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Abstract. The efforts of researchers over the past 20 years has yielded
an impressive array of verification tools. However, no single tool or
method is going to solve the verification problem. An entire spectrum of
formal methods and tools are needed ranging from test case generators,
static analyzers, and type checkers, to invariant generators, decision pro-
cedures, bounded model checkers, explicit and symbolic model checkers,
and program verifiers. These tools and techniques are used to calculate
properties of designs and implementations to varying degrees of assur-
ance. They are also interdependent so that a useful verification system
typically combines several of these techniques.
Much of our work at SRI over the past 15 years has been focused on tool
integration both in terms of building verification tools that have been in-
tegrated in other systems, and in integrating tools that others have built
into our own systems. This paper reports on the theoretical and practical
challenges of building component tools as well as integrating components
into a larger system. The practical challenges are mainly in managing
the trade-off between efficiency and modularity, whereas the theoretical
challenges are in achieving cohesive fine-grained and coarse-grained in-
teraction between specialized components. As a step toward addressing
these challenges, we present some principles for designing components
and integration frameworks focusing on the interfaces between the two.

? Funded by NSF Grant Nos. CCR-ITR-0326540 and CCR-ITR-0325808, DARPA
REAL project, and SRI International.



The black box nature of the decision procedure is frequently destroyed by
the need to integrate it. . .
When sufficiently powerful theorem provers are finally produced they will
undoubtedly contain many integrated decision procedures. . .
The development of useful decision procedures for program verification
must take into consideration the problems of connecting those procedures
to more powerful theorem provers. Boyer and Moore [BM86]

1 Introduction

Computer-aided verification through the use of model checkers and theorem
provers has become a critical technology in the design of reliable systems. Ver-
ification tools can either be employed directly or embedded within other anal-
ysis tools such as type checkers, compilers, test case generators, and program
synthesizers. In direct or embedded use, there is a choice between integrating
components where each component provides a related set of capabilities or in
implementing the functionality as needed for the application at hand. At SRI
International, we have been engaged in building analysis tools out of compo-
nents such as constraint solvers, decision procedures, model checkers, and type
checkers with systems such as PVS, ICS, and SAL. We report on our experience
in handling the challenges for modularity both at the practical and theoretical
level. We argue based on this experience that it is inevitable that sophisticated
verification tools will be based on powerful components, but that the design of
useful components and flexible integration frameworks can pose difficult engi-
neering challenges. These challenges can now be confronted in a systematic way
given the availability of a substantial collection of components and a fair bit of
experience with integration frameworks and novel applications that involve tool
combinations.

There are many reasons why tool integration has become critical in computer-
aided verification. The individual tools have become quite sophisticated and
specialized and their development and maintenance requires a substantial in-
vestment of time and effort. Few research groups have the resources to afford
the development of custom tools. The range of applications of verification tech-
nology has been broadened to include a wide array of analyses such as test case
generation, extended type checking, runtime verification, invariant generation,
controller synthesis, and proof-carrying code, to name a few recent develop-
ments. Several of these applications make opportunistic use of available tools
to achieve partial but effective analyses that uncover a large class of bugs. Spe-
cialized tools also need to be integrated to deal with domain-specific nature of
the verifications tasks, where the domains may range from hardware and sys-
tems code to embedded real-time and hybrid systems. These domains require
specialized automation. As an example, the verification of aircraft collision de-
tection and resolution algorithms employ a considerable body of real analysis
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and trigonometry knowledge, and lack of automation can be a real barrier to
effective verification.

The verification tools that we have built include PVS, ICS, and SAL [For03].
Of these, ICS [dMOR+04a] is a ground decision procedure component, whereas
PVS [ORSvH95] and SAL [dMOR+04c] are frameworks that integrate a number
of such components. PVS also serves as a back-end component in verification
systems such as InVest [BLO98], TAME [Arc00], LOOP [vdBJ01], and PVS-
Maple [ADG+01]. We describe these integrations to motivate a discussion of the
technical challenges in designing components as well as composition frameworks.
The practical challenge has been in designing component interfaces that make
all of the functionality available without the burden of a significant overhead.
The design of component interfaces is an extremely delicate task. There are few
general principles, but we offer a number of paradigmatic examples to illustrate
the perils and pitfalls. We argue that the theoretical design of the composition
framework is key to achieving flexible and efficient integrated tool suites. This
need is not peculiar to verification tools. Composition is the primary challenge in
any complex design. In the case of integrated verification tools, we motivate the
need for formal composition frameworks that provide architectures and interfaces
for communicating models, properties, counterexamples, and proofs.

Integration is not a new challenge for deduction. Many theorem proving sys-
tems from the 1970s were already based on such integration. The architecture
of the Boyer–Moore theorem prover [BM79] was built around components for
simplification, rewriting, induction, elimination, cross-fertilization, linear arith-
metic, and generalization. The Stanford Pascal Verifier [LGvH+79] used a com-
bination decision procedure based on the Nelson–Oppen method [NO79]. The
STP [SSMS82] and Ehdm [vHCL+88,RvHO91] verification systems at SRI em-
ployed a number of theorem proving techniques centered around the Shostak
combination method [Sho84]. The LCF family of systems [GMW79] were engi-
neered to be extensible with theorem proving tactics defined in a metalanguage
ML [GMM+77]. However, in each of these cases, the components were designed
specifically for their use within these systems. Modern verification components
are extremely sophisticated and their implementation and maintenance requires
a substantial investment of time and energy. This effort would be squandered if
we cannot find effective ways of reusing the components.

Effective integration requires careful engineering of the components as well as
the integration frameworks. For this purpose, we have to distinguish between
coarse-gained and fine-grained interaction between components. The latter re-
quires shared representations and shared state between components and is typ-
ical of combination decision procedures over a union of theories. Coarse-grained
interaction can be between homogeneous components which share the same pat-
tern of usage such as tactics, or between heterogeneous components such as
model checkers and decision procedures. Components themselves can be devel-
oped as libraries, or for online or offline use. Online components process inputs
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incrementally and therefore employ algorithms that are different from those in
an offline component.

We first present the arguments for and against modularity in the architecture of
verification tools in Section 2. A few useful components are described in Section 3
along with examples of their integration and use. Section 4 presents the way
PVS, ICS, and SAL operate as integration frameworks. We then describe formal
architectures for integrating formal verification components at a fine-grained
level of interaction in Section 5, and a tool bus for a coarse-grained integration
of larger components in Section 6. The conclusions are presented in Section 7.

2 The Modularity Challenge

A 1986 paper by Boyer and Moore [BM86] outlines many of the key obstacles to
the integration of black box decision procedures within a theorem prover. Their
paper was based on work undertaken in the late 1970s to integrate a decision
procedure for linear arithmetic into their induction theorem prover. Their case
against black box decision procedures can be summarized as follows.

1. The component decision procedure may employ a language for communicat-
ing formulas that is incompatible with that of the larger system. In their
case, the decision procedure assumes that all variables range over numbers,
whereas in the theorem prover, variables range over objects other than num-
bers.

2. The communication overhead with an external component can degrade per-
formance. For example, if a large volume of information has to be translated
to and from the component, then it might be better to build custom decision
procedures that can operate within the same language and context as the
theorem prover.

3. Term information from the decision procedure is needed to activate lemmas.
Suitable instances of simple arithmetic lemmas such as i ≤ max (i, j) must
be provided to the decision procedures. The instantiation of the lemmas of
course depends on the set of terms that are known to the decision procedure.
Unless the decision procedure is designed to anticipate such use, it will not
be possible to provide this information without modifying the component.

4. Proof and dependency information must be generated from the decision pro-
cedures. For many uses of decision procedures it is not sufficient to merely
provide decisions on the validity or refutability of a given conjecture. The
procedure must also yield information on the exact proof or of the formulas
involved in the proof. The need for such specialized information again means
that a standalone component might not entirely serve the purpose at hand.

5. The decision procedure typically does not support any mechanism for dy-
namically adding and retracting assertions from a context. This level of flex-
ibility is needed when using a decision procedure to simplify an expression
in the context of other assertions.
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For these and other reasons, Boyer and Moore argued that it was often easier to
implement decision procedures that are customized for a specific purpose than
to adapt off-the-shelf components.

In a more general setting but for very similar reasons, Lampson [Lam] argues
that only a small number of components, typically those like data bases and
compilers, actually see much reuse. These components provide complex func-
tionality through a narrow interface. These interfaces are fairly standardized
and do not need to be adapted based on the usage. Also, it would take an unrea-
sonable amount of effort to implement the same functionality for each specific
application. The arguments against reusable components can be summarized as
follows:

1. Engineering to a flexible application programmer interface (API) is quite
difficult. With a narrow API, less of the implementation is exposed leaving
many more choices for the internal design of the component.

2. Ideas and algorithms are more portable than implementations. A specific
implementation of a component is optimized for a usage profile and unless
the application fits this profile, it might be easier to build a version of the
component reusing the high-level algorithms.

3. It is often easier to engineer and implement non-modular interaction without
the overhead . There is often a degree of indirection when using a component
and the overhead of keeping track of the state of the component and of
translating information back and forth can be formidable.

4. For any specific application, the functionality available may be too much
and/or too little. If a component is constructed to be too flexible, then
a large part of its functionality might be irrelevant for the application at
hand. This excess functionality can still take a toll on performance. On the
other hand, if some functionality that is essential for the application is not
available in the component, then there is no workaround, and even a largely
useful component has to be discarded in favor of a custom implementation.

5. Enriching the interface often rules out certain optimizations. For example, a
decision procedure that allows assertions to be retracted will have to either
avoid destructive updates or employ invertible operations. Many optimiza-
tions are applicable under a closed world assumption that existing concepts
will not be redefined or elaborated, but this drastically restricts the interface.

These challenges confront both the implementors and the integrators of com-
ponents and they are by no means unique to software. However, the problems
are compounded by the fact that software offers manifold modes of interaction.
Though modularity poses serious challenges, we have already noted that there are
compelling reasons for pursuing it in the context of verification software. In the
following sections, we describe several approaches for overcoming the obstacles
to integration at several levels, focusing on the interfaces between components
and the integration frameworks.
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3 Deductive Software Components

A software component is a self-contained body of code whose functionality is
accessed through a well-defined interface. A piece of software is packaged into
a component so that it can be used in a number of different contexts. We first
present a few examples of software components that are typically integrated into
modern verification systems. These examples illustrate the challenges that arise
in the design of the components and their interfaces.

There are three basic classes of software components: libraries, offline procedures,
and online procedures. These classes are not necessarily disjoint and a single
component can belong to all three categories. A library is essentially a set of
related procedures sharing a common set of data structures and representations.
Packages which implement the binary decision diagram (BDD) representation
of Boolean functions, such as CUDD [Som98], are typical examples of libraries.
The MONA decision procedures [EKM98] for the theory WS1S also provides a
library of automata-theoretic operations building on BDDs. Term manipulation
libraries for defining syntactic and semantic operations are also available as for
example in the ASF+SDF environment [vdBvDH+01]. Libraries are the most
widely used form of software components and yet their developers receive little
acknowledgment for their efforts.

Offline procedures provide a specific prepackaged functionality in the form a
black box. Such procedures maintain no state between successive invocations.
Typical examples of offline procedures are parsers, black-box decision procedures
like SAT solvers and model checkers, and resolution theorem provers. These pro-
cedures are relatively easy to implement since few of the design decisions are
externally visible. However, they are also the least adaptable as software compo-
nents. The interfaces offered by offline procedures are too rigid for applications
that require greater access to and control over the internal representations and
behavior of the software.

Online procedures can be used as coroutines that maintain their own state which
can be queried and updated through a family of useful operations. Examples of
online procedures are incremental decision procedures and constraint solvers
that offer an ask/tell interface for adding constraints to a context as well as
querying the context for implied constraints. These procedures are often the
most complex in terms of the individual algorithms and the overall architecture.
The ability to interact with the state exposes many of the design choices and
the procedure has to work correctly with respect to all possible input sequences.
Online procedures are best suited for embedded applications since they offer
flexible interfaces that can be customized as needed. Online procedures often
come with scripting languages that can be used to extend the functionality by
building on the available primitives.
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3.1 BDD Libraries

Binary decision trees are representations of Boolean functions in the form of
conditional expressions where the condition is a Boolean variable [BRB90]. Bi-
nary decision diagrams represent the decision trees as graphs where common
subtrees are merged. Ordered binary decision diagrams impose an ordering on
the decision variables that determines the decision level of the variable. The
size of the BDD for a given Boolean function is quite sensitive to the choice
of variable ordering. Reduced ordered binary decision diagrams (ROBDDs) also
remove irrelevant choices. BDDs were originally introduced as representations
for combinational logic but have since been employed in a wide range of applica-
tions. The ROBDD representation admits efficient implementations of a number
of useful operations on Boolean functions such as negation, the application of
binary Boolean connectives, the restriction of variables to Boolean constants,
the simplification of a BDD with known constraints on the variables, and the
composition of one BDD with another through substitution.

BDDs can compactly represent sets of bit-vectors. Since the states in a finite-
state machine can be encoded using bit-vectors, BDDs can be used for represent-
ing finite sets of states as well as the transition relation. A typical BDD library
provides a number of functions for creating BDD, garbage collection, taking the
image of a BDD with respect to a transition relation, and computing fixpoints.
There has been some standardization of the APIs for BDD packages so that they
can, to some extent, be used interchangeably.

3.2 Offline SAT Solvers

A SAT solver determines if a given Boolean constraint is satisfiable. Typically,
the Boolean constraint is presented as a collection of clauses which are disjunc-
tions formed from Boolean variables and their negations. BDDs can also be used
to determine satisfiability, but a BDD representation of a Boolean constraint
displays all satisfying assignments, whereas a SAT solver merely looks for a
single such assignment. Modern SAT solvers are based on the Davis–Logemann–
Loveland simplification [DLL62] of the Davis–Putnam procedure [DP60]. This
algorithm can be presented as an inference system as shown in Figure 1.

A configuration consists of a set of clauses Γ . The Split rule branches on a
configuration by adding a unit clause corresponding to a Boolean variable p,
while adding its negation to the second branch. The Unit rule propagates the
consequence of a unit clause through the other clauses in a configuration. If a
configuration contains a Boolean variable and its negation as unit clauses, then
a contradiction is reported along that branch by the Contrad rule. When there
are no more variables available for branching or unit clauses left to propagate,
the clause set is irreducible and corresponds to a satisfying assignment for the
original set of clauses.
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Split
Γ

Γ, p | Γ,¬p
p and ¬p are not in Γ

Unit
κ, C ∨ l̄, l

κ, C, l

Contrad
κ, l̄, l

⊥

Fig. 1. A Propositional Satisfiability Solver

The efficient implementation of these rules requires good heuristics for picking a
branching literal, an efficient mechanism for unit propagation, and mechanisms
for backtracking that avoid redundant branches. Additionally, new clauses have
to be generated from detected conflicts to direct the search along more fruitful
branches. In the past, SAT solving has been a speed sport where performance
was the only criterion for success. As SAT solvers are being deployed in real
applications, some of the interface issues have come to the fore. For example, it
is not enough for a SAT solver to merely detect satisfiability. It should provide a
satisfying assignment when one exists, or even all satisfying assignments, and a
proof of unsatisfiability when there is no such assignment. It should be possible
for an application to query the SAT solver for further satisfying assignments
possibly with additional clause constraints. A SAT solver, like any other pro-
gram, should be customizable with different choices of heuristics and decision
parameters. SAT solvers built for embedded use already provide such interfaces.

3.3 Online Ground Decision Procedures

An online procedure is one that processes its input incrementally. Since all of the
input is not initially available, this rules out solutions that involve several passes
over the given input. Ground decision procedures (GDP) determine if a conjunc-
tions of literals is satisfiable in a given theory. For example, the conjunction of
the literals f(x) = f(f(f(x))), f(f(f(f(f(x))))) 6= f(x) is unsatisfiable in the
theory of equality over uninterpreted terms. The conjunction of the real arith-
metic constraints x < y, y < z, z < x is also unsatisfiable. Many applications
require online implementations of GDPs that process assertions of new literals
and queries with respect to a context. In the case of an assertion, the procedure
either reports a contradiction, returns a new context with the asserted informa-
tion, or it returns the same context when the given literal is already valid in the
old context.

A simple online Gaussian elimination algorithm can process linear arithmetic
equality and disequality constraints. There is a diverse collection of techniques
for processing linear arithmetic inequality constraints in an incremental manner
ranging from Fourier’s variable elimination method to the simplex algorithm
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for linear programming. Online congruence closure procedures process equalities
between terms into a union-find structure for equivalence classes. There are a
number of theories that admit online ground decision procedures such as ar-
rays, bit-vectors, recursive datatypes such as lists and trees, and linear integer
equalities and inequalities.

Shostak [Sho84] gives a schematic presentation of online decision procedures
for solvable and canonizable theories which admit a solving algorithm and a
computable canonical form for each term. The basic idea underlying Shostak’s
scheme is that the input constraints are processed into a solution set that maps
variables to terms. For each input constraint, the current solution set is first
substituted into the formula and the canonizer is applied to it. The resulting
formula is solved using the solver, and the solution thus obtained is composed
into the existing solution set.

Many constraints involve formulas that contain symbols from a combination of
theories. In solving such constraints, the challenge is to combine the decision
procedures for the individual theories into one for the combination. Nelson and
Oppen [NO79] give a combination method that partitions each mixed input con-
straint into a set of pure constraints, i.e., those whose symbols are all from a
single theory. This is done by introducing fresh variables to label pure subterms.
The individual decision procedures then exchange equality information regard-
ing the shared variables until one of the theories identifies a contradiction or
no further variable equalities can be derived. Decision procedures for Shostak
theories can also be similarly combined by exploiting the solvers and canonizers
for the individual theories [RS01,SR02].

Online decision procedures need to be efficient enough to also be usable in an
offline manner since some application require a mix of online and offline use. Effi-
cient incremental algorithms for updating the context are essential for achieving
good online performance. Another challenge for decision procedures is in gen-
erating efficient proofs of validity and explanations consisting of the subset of
input constraints leading to a contradiction. The construction of proofs can be
engineered to track the behavior of the algorithm so that the facts that are
recorded in the context are annotated with their justifications given in terms of
existing annotations. Many applications require efficient explanations in terms of
the smallest number of input constraints employed in deriving a contradiction,
but computing minimal explanations can be NP-hard even when the decision
algorithm is polynomial. For this reason, it is also unlikely that minimal jus-
tifications can be constructed as an extension to the basic decision algorithm.
In most cases, it is possible to construct an irredundant explanation consisting
of a conflicting set of input constraints for which every proper subset is satisfi-
able [dMRS04].

A ground decision procedure can be extended to determine the satisfiability of
a propositional combination of constraints [BDS02,BLS02a,dMRS03]. The näıve
approach to satisfiability modulo theories involves converting the formula to dis-
junctive normal form as a disjunction of conjunctions of literals, and using the
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ground decision procedure to determine the satisfiability of one of the disjuncts.
This results in a formula that is too large. Modern SAT solvers are highly ef-
ficient and can be employed in determining satisfiability modulo theories. This
is done by taking a Boolean abstraction φ of the input formula φ where the
atomic formulas Ai are replaced by corresponding Boolean variables pi. In the
eager approach [BLS02a], the Boolean abstraction is augmented with clauses in
the Boolean variables that are implied when the variable is replaced by the cor-
responding atomic constraint. Thus if A1 ∧ ¬A2 ∧ A3 is unsatisfiable according
to a ground decision procedure, then ¬p1 ∨ p2 ∨ ¬p3 is conjoined with φ. These
lemma clauses are generated statically from the atoms in the given formula. Let
the augmented formula be φ̂. A SAT solver is then invoked on the augmented
formula φ̂. If the lemma generation process is complete, then φ̂ is satisfiable iff
φ is satisfiable. In the lazy approach to satisfiability modulo theories [dMRS03],
the SAT solver is first invoked on the Boolean abstraction φ. Within the SAT
solver, the splitting step is modified to check that if the current context contains
the literals l1, . . . , ln that correspond to the literals L1, . . . , Ln in the original
formula φ, then the split rule can only be invoked on an atom p corresponding
to a concrete atom A when L1, . . . , Ln, A and L1, . . . , Ln,¬A are both satisfi-
able according to the ground decision procedures. Also, when the SAT solver
returns a satisfying assignment of literals l1, . . . , ln, the ground decision proce-
dure checks L1, . . . , Ln for satisfiability. If the assignment is satisfiable then the
original formula φ is also satisfiable, but if the assignment is unsatisfiable, then
a lemma is generated from the conflicting literals and added to the clause set for
the SAT solver.

Such an integration between a ground decision and a SAT solver can make
enormous demands on the APIs of both components. For example, the SAT
solver must provide operations for elaborating the splitting heuristic and for
resuming the search with additional clauses. The ground decision procedures
must contain operations for maintaining multiple contexts and for returning
compact conflict sets. However, this kind of flexibility can impair efficiency in
applications where these features are irrelevant.

4 Integration Frameworks: SAL and PVS

Powerful and flexible deductive components can be embedded within applica-
tions such as bounded model checking, test case generation, optimizing com-
pilers, translation validators, predicate abstraction tools, and theorem provers.
These integrations typically involve the use of one or two decision components
as back-end engines. An integration framework allows multiple components to
work cooperatively. PVS and SAL are verification frameworks that are designed
to serve as such integration frameworks. PVS integrates a variety of focused de-
ductive components within a proof checking environment. SAL on the other hand
integrates a small number of verification components including model checkers
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and decision procedures for the analysis of transition systems. Together, SAL
and PVS illustrate some of the characteristics of an integration frameworks.

4.1 SAL

SAL (Symbolic Analysis Laboratory) is an integration framework for combin-
ing program analysis, model checking, and theorem proving technology for the
verification of transition systems. SAL facilitates this interaction through an in-
termediate language for describing transition systems and their properties. The
SAL language is used to define transition system modules. Basic modules are
defined in terms of the definitions, and initializations and transitions given by
guarded commands. Modules are composed by means of synchronous and asyn-
chronous composition. SAL contains a number of analysis tools including

1. A well-formedness checker (sal-wfc) that checks if SAL descriptions are
syntactically correct and checks for partial type correctness. The SAL ex-
pression language is a sublanguage of PVS with a limited degree of predicate
subtyping. Type checking expressions in a module with respect to subtypes
generates invariant proof obligations. We are currently developing a more
complete type checker for SAL.

2. A deadlock checker (sal-deadlock-checker) which uses the symbolic model
checker to determine if transitions deadlock. Such deadlocks can arise for
subtle reasons and the other analysis tools assume that the given SAL de-
scription is deadlock-free.

3. An explicit-state model checker that can be used to prove properties of SAL
modules stated in linear-time temporal logic (LTL).

4. A symbolic model checker for LTL properties (sal-smc) built using the
CUDD library.

5. A witness-generating model checker (sal-wmc) for properties expressed in
the branching-time temporal logic CTL

6. A finite-state bounded model checker (sal-bmc) that is parametric with re-
spect to a number of SAT solvers: ICS, ZChaff [MMZ+01], BerkMin [GN02],
and Siege [Rya04].

7. An infinite-state bounded model checker (sal-inf-bmc) which is para-
metric in a number of ground decision procedures: ICS [dMOR+04b],
SVC [BDL98], CVC [SBD02], UCLID [BLS02b], MathSAT [ABC+02], and
CVC-Lite [BBD]. Infinite-state bounded model checking relies on procedures
for satisfiability modulo theories.

8. A random simulator (sal-path-explorer) which can be used to generate
random traces for testing LTL properties.

9. A finite trace generator (sal-path-finder) that uses a SAT solver to gen-
erate a computation of a given depth.

10. An interactive simulator (sal-sim) which provides access to the model-
checking API for SAL.
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11. A test case generator (sal-atg) which builds on a number of SAL model
checking tools to identify input sequences that yield specified coverage tar-
gets.

SAL is an open integration framework in that it allows both scriptability and
interaction. Many of the tools above are written as scripts in the Scheme language
using various library functions for the syntactic and semantic manipulation of
SAL descriptions. For example, scripts for test case generation can be defined to
combine bounded model checking, slicing, and symbolic model checking to reach
shallow and deep targets. The sal-sim environment can be used interactively to
develop such scripts. The witnesses and counterexamples can also be explored
interactively.

4.2 PVS

PVS is written in Common Lisp. It has interfaces to a BDD and BDD-based
model checking package written in C, and provides interfaces with three exter-
nal ground decision procedures; two written in Lisp and one in OCaml. It also
integrates a number of PVS-specific inference procedures for operations such
as rewriting, lemma introduction, quantifier instantiation, definition expansion,
Boolean simplification, and case-splitting. The integration is built around a proof
manager that serves as an interpreter for proof strategies defined in terms of the
basic inference operations.

Integrating the BDD package was not difficult, mostly because it is written in C
(C++ adds some complexity), and its API is well documented. In addition, it
provides functions for allocating and freeing memory, which are easy to control
from Lisp. The integration essentially involves defining foreign functions, trans-
lating PVS terms using the term constructors in the BDD API, and creating
a proof rule (bddsimp) to invoke the package and interpret the results back to
PVS.

Most decision procedures are black boxes that take as input a set of formulas,
and return an indication of whether they are satisfiable or not. PVS requires a
richer API. Because it is interactive, and subgoals may be postponed, the decision
procedure must be able to maintain several distinct contexts, and switch between
them. New facts are introduced incrementally, and the decision procedures must
cope with this. Finally, some formulas are asserted as valid, but many are simply
tests, for example to check the condition in a conditional rewrite. These should
not have an effect on the original context.

The first decision procedure added to PVS was originally written by
Shostak [SSMS82] in the late seventies and heavily modified since then. It was
the core of the theorem prover for Ehdm [vHCL+88,RvHO91], and since it was
written in Lisp, the interface was quite straightforward.
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A new ground decision procedure package was implemented in Common Lisp in
1996. The only new integration issue was that we wanted to support both decision
procedures, with the user controlling which to use for a given proof. Since the
underlying states were not compatible, the PVS prover was modified so that calls
to the decision procedure carried along two states — one for Shostak and one
for the new decision procedure; and because the API was more complex, some
extra calls to the decision procedure were necessary. This was partially hidden
using macros, but it clearly was inefficient.

ICS was developed in OCaml, which created a new set of problems. First of all,
to support a third decision procedure meant modifying the macro and adding
yet another state to the decision procedure invocations. Rather than do this,
we created a new PVS decision procedure API as described below. With this,
the prover just invokes whichever decision procedure is current, without any
knowledge of the implementation details.

The other problems are primarily due to the fact that both Lisp and OCaml have
interpreters and garbage collectors. This means that terms created by OCaml
could be moved by the OCaml garbage collector unless they were registered. But
once registered, the terms must be unregistered when Lisp is finished with them,
or memory will be quickly used up. Fortunately, Allegro Common Lisp provides
a finalization facility that allows hooks to be invoked when an entity is garbage
collected. Thus all pointers to data in the OCaml world are wrapped in lists, and
a finalization is associated with this list. When the list is garbage collected by
Lisp, the finalization function is invoked, and it deregisters the pointer, allowing
the data to be garbage collected by OCaml. Ensuring that there are no memory
leaks or lost references between Common Lisp and OCaml is quite delicate.
Debugging can be difficult because bugs are nondeterministic and are not easy
to reproduce or correct.

Another issue with OCaml is the type system. ICS has types of terms and
atoms, and if a term is provided where an atom is expected the usual effect is
a segmentation fault, killing the whole process, Lisp included. Debugging this
usually involves adding lots of print statements to determine which call is the
culprit; remembering to flush the print buffer with each call to make sure it
is seen before the process dies. The problem is that though Lisp is considered
untyped, it actually checks for types at runtime. OCaml is typed, but it strips
the types out at runtime, and assumes all calls are safe. The API for ICS has
recently been modified to provide a sort of runtime typechecking that makes
debugging much easier.

The API for the ground decision procedure in PVS is defined by a set of methods.
The primary ones are

empty-state - creates a new state for the decision procedure.
process - given a PVS boolean expression and a state, returns either

FALSE : the expression is inconsistent.
TRUE : the expression is already known to be true.
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new-state : a new state, in which the expression has been asserted.
state-changed? - checks whether two states are equivalent.

The process method generally invokes a function that translates a PVS expres-
sion to terms in the language of the underlying decision procedure.

PVS also has an addrule operation to introduce new inference rules for proof
construction. The MONA decision procedures for the WS1S fragment of the
PVS logic have been introduced this way. The PVS strategy language is used
to add compound proof strategies that are defined using the primitive inference
rules and previously defined strategies.

4.3 Characteristics of an Integration Framework

Both SAL and PVS illustrate some of the typical characteristics shared by in-
tegration frameworks. Both systems are built around a description language
for communicating information through terms, formulas, modules, and theories.
A shared language is a key feature in integration since it allows components
to interact without tool-specific translations and explicit invocation. SAL and
PVS also offer a powerful base set of components to bootstrap the integration
process. Such components can be built for high performance using efficient rep-
resentations that can be kept internal to the component. PVS has operations
for adding inference components. In PVS, inference components share the same
signature as proof constructors mapping goals to subgoals. SAL components are
more diverse in terms of their signatures. PVS offers a scripting language for
defining new proof strategies in terms of the base components and previously
defined proof strategies. SAL uses Scheme as its scripting language. The PVS
strategy language ensures that all defined strategies are sound by construction,
whereas programming scripts in Scheme for SAL yields no guarantees. PVS has
a proof manager that handles the book-keeping involved in proof development.
The proof manager keeps track of the unfolding proof structure, the completed
branches, and the pending subgoals. A few such managers have been developed
for SAL for navigating through a simulation or for exploring witnesses and coun-
terexamples. Systems such as HOL [GM93], Isabelle [Pau94], and STeP [MT96]
are also similar examples of integration frameworks.

5 Formal Architectures for Tightly Coupled Integration

The integration frameworks described in the previous section dealt with the loose
coupling of large inference components such as those used in proof construction
or model checking. In such an integration where components do not interfere
with each other, the framework can impose discipline on the interaction. In a
tightly coupled setting, the interaction has to be mediated through a well-defined
architecture. Tight coupling therefore poses theoretical challenges that are not
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present in the loosely coupled case. A formal architecture for composing com-
ponents must allow component properties to be established independent of the
other components, and system properties to be derived from those of the com-
ponents. For the case of combination decision procedures, we have developed a
formal architecture that provides a theoretical framework for composing decision
procedures over specific theories [GRS]. This framework is based on the concepts
of inference systems and inference modules and a theory of compositionality and
refinement for inference systems.

An inference structure is a pair 〈Ψ,`〉 of a set of logical states Ψ and an infer-
ence relation ` between states. Each logical state is of the form κ1| . . . |κn which
represents a bag of zero or more configurations κi. The | operator is associative
and commutative with the special unsatisfiable configuration ⊥ as its zero ele-
ment. The inference relation relates a pair of logical states as ψ ` ψ′, where φ
is the premise state and φ′ is the conclusion state. An inference structure is an
inference system for a theory if the inference relation is

1. Conservative in that the premise and conclusion must be equisatisfiable with
respect to the class of models of interest, i.e., the theory.

2. Progressive, i.e., the inference relation should be well-founded.
3. Canonizing so that a state is irreducible, i.e., has no ` successors, only if it

is either ⊥ or is satisfiable in the theory.

Decision procedures given by inference systems can be immediately seen to
be sound and complete since an initial state eventually leads, by progressive,
through a series of inference steps to an irreducible, equisatisfiable state, by
conservativity, that is either ⊥ or satisfiable, by canonicity. The satisfiability
procedure given in Figure 1 is an example of an inference system.

Inference systems offer a scheme for defining sound and complete decision pro-
cedures for a specific theory. Inference components capture open decision proce-
dures that can interact with similar components for other theories. An inference
component is an inference structure where each configuration κ consists of a
shared part (a blackboard) γ and a local, theory-specific part (a notebook) θ.
The shared part γ contains the input constraints G in the union theory T∞ as
well as the shared constraints V in the intersection theory T0. The semantic
constraints on the inference relation of an inference module are slightly differ-
ent from those of an inference system. For an inference module, the inference
relation must be

1. Local, so that the premise is a single configuration.
2. Progressive, as with inference systems.
3. Strongly conservative, in preserving models and not just satisfiability.
4. Relatively canonizing, so that for an irreducible state, the V component must

be extensible to a closure Cl(V ) which is T0-satisfiable, and any T0-model of
Cl(V ) must be extensible to a T -model of V ; θ.
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The composition M1 ⊗M2 of two inference modules M1 and M2 is defined to
yield an inference module with configurations of the form γ; θ1, θ2, where γ, θi is
a configuration in module Mi for i ∈ {1, 2}. The inference relation for M1 ⊗M2

is the union of those for the component modules and is applied to the relevant
part of the logical state. Two inference modules are compatible if they can be
shown to be jointly progressive on the shared part. The composition of two
compatible inference modules can be shown to be an inference module for the
union of theories, provided the theories involved satisfy certain conditions.

A generalized component can be defined to capture the abstract behavior of
typical inference modules as shown in Figure 2. The configuration has the form
(K;G;V );E, where K is the set of shared variables, G is the unprocessed input
constraints, V the shared constraints, and E the local constraints. The Contrad
rule detects a contradiction using the theory-specific decision procedure. The
Input rule moves a T0-constraint from the input G to V . The Abstract rule
replaces an input subterm t that is in the theory T by a fresh variable x while
recording x = t in E. The Branch rule branches by adding an unresolved shared
constraint P from a finite set of basis atoms, to V on one branch, while adding
¬P to V on the other branch.

Contrad
(K; G; V ); E

⊥ if T |= V, E → ⊥

Input
(K; Q, G; V ); E

(K; G; Q, V ); E
for Σ0[K]-literal Q

Abstract
(K; G{t}; V ); E

(K; G{x}; V ); x = t, E
for pure Σ[K]-term a, fresh x

Branch
(K; G; V ); E

(K; G; P, V ); E|(K; G;¬P, V ); E

if P 6∈ V,¬P 6∈ V
for Σ0[K]-basis atom P

Fig. 2. A Generalized Component

Inference modules can be shown to yield a modular presentation of known com-
bination results such as those of Nelson and Oppen [NO79], Shostak [Sho84],
and Ghilardi [Ghi03]. These systems are, in a formal sense, refinements of gen-
eralized components. In practical terms, inference modules provide a software
architecture for combination decision procedures. The architecture of the ICS de-
cision procedures is based on inference modules. The theory of inference systems
and inference modules is a small step in the direction of a software architecture
framework for tightly-coupled ground decision procedures. Much more work is
needed to handle the integration of richer theories and deeper decision problems.
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6 A Tool Bus for Loosely Coupled Integration

SAL is intended as a framework for integrating a number of heterogeneous ver-
ification components including a variety of model checkers and decision proce-
dures. However, SAL currently lacks a formal framework for the loose coupling
of heterogeneous components. Such a framework must provide

1. A read-eval-print loop for interacting with different components.
2. A scripting language for building analysis tools combining the existing com-

ponents.
3. An interface for adding new components.
4. A mechanism for building evidence justifying the results of the analyses ob-

tained by chaining together the evidence generated by the individual com-
ponents.

We call this framework a tool bus. Unlike most previous attempts for building
tool integration frameworks [DCN+00], the proposed SAL tool bus focuses on
the conceptual level rather than the operational details of tool invocation.

The basic primitive in the SAL tool bus is an assertion of the form T : P ` J
which denotes the claim that tool T provides a proof P for judgment J . The
proof P here need not be a mathematical proof but merely the supporting evi-
dence for a claim. In the integration, tools can communicate in terms of labels
for structures, where the content of these labels is internal to a specific tool in a
manner similar to variable abstraction in combination decision procedures. For
example, the BDD package exports labels for BDDs without exposing their ac-
tual structure. The specific judgment forms can be syntactic as well as semantic.
Typical judgments include

1. A is a well-formed formula.
2. A is a well-typed formula in context τ .
3. a is a BDD representing the formula A.
4. C is a decision procedure context representing the input Γ .
5. A is satisfiable in theory T .
6. Γ is a satisfying assignment for A.
7. Γ is a minimal unsatisfiable set of literals.

Each component can build such judgments by forward chaining from existing
judgments or backward chaining through the generation of proof obligations.
The tool bus thus serves as a uniform framework for interacting with exist-
ing components, adding new components, defining scripts, coordinating garbage
collection, and managing the evidence generated.

7 Conclusions

Lampson in his skepticism about component-based software development, and
Boyer and Moore in their critique of black box decision procedures, correctly
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identify the many obstacles to the smooth integration of pre-existing compo-
nents. Integration does pose significant challenges in theory as well as practice.
The technology involved in the construction of inference components has be-
come extremely sophisticated so that we have little choice but to reuse existing
software in the form of libraries as well as online and offline components. Com-
ponents then have to be explicitly engineered for such embedded use through
design and interface choices that provide flexibility without significantly com-
promising efficiency. In the last ten years, several such components have been
made available in the form of BDD packages, model checking tools, and deci-
sion procedures, and these packages have been integrated within larger systems.
Though there is no consensus on the standardized interfaces for such packages,
there is a growing empirical understanding of the trade-offs between flexibility
and efficiency. Integration frameworks for loosely coupled components have been
built around a shared description language. There is a now an active body of
research focused on architectures for tightly coupled integration. The theoretical
challenges that are being addressed by ongoing research include novel algorithms
for online use, and formal architectures for composing inference components that
yield systems that are correct by construction. Finally, we have presented pre-
liminary plans for a SAL tool bus architecture that combines various analysis
tools within a framework for constructing reproducible evidence.
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