



Now the formal verification succeeds once again, and the reviewers are satisfied.
Here, “inspection” was sufficient to see that our epistemic foundation re-

mained consistent as we introduced new premises and toggled defeaters, but in
larger examples it will be important to use mechanized assistance to ensure this.

That concludes our small example. Its purpose was to illustrate the idea, but
its small size means that it cannot illustrate what I believe is the main attraction
in this approach: namely, that it can exploit the full power of modern formal
methods tools and should therefore scale to large examples that use rich logics
and theories.

4 Discussion and Conclusion

This paper has reviewed some topics in providing mechanized support for the
analysis and exploration of arguments in assurance cases. We saw that powerful
modern tools for formal methods can provide useful support for the deductive
or reasoning aspect of an assurance case and we explored some of the issues in
representing cases so that epistemic doubts are minimized. We then considered
support for the communication aspect of assurance cases and concluded that
this requires some element of defeasible reasoning. However, we suggested that
the purposes served by assurance cases are such that special logics for defeasible
reasoning or abstract argumentation are unnecessary—in fact, undesirable—and
that adequate support can be obtained by simply adding explicit “defeater” pred-
icates to the premises of the formalized case. We illustrated this with a simple ex-
ample. Related work includes similar proposals by Kinoshita and Takeyama [31].

Notice that our defeater predicates are not the same as the defeaters of
Pollock [23,32], where defeaters are premises that contradict other premises and
some mechanism is required to derive a preferred conclusion in the face of these
inconsistencies. Our defeater predicates are used to turn premises on or off so
that classical reasoning can be used. It is therefore important to check, for any
given assignment of values to defeater predicates, that the enabled premises are
not contradictory; unlike in our example, this check should be automated. Notice
also that our defeater predicates are either given explicit truth assignments or the
conclusions to the verification are true under all interpretations (possibly subject
to constraints, such as notboth in the example) so, contrary to [33, section 6.1],
philosophical objections to “logically-uninterpreted conditions” do not apply.

Future research could include comparison with proposals that do employ
more sophisticated treatments of defeasible argumentation, such as [32,34]. Some
treatments of argumentation, beginning with Dung [35], relate this to logic pro-
gramming, and it would be interesting to explore the extent to which this can
be supported in the Evidential Tool Bus, where the underlying framework is
Datalog [17].

The comparison with argumentation frameworks should consider philosophy
as well as technology. Argumentation generally presupposes a context where
participants have different points of view and there may be no single “correct”
conclusion (for example, arguments about ethics or aesthetics), or where partici-
pants have limited access to ground truth (e.g., drawing conclusions on the basis

11



of imperfect sensors). Argumentation methods will evaluate proffered arguments
and their defeaters or their attack relations and will derive conclusions, but these
may not be deductively sound. In contrast, I believe that while argumentation
may be an appropriate framework during development of an assurance case, the
finished case should be one in which every credible objection has been antic-
ipated and incorporated into the argument in such a way that the conclusion
is deductively sound. Exploration and examination of the case then focuses on
epistemic doubt about the premises, aided by the presence of defeater predicates
that enable what-if experimentation.

Related to the philosophy and the purpose of an assurance case, Steele and
Knight [36] provide a very illuminating account of certification, which I formulate
as follows. The system under consideration is a designed artifact and may have
flaws that could lead to accidents. The task of safety-critical design is to identify
and either eliminate or mitigate all hazards to its safe deployment. The task
of an assurance case is to provide confidence that this has been done, correctly
and completely. But the assurance case itself is a designed artifact and may have
flaws that could lead to a “certification accident”: that is, the decision to approve
and allow deployment of a potentially unsafe system. So the principles of safety-
critical design should be applied “recursively” to the assurance case itself. That
is, we should use systematic methods, inspired by those used for systems (e.g.,
fault tree analysis), actively to seek hazards (i.e., defeaters) to the assurance
case, and should then seek to eliminate or mitigate them. Mitigation could take
the form of a multi-legged case, as used in the example of the previous section,
where an attractive method of justification could be that the defeaters of each
leg are independent [37].

An excellent topic for future research is to explore the application and conse-
quences of Steele and Knight’s insight and its representation within the frame-
work proposed here. A related topic is to explore the novel structure for assurance
cases proposed by Hawkins and colleagues [10], who divide the overall case into
a safety argument and a confidence argument.

A final topic for future research is to explore whether it may be feasible to
derive some measure for the confidence in a case from the number and the nature
of the defeaters that are accommodated. One way to do this would be to attach
subjective probabilities to defeaters and then use calculation in some suitable
probabilistic framework such as Bayesian Belief Networks (BBNs); another might
be to employ “Baconian probabilities” as proposed in [38].

Acknowledgements. I am grateful for helpful comments by the reviewers that
caused me to rethink some of the presentation, and to stimulating discussions
with Michael Holloway and John Knight.

This work was supported by NASA under contracts NNA13AB02C with
Drexel University and NNL13AA00B with the Boeing Company, and by SRI
International. The content is solely the responsibility of the author and does not
necessarily represent the official views of NASA.

12



References

1. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Safety-
Critical Systems Symposium, Birmingham, UK (1998)

2. Kelly, T.: Arguing Safety—A Systematic Approach to Safety Case Management.
PhD thesis, Department of Computer Science, University of York, UK (1998)

3. Greenwell, W.S., Knight, J.C., Holloway, C.M., Pease, J.J.: A taxonomy of fallacies
in system safety arguments. In: Proceedings of the 24th International System Safety
Conference, Albuquerque, NM (2006)

4. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: seL4: Formal verifica-
tion of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, ACM (2009) 207–220

5. Miner, P., Geser, A., Pike, L., Maddalon, J.: A unified fault-tolerance protocol.
In: Formal Techniques in Real-Time and Fault-Tolerant Systems. Volume 3253
of Lecture Notes in Computer Science., Grenoble, France, Springer-Verlag (2004)
167–182

6. Narkawicz, A., Muñoz, C.: Formal verification of conflict detection algorithms for
arbitrary trajectories. Reliable Computing 17 (2012) 209–237

7. Rushby, J.: Formalism in safety cases. In Dale, C., Anderson, T., eds.: Making
Systems Safer: Proceedings of the Eighteenth Safety-Critical Systems Symposium,
Bristol, UK, Springer (2010) 3–17

8. Basir, N., Denney, E., Fischer, B.: Deriving safety cases from automatically con-
structed proofs. In: 4th IET International Conference on System Safety, London,
UK, The Institutions of Engineering and Technology (2009)

9. Takeyama, M., Kido, H., Kinoshita, Y.: Using a proof assistant to construct as-
surance cases: Correctness by construction (fast abstract). In: The International
Conference on Dependable Systems and Networks, Boston, MA, IEEE Computer
Society (2012)

10. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A new approach to creating clear
safety arguments. In Dale, C., Anderson, T., eds.: Advances in System Safety:
Proceedings of the Nineteenth Safety-Critical Systems Symposium, Southampton,
UK, Springer (2011)

11. Rushby, J.: Logic and epistemology in safety cases. In: SafeComp 2013: Proceed-
ings of the 32nd International Conference on Computer Safety, Reliability, and
Security. Volume 8153 of Lecture Notes in Computer Science., Toulouse, France,
Springer-Verlag (2013) 1–7

12. Spriggs, J.: GSN—The Goal Structuring Notation. Springer, London, UK (2012)
13. Denney, E., Pai, G., Pohl, J.: AdvoCATE: An assurance case automation toolset.

In: Proceedings of the Workshop on Next Generation of System Assurance Ap-
proaches for Safety Critical Systems (SASSUR), Magdeburg, Germany (2012)

14. ASCE: ASCE home page http://www.adelard.com/web/hnav/ASCE/index.html.
15. SACM: OMG Structured Assurance Case Metamodel (SACM) home page http:

//www.omg.org/spec/SACM/.
16. MACL: OMG Machine-Checkable Assurance Case Language (MACL) home page

http://www.omg.org/cgi-bin/doc?sysa/2012-9-4/.
17. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the Eviden-

tial Tool Bus. In Giacobazzi, R., Berdine, J., Mastroeni, I., eds.: Verification, Model
Checking, and Abstract Interpretation (VMCAI), 14th International Conference.
Volume 7737 of Lecture Notes in Computer Science., Rome, Italy, Springer-Verlag
(2013) 275–294

13

http://www.adelard.com/web/hnav/ASCE/index.html
http://www.omg.org/spec/SACM/
http://www.omg.org/spec/SACM/
http://www.omg.org/cgi-bin/doc?sysa/2012-9-4/


18. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
munications of the ACM 53 (2010) 58–64

19. Rushby, J.: Harnessing disruptive innovation in formal verification. In Hung,
D.V., Pandya, P., eds.: Fourth International Conference on Software Engineering
and Formal Methods (SEFM), Pune, India, IEEE Computer Society (2006) 21–28

20. Mercier, H., Sperber, D.: Why do humans reason? arguments for an argumentative
theory. Behavioural and Brain Sciences 34 (2011) 57–111 See also the commen-
tary on page 74 by Roy F. Baumeister, E. J. Masicampo, and C. Nathan DeWall:
“Arguing, Reasoning, and the Interpersonal (Cultural) Functions of Human Con-
sciousness”.

21. Chesñevar, C.I., Maguitman, A.G., Loui, R.P.: Logical models of argument. ACM
Computing Surveys 32 (2000) 337–383

22. McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artificial
Intelligence 13 (1980)

23. Pollock, J.L.: Defeasible reasoning. Cognitive Science 11 (1987) 481–518
24. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32

(1987) 57–95
25. Crow, J., Rushby, J.: Model-based reconfiguration: Toward an integration with

diagnosis. In: Proceedings, AAAI-91 (Volume 2), Anaheim, CA (1991) 836–841
26. Yices: Yices home page http://yices.csl.sri.com/.
27. Holloway, C.M.: Safety case notations: Alternatives for the non-graphically in-

clined? In: 3rd IET International Conference on System Safety, Birmingham, UK,
The Institutions of Engineering and Technology (2008)

28. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering 21 (1995) 107–125

29. PVS: PVS home page http://pvs.csl.sri.com/.
30. Littlewood, B., Rushby, J.: Reasoning about the reliability of diverse two-channel

systems in which one channel is “possibly perfect”. IEEE Transactions on Software
Engineering 38 (2012) 1178–1194

31. Kinoshita, Y., Takeyama, M.: Assurance case as a proof in a theory: towards
formulation of rebuttals. In Dale, C., Anderson, T., eds.: Assuring the Safety of
Systems: Proceedings of the 21st Safety-Critical Systems Symposium, SCSC (2013)
205–230

32. Pollock, J.L.: Defeasible reasoning with variable degrees of justification. Artificial
Intelligence 133 (2001) 233–282

33. Staples, M.: Critical rationalism and engineering: Ontology. Synthese (2014) To
appear.

34. Caminada, M.W.A.: A formal account of Socratic-style argumentation. Journal of
Applied Logic 6 (2008) 109–132

35. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77 (1995) 321–357

36. Steele, P., Knight, J.: Analysis of critical system certication. In: 15th IEEE Inter-
national Symposium on High Assurance Systems Engineering, Miami, FL (2014)

37. Goodenough, J.B., Weinstock, C.B., Klein, A.Z., Ernst, N.: Analyzing a multi-
legged argument using eliminative argumentation. In: Layered Assurance Work-
shop, New Orleans, LA (2013)

38. Weinstock, C.B., Goodenough, J.B., Klein, A.Z.: Measuring assurance case confi-
dence using Baconian probabilities. In: 1st International Workshop on Assurance
Cases for Software-Intensive Systems (ASSURE), San Francisco, CA (2013)

14

http://yices.csl.sri.com/
http://pvs.csl.sri.com/

	Mechanized Support For Assurance Case Argumentation

