
Program Synthesis Using Dual Interpretation

Ashish Tiwari, Adrià Gascón, and Bruno Dutertre

SRI International, Menlo Park, CA, USA.

Abstract. We synthesize straight-line programs using symbols from a
given library such that the synthesized programs satisfy both functional
and nonfunctional requirements. We use two different interpretations for
the symbols in the program. The first interpretation gives concrete se-
mantics to the program and enables us to specify functional require-
ments. The second interpretation is application-dependent and is used to
capture nonfunctional requirements. We present a language for program
synthesis from components that uses dual interpretation. We reduce the
synthesis problem to an exists-forall problem, which is solved using the
exists-forall solver of the SMT-solver Yices. We apply our approach to
synthesize bitvector manipulation programs, padding-based encryption
schemes, and block cipher modes of operations.

1 Introduction

A program is often given a concrete semantics that forms the basis of all reason-
ing and analysis. This semantics is typically defined over a concrete domain or
an abstraction of this concrete domain, as in type checking and abstract interpre-
tation [4]. In first-order logic, semantics is specified by a collection of structures,
but there is often a single canonical structure, such as a Herbrand model minimal
in some ordering, which forms the basis of reasoning. Are there any benefits in
using two or more different and incomparable structures as bases for reasoning?
We explore this question in the context of program synthesis with requirements
that go beyond functional correctness.

Nonfunctional properties such as security illustrate the need for an alternate
semantics. We use the example of cryptographic schemes to illustrate this point.
A correct cryptographic scheme must satisfy two different properties. First, every
encryption scheme should have a corresponding decryption scheme. This func-
tional correctness property can be decided using the concrete semantics of the
program. Second, we must guarantee that the encryption scheme is secure (in
some attacker model). This property is not functional and it is difficult to specify
using the concrete semantics. Instead, it is sometimes possible to reason (conser-
vatively) about security properties using a second, completely different, meaning
of the program. This observation motivates the dual interpretation approach of
this paper.

Ostensibly, the prospect of having two different semantics for programs seems
to be a potentially troublesome idea. However, in theory, it is not much different
from having just one concrete semantics since one could merge the two semantics

by considering the product of the two domains. For reasoning though, it is still
beneficial to consider the two semantics separately.

Our goal is to automatically generate correct programs using components or
functions from a library. The synthesized program must satisfy both functional
and nonfunctional requirements. We use a primary concrete semantics to specify
the functional requirements and an alternate semantics to specify the nonfunc-
tional requirements. We present a language for writing program sketches and
specifyinh both types of requirements. We solve the synthesis problem by com-
piling it to an exists-forall formula, which our tool currently solves using the
exists-forall solver of Yices [5]. We provide experimental evidence of the value of
the language and our synthesis approach by presenting a collection of examples
that were automatically synthesized using our tool.

1.1 Related Work

Our work is inspired by recent progress in the area of program synthesis. Synthe-
sizing a program from an abstract specification is not achievable in practice but
template-based synthesis has shown a lot of promise [1,15,16]. In this approach,
the designer provides a template that captures the shape of the intended solu-
tion(s) together with the specification. A synthesis algorithm fills in the details.
This general idea has been successfully applied to several domains. For exam-
ple, imperative programs can be obtained from a given sketch, as long as their
intended behavior is also provided [14]; efficient bitvector manipulations can
be synthesized from näıve implementations [10]; agent behavior in distributed
algorithms can be synthesized from a description of a global goal [8]; and de-
obfuscated code can be obtained using similar ideas [11]. Although all these
applications rely on template-based synthesis, different synthesis algorithms are
used in different domains. Logically, most of the synthesis algorithms are solving
an exists-forall problem.

Recently, we have implemented an exists-forall solver as part of the SMT-
solver Yices [5,7]. In this paper, we present a language for specifying sketches,
which are partially specified programs, but unlike any previous work on synthe-
sis, we use two different interpretations for the program symbols. We perform
synthesis by explicitly generating an exists-forall formula in Yices syntax and
using Yices to solve it.

Component-based program synthesis problem was formulated in [10], but
the interest in that paper was only on functional requirements. Here, we also
consider nonfunctional requirements, which forces us to reason with two different
semantics of the same program. We use some of the benchmarks from [10] in
this paper.

2 Component-Based Program Synthesis

We assume that programs are constructed from a library of components. We are
interested in constructing straight-line programs using the library. A straight-line
program can be viewed as a term over the signature of the library.

2

Let Σ be a signature consisting of constant and function symbols. Let Vars

denote a set of (input) variables. Let Terms(Σ, Vars) denote the set of all terms
defined over the signature Σ and variables Vars. A term t in Terms(Σ, Vars)
naturally corresponds to a straight-line program whose inputs are the variables
occurring in t. For example, the term f(g(x), x) corresponds to the following
program:

input x; y1 := g(x); y2 := f(y1, x); output y2

We give meaning to programs using a structure (Dom, Int) where the domain
Dom is a nonempty set, and the interpretation Int maps every constant c ∈ Σ
to an element cInt ∈ Dom and every function symbol f ∈ Σ with arity, say, 2, to
a concrete function fInt : Dom× Dom 7→ Dom.

In the program-synthesis terminology, the interpretation I (of the symbols
in Σ) is also called a library of components.

We can extend the interpretation Int to Int′ by adding interpretation for
(input) variables Vars. Now, the interpretation Int′ is extended to terms t over
Terms(Σ, Vars) in the natural way, and we denote the interpretation of t by
tInt

′
.

Example 1. Let Σ = {(f : 2), (g : 2), (h : 1), (c : 3), (d : 2), (e : 2)} be a
signature. Let Dom be the set of bitvectors of an arbitrary but constant length
k, and let Int be the function

Int(f) = bv-xor Int(g) = bv-and Int(h) = bv-neg

Int(c) = ite Int(d) = bv-sgt Int(e) = bv-ugt

where bv-xor is bitwise xor, bv-and is bitwise and, bv-neg is the negative in
2s complement, ite is if-then-else, bv-sgt is signed greater-than, and bv-ugt is
unsigned greater-than. Consider the term s = c(d(x, y), x, y). Under the meaning
defined by the structure (Dom, Int), s corresponds to a program computing the
maximum of two binary integers of length k. Note that the term s is equiva-
lent to the term t = f(g(f(x, y), h(e(x, y))), y) under the semantics defined by
(Dom, Int), but t does not use c.

2.1 Functional Requirements

One of the requirements for synthesis is that the synthesized program have the
same interpretation as a given (desired) program.

Let fspec : Domn 7→ Dom be a concrete function over the domain Dom. Let
Vars = {i1, . . . , in} be a set of n variables. The first requirement is that we
should synthesize a term t ∈ Terms(Σ, Vars) that satisfies the condition that,
for all e1, . . . , en ∈ Dom, it should be the case that

tInt
′

= fspec(e1, . . . , en) where Int′ := Int ◦ {i1 7→ e1, . . . , in 7→ en} (1)

The reader may wonder about the form of the description of fspec, and ask
why we do not just use the description of fspec to construct t. The reason is that

3

fspec may be described with symbols that are not available for constructing t.
For example, fspec may be specified by a program that contains “if-then-else”
constructs, whereas the library Int for synthesizing t may not contain such a
function (as in Example 1). In general, we can assume that only a subset of the
functions in the library are available for synthesis, whereas all functions in the
library can be used for specifying fspec. We may also want to synthesize t of (at
most) a certain size.

2.2 Nonfunctional Requirements

To capture nonfunctional requirements, we assume that we have another struc-
ture (Typ, TCC), where Typ is a domain and TCC is an interpretation where

– TCC maps a constant c ∈ Σ to a subset of Typ, and
– TCC maps a function f ∈ Σ of arity i to a subset of Typi+1.

Variables, just like constants, are interpreted as subsets of Typ. We can ex-
tend the interpretation TCC by including the interpretation for (input) variables
Vars to get TCC′. We can now extend the interpretation TCC′ to all terms of
Terms(Σ, Vars) as follows:

– if tTCC
′

i ⊆ Typ, i = 1, . . . , n are the interpretations of terms t1, . . . , tn, then

f(t1, . . . , tn)TCC
′

is the set

{y ∈ Typ | (y1, . . . , yn, y) ∈ fTCC, yi ∈ tTCC
′

i for i = 1, . . . , n}

Without loss of generality, we assume that we are synthesizing a function
with n inputs, say i1, . . . , in, and one output (that is, fspec has arity n). The
nonfunctional requirement φ is a subset of Typn+1. Formally, a synthesized
program t(i1, . . . , in) satisfies the nonfunctional requirement φ if there exist
(e1, . . . , en, e) ∈ φ such that

e ∈ tTCC
′

for the interpretation TCC′ := TCC ◦ {i1 7→ {e1}, . . . , in 7→ {en}} (2)

Here TCC′ is the same as interpretation TCC except for the interpretations of
i1, . . . , in.

Remark 1. Type information in programming languages can be captured using
the second interpretation structure (Typ, TCC). In such a case, the predicates in
TCC will be type correctness conditions. But the second interpretation structure
is more general, and it need not be an abstraction of the concrete domain.
The second interpretation serves two purposes. First, it can be used to encode
nonfunctional requirements. Second, it can be used to prune the synthesis search
space, since a program (term) that can not be “typed” can be pruned early.

Example 2. Consider the signature Σ from Example 1. Let us add a constant a
to Σ, and interpret it as the bitvector of length k representing 1. We can define a
second interpretation (Typ, TCC), where Typ := {true, false} and for all symbols

4

F in Σ of arity n, let TCC(F) = {(b1, . . . , bn, b) ∈ Typn+1 | b =
∨

i bi}. If the
input variables x, y are interpreted as {true}, then a term t will be interpreted
as {true} iff it contains a variable. A ground term will get an interpretation
{false}. This can help us identify (and prune out) programs that do not use
the input(s).

2.3 Problem Definition

We now define the component-based program synthesis problem with functional
and nonfunctional requirements as follows.

Definition 1 (Program Synthesis with Dual Requirements). Given two
structures (Dom, Int) and (Typ, TCC) that provide two different interpretations for
the symbols in Σ, a size requirement N , a functional requirement fspec : Domn 7→
Dom and a nonfunctional requirement φ ⊆ Typn+1, the component-based program
synthesis problem seeks to find a term t ∈ Terms(Σ, {i1, . . . , in}) of size N such
that for all e1, . . . , en ∈ Dom the condition in Equation 1 holds, and for some
(e1, . . . , en, e) ∈ φ, the condition in Equation 2 holds.

3 Synthesis Approach

The program-synthesis problem formulated in Definition 1 can be reduced to an
exists-forall formula, which is then solved using an off-the-shelf solver.

Let subterms(t) denote the set of all subterms of the term t. Henceforth, fix
Vars = {i1, . . . , in}.

Consider the program synthesis with dual requirements problem in Defini-
tion 1. The problem can be rewritten in logical notation as follows:

∃t ∈ Terms(Σ, Vars) : size(t) = N ∧
(∃τ : subterms(t) 7→ Typ :

(∀s ∈ subterms(t) : s = f(s1, . . . , sm) ⇒ (τ(s1), . . . , τ(sm), τ(s)) ∈ fTCC) ∧
(τ(i1), . . . , τ(in), τ(t)) ∈ φ) ∧

(∀e1, . . . , en ∈ Dom : fspec(e1, . . . , en) = tInt
′
) (3)

where Int′ := Int ◦ {i1 7→ e1, . . . , in 7→ en}. Clearly, a witness for t in this
formula is a solution to the synthesis problem.

We define the size size(t) of a term t to be the cardinality of subterms(t).
Since we assume that Σ is finite, there are only finitely many terms of size N ,
and hence the first existential corresponds to a finite search. Since the cardinality
of subterms(t) is N , the second existential reduces to existence of N elements of
Typ. The next ∀ quantifier is over a finite set and hence it is just a short-hand for
a large conjunction. Finally, the last ∀ quantifier is over n elements of Dom, and
thus, we conservatively map our synthesis problem to an exists-forall problem
in the theory of Dom and Typ.

5

1. (isolateRightmostOne_sketch
2. (comment "Isolate rightmost 1 bit in the input bitvector")
3. (decls
4. (define-type word (bitvector 5))
5. (define fbvand::(-> word word word) (lambda (x::word y::word) (bv-and x y)))
6. (define fbvneg::(-> word word) (lambda (x::word) (bv-neg x)))
7. (define frightmost1::(-> word word) (lambda (x::word)
8. (ite (bit x 0) (mk-bv 5 1) (ite (bit x 1) (mk-bv 5 2) (ite (bit x 2) (mk-bv 5 4)
9. (ite (bit x 3) (mk-bv 5 8) (ite (bit x 4) (mk-bv 5 16) (mk-bv 5 0))))))))
10. (define-type typ bool)
11. (define tbvand::(-> typ typ typ bool) (lambda (x::typ y::typ z::typ) (= z (or x y))))
12. (define tbvneg::(-> typ typ bool) (lambda (x::typ y::typ) (= y x))))
13. (parameters na)
14. (library (bvand 2) (bvneg 1))
15. (blocks
16. (Lx 1 ((input x::true)))
17. (l1 na ((bvand (Lx -) (Lx -)) (bvneg (Lx -))))
18. (spec 1 ((rightmost1 (Lx)))))
19. (ensure (and (= (value l1 na) (value spec 1)) (= (type l1 na) true)))

Fig. 1. A small Synudic example that can be used to synthesize a 2 line program
for isolating the rightmost 1 in a bitvector.

To increase utility and improve scalability, we need an approach that allows
a user to prune the search space for t as much as possible. We have designed
a language that not only allows users to specify the program synthesis problem
with dual requirements (Definition 1), but also allows users to constrain the
search space. We briefly describe this language next.

3.1 Synudic: A Language for Synthesis Using Dual Interpretations
on Components

Synudic (Synthesis using dual interpretation on components) is a language for
specifying program synthesis problems with dual requirements (Definition 1). It
also allows users to provide additional restriction on the structure of the program
to be synthesized.

We call a well-formed Synudic term a sketch since it is not really an executable
program, but an incomplete program with a specification. For ease of parsing, a
Synudic sketch is an S-expression. Rather than provide details on the language
(which can be found in the Appendix), we illustrate it using an example here.

Given a bitvector x, consider the function frightmost1 that returns a bitvec-
tor that has 1 only at the position of the rightmost 1 in x. For example,
frightmost1(10110) = 00010. Figure 1 shows a small Synudic sketch that can
be used to synthesize a 2 line program for computing frightmost1. It contains
the following information:

Σ: The library Σ, defined on Line 14, consists of a binary symbol bvand and a
unary symbol bvneg.

Dom: The domain Dom, defined on Line 4, consists of bitvectors of length 5.
Int: The interpretation Int, defined on Lines 5-6, consists of two Yices func-

tions, fbvand and fbvneg that provide meaning to the two symbols in Σ.

6

Essentially, fbvand computes a bitwise “and” and fbvneg computes the neg-
ative (in 2s complement notation).

Typ: The second domain Typ, defined on Line 10, consists of the Booleans.
TCC: The second interpretation TCC, defined on Lines 11-12, consists of two Yices

functions, tbvand and tbvneg that provide (second) meaning to the two
symbols in Σ.

Sketch: The program sketch, defined on Lines 15-18, consists of three blocks.
Line 16: The first block, labeled Lx, has 1 line that outputs the value of the
input variable x. We also have TCC(x) = {true}.
Line 17: The second block, labeled l1, has na lines, where na is a parameter
(that we will set to 2 since we are interested in synthesizing a two line
program here) and each line can use either the bvand function or the bvneg

function. The arguments of the two functions can come from block Lx or
from previous lines of this block, which is denoted by the list “(Lx -)”.
Line 18: The third block, labeled spec, has 1 line that computes the value
frightmost1 on the input x.

Requirements: The requirement, defined on Line 19, says that the value com-
puted on Line 1 of block spec is equal to the value computed on line na of
block l1 (functional correctness). Moreover, the type computed on line na
of block l1 is equal to true (nonfunctional requirement).

The specification function, rightmost1, is defined on Lines 7-9 using nested
“if-then-else” calls. The boolean “type” attached to each value just denotes
whether the input was syntactically used to compute that value.

Remark 2. Our language is designed so that it can be used to write a concrete
program, as well as, a completely unknown program constructed using a library
of pre-defined functions. A concrete straight-line program can be written using
blocks of length 1 in which there is just one option for the right-hand side
expression. On the other hand, an arbitrary straight-line program of length n
over a library containing functions f1, . . . , fm can be written as

(L1 n ((f1 (L0 −) (L0 −)) (f2 (L0 −) (L0 −)) . . . (fm (L0 −) (L0 −))))

where L0 is the block generating the inputs. When performing synthesis, finding
one program from the set of all n line programs can be difficult. Our language
above allows the user to constrain the search space of programs.

3.2 From Synudic Sketches to Yices ∃∀ Formulas

Given a Synudic sketch, we have a tool that generates the corresponding exists-
forall formula (shown in Equation 3) in Yices syntax. Note that Synudic defines
Dom and Typ as types in Yices, and gives interpretations as Yices functions.
Moreover, the program sketch in Synudic also limits the size of the term t to be
synthesized. The additional constraints imposed by the block structure are also
added to the exists-forall formula – in fact, all these additional constraints are
constraints on the existential variables. We skip the details of the translation into

7

a Yices formula because it is straight-forward. In fact, the translation borrows
several ideas from the translation proposed in [10] and extends them to handle
the dual interpretations and block structure restrictions, which were both absent
in [10].

Our tool calls the exists-forall solver of Yices on the generated ∃∀ formula. If
there is a solution, the tool outputs the model for the exists variables, which can
be used to obtain the concrete program. By giving an appropriate commandline
argument, the tool can also search for alternate (more than one) solutions for
the same sketch.

We next describe case studies from two domains - synthesis of bitvector
manipulation tricks and synthesis of cryptographic schemes.

4 Bitvector Manipulation Programs

As a baseline, we evaluate our approach on bitvector manipulation benchmarks
from [10,18]. The goal of these experiments is to show that (1) synthesis bench-
marks that have been used before can be specified in the Synudic language, and
(2) features supported by Synudic can be used to speed-up the synthesis process.

A self-contained Synudic specification borrowed from one of the bitvector
benchmarks is given in Section A in the Appendix. It is a sketch to synthesize
a 2 line program for isolating the rightmost 1 bit in the input bitvector. (The
version used in our experiments had a larger library.) We note a few salient
features of the bitvector synthesis examples.
(1) First, we use bitvectors of length 5 as Dom. It turns out that the algorithms
that are synthesized to work on bitvectors of length 5 also work on bitvectors of
arbitrary length. This observation was already made in [10]. We just note here
that our language allows the user to set Dom to any type (supported by Yices).
(2) We use the usual bitvector operations, such as bitwise or, and, xor, as well
as arithmetic functions on bitvectors, such as add and subtract, in the library.
Certain examples also need functions that perform bitvector comparison, shift
right, and division. We included them in the library whenever they were needed.
(3) Subtracting 1 is a common operation. We have two options: either we can
include a subtract 1 operation as a library primitive, or we can include the
subtraction operation and a function that generates the constant 1 in the library.
Our language can support both choices. Using the former option usually speeds
up the synthesis process.
(4) We used the Booleans as Typ. The Boolean value associated to a program
variable keeps track of whether “the input was used to compute the value of
that program variable”, as shown in Example 2. For the bitvector examples, the
second interpretation was not strictly required (since there was no nonfunctional
requirement).

We present the results from bitvector benchmarks in Table 1. Synthesizing
longer programs takes longer, and increasing the library size usually increases
the time taken for synthesis (Columns 5 and 7), but in some cases, the rise is
steep (third example computing “average”). To evaluate the benefit of pruning

8

name function x(, y) 7→ z #lines #lib time #lib time timet

rightmost 1 off u10∗ 7→ u00∗ 3 6 0.24 8 0.5 0.5
isolate rightmost 1 u10∗ 7→ 0∗10∗ 2 7 0.18 9 0.2 0.2
average z = x+y

2
4 4 2.9 7 27 5.4

mask for 10∗$ u10∗ 7→ 011∗ 3 7 0.2 9 0.2 0.5
Maximum z = max(x, y) 4 4 77 7 238 86
turnoff 1+0∗$ u1+0∗ 7→ u0+0∗ 5 6 21 8 102 2
next# same#1s min z s.t. z > x, z|1 = x|1 8 5 154 6 500

TO
54

Table 1. Bitvector benchmarks: Column #lines is the number of lines in the synthe-

sized program, #lib is the number of functions in the library used for synthesis, time

denotes the time (in seconds) taken for the tool to synthesize the program, and timet

denotes the time taken when using a second interpretation to prune search space.

using the second interpretation, we added a second interpretation to enforce that
certain library components are used (at most) once, and the running times with
the second interpretation added are shown in the last column in Table 1. In some
cases, our tool synthesized “new” procedures that were semantically equivalent
variants of the known procedures, see Section A.2.

5 Cryptographic Constructions

We now provide examples of how dual interpretations are useful for the synthesis
of cryptographic constructions. We first provide an example from public key
cryptography inspired by the work in [2] that consist on synthesizing padding
schemes. Our second example is related to symmetric key encryption, and builds
upon the work presented in [13].

5.1 Synthesis of Padding-based Encryption Schemes

In public key cryptography, padding is the process of preparing a message for
encryption. A modern form of padding is OAEP, which is often paired with
RSA public key encryption. Padding schemes, and in particular OAEP, satisfy
the goals of (1) converting a deterministic encryption scheme, e.g. RSA, into
a probabilistic one, and (2) ensuring that a portion of the encrypted message
cannot be decrypted without being able to invert the full encryption.

Inspired by the success of the tool Zoocrypt in synthesizing padding-based
encryption schemes [2] (and their corresponding security proofs), we used our
synthesis tool for exploring the same space.

Figure 2 shows part of the sketch that we used. The full sketch of this ex-
ample is available at [9]. The library of components defined by Σ and Int in
this example consists of two unary hash functions, G and H, a binary xor func-
tion (called oplus in Figure 2), a slight variant of xor called oplusr, and the
identity function. Padding with 0 is not modeled explicitly. It is added as a
post-processing step to make the hash functions applicable on its arguments.

9

(oaep_sketch

(decls ...)

(parameters na nb)

(library (G 1) (H 1) (oplusr 2) (oplus 2) (identity 1))

(blocks

(lm 1 ((input m::(bool-to-bv false false false false true))))

(lr 1 ((input r::(bool-to-bv false false false true false))))

(l1 na ((oplusr (lm lr) (-)) (G (lr -)) (H (lm -))))

(l2 2 ((identity (l1 lr))))

(l3 nb ((oplus (l2 -) (l2 -)) (H (l2 -)) (G (l2 -)))))

(ensure (and (= (output lm 1) (output l3 nb))

(isrand (type l2 1)) (isrand (type l2 2)))))

Fig. 2. Sketch used for synthesizing various padding-based encryption schemes. Dec-

larations are shown in Figure 6.

The sketch in Figure 2 has two inputs – the message m in block lm line 1,
and a random number r in block lr line 1. This is followed by a straight-line code
block l1 of length na that constructs the padding scheme. It is allowed to use
the hash functions and the xor function. Two of the values computed in block
l1 (including the random number r) are picked in block l2 to be concatenated,
encrypted and sent on the network. The block l3 decodes the messages received
from block l2. The decoding block is of length nb and it can use the hash functions
and the xor function.

As expected, we encoded the desired security properties of a padding-based
encryption scheme using nonfunctional requirements. As Typ we used bitvectors
of length 5, since that was enough to encode our type constraints:
(a) The first bit keeps information about the size of the computed value. This
informatoin is necessary to produce type correct programs, since we have hash
functions mapping bitvectors of one size to another.
(b) The second bit is set if the data value is essentially the same as a random
value in its domain. It is difficult to carry forward this information precisely,
so we use conservative typing rules to update the value of the second type-bit
during each operation.
(c) The third and fourth bits are set if the top function application is the hash
function G and H, respectively. This information is used to update the “isrand”
second bit of the type.
(d) The fifth bit is set if the top function application is the xor function. This
information is used for the same purpose as the previous two type-bits.

Finally, in the ensure section we state (a) the functional requirement: the
result of decoding (written as (output l3 nb), the value on line nb in block l3)
should be equal to the message m (written as (output lm 1), the value on line
1 in block lm), and the (b) nonfunctional requirement: the two values that are
transmitted, namely the value on lines 1 and 2 in block l2, should essentially be

10

f(G(r)||(G(r)⊕m))

f(r||(G(r)⊕m))

f(G(r ⊕H(m))||(G(r ⊕H(m))⊕m))

f((r ⊕H(m))||(G(r ⊕H(m))⊕m))

f((G(r)⊕m)||(H(G(r)⊕m)⊕ r))

Fig. 3. Some automatically synthesized padding-based encryption schemes.

random – that is, the second bit of their respective type values from Typ should
be set. The type value of line 1 in block l2 is written as (type l2 1).

The declarations part of the sketch in Figure 2 is shown in Figure 6 in the
Appendix. We note two things. First, we used fixed length bitvectors as Dom.
The length choice is arbitrary: larger bitlengths would mean more computational
resources would be required to solve the synthesis problem, but smaller bitlengths
could lead to synthesis of schemes that do not work for arbitrary sizes. Second,
the interpretations of H and G had to be concretized to bitvector functions,
but they had to be picked carefully so that they satisfy (exactly) the algebraic
relations the actual functions satisfy. This may not be possible always, in which
case one can choose interpretations that are likely to lead to general solutions.

We used our tool to synthesize different padding schemes using different
values for the two parameters na and nb. We can use the tool to generate different
solutions for the same values of the parameters.

Some example synthesized schemes are shown in Figure 3. Again, we do not
show the padding with 0 that is required to make arguments reach the required
bitvector length. Note that the OAEP scheme [3] is also generated using na = 4
and nb = 4 and is shown in Figure 3 as the last scheme. But smaller padding-
based schemes were also found by the tool. Similar schemes have also been
reported in [2].

5.2 Synthesis of Block Ciphers Modes of Operation

A block cipher consists of one algorithm for encryption and one for decryp-
tion implementing functions F : {0, 1}l × {0, 1}lk → {0, 1}l and F− : {0, 1}l ×
{0, 1}lk → {0, 1}l, respectively. F and F− satisfy that (i) given a block B ∈
{0, 1}l and a key k ∈ {0, 1}lk, F (B, k) and F−(B, k) return a permutations
Fk(B) and F−k (B) of B, and (ii) for every k ∈ {0, 1}lk and block B ∈ {0, 1}l,
F−k (Fk(B)) = B. An example of block cipher is the standarized AES, for which
l = 128.

Roughly speaking (see [12] for a formal definition), a block cipher (F, F−) is
secure against the so-called chosen plaintext attacks (in the standard model) if,
fixed a random key k, an attacker allowed to query Fk has negligible probability
of distinguishing Fk from a randon permutation, given certain limitations on the
computational power of the attacker and the number of times Fk can be queried.

11

IV + + . . . +

B1 B2 Bn

Fk Fk Fk

c1 c2 cnIV

Fig. 4. The CBC mode of operation for the encryption of an n-block message. The

dotted boxes correspond to the multiple copies of the block processing procedure.

A mode of operation is a pair of algorithms that features the use of a symmet-
ric block cipher algorithm (F, F−), e.g. AES, to encrypt/decrypt amounts of data
larger than a block. A secure mode of operation must provide the same level of
security than its associated block cipher. For example, the encryption algorithm
of the popular Cipher Block Chaining (CBC) mode is depicted in Figure 4. CBC,
when equipped with a secure block cipher, provides IND$-CPA security, i.e. an
attacker cannot distinguish its output from an uniformly random string with
significant probability (under certain constraints on the computational power of
the attacker). Note that CBC encryption consists of an initialization algorithm,
where a random initialization vector IV is produced, followed by n copies of a
block processing algorithm, while exactly one value is fed from one copy to the
next one. This structure is common to many of the popular modes of operation.

Most of the previous approaches to the formal verification and synthesis of
block cipher modes of operation (and certainly the ones considered in this paper)
build upon the observation that these kind of programs can be constructed using
a limited set of operations such as xor, concatenation, generation of random
values, and evaluation of the block cipher.

Recent effort in the automation of the analysis of block cipher modes in-
clude [6,13]. In contrast to [6], which suffers from the limitation that the ana-
lyzed mode must operate on a fixed number of blocks, the work in [13] models
the operation that is carried out when encrypting a single block, exploiting the
common structure of block cipher modes of operation mentioned above. In [13],
the encryption algorithm of a mode of operation is described as a pair of straight-
line programs (Init, Block). Init models the initialization phase of the mode
of operation. In the case of the CBC mode of Figure 4, Init would correspond
to the generation of the random value IV. On the other hand, Block corresponds
to the algorithm that, given a value coming from the previous iteration (or the
initialization phase) and a certain message block m, produces the ciphertext for
m and the value to be fed to the next iteration of the mode of operation. For the

12

CBC mode, the different instances of Block correspond to the subalgorithms in
dotted boxes in Figure 4. While Init is very simple in that, roughly speaking, it
may contain only a random number generation operation, Block might contain
an arbitary number of xor operations and evaluations of Fk for a fixed value of k.
A further relevant structural restriction in the straight-line programs Init and
Block is that the output of every operation in the program must be used exactly
once in the rest of the program, with the exception of an additional operation
called dup implementing the identity function and whose output must be used
twice.

As main contribution in [13], the authors present a type system T that guar-
antees that type correct modes (Init, Block) encode secure modes of operation.
Then, synthesis of secure modes is performed by enumerating straight-line pro-
grams satisfying the constraints above and filtering out the ones that are not
type correct w.r.t. T . This check is implemented by means of an SMT solver.
An ad hoc procedure is used to further guarantee that the resulting mode of
operation admits a decryption algorithm.

In the example presented in this section, we encoded the synthesis approach
from [13] as a program synthesis with dual requirements problem (Definition 1)
Instead of separately filtering modes of operation that are not decryptable as
done in [13], we encoded the existence of a decoding algorithm as a functional
requirement. That has the advantage that encryption algorithms are synthe-
sized together with their corresponding decryption procedure. Moreover, the
constraint that Init and Block must be type correct w.r.t. T can be naturally
encoded as a nonfunctional requirement in our language.

While reducing the synthesis of block ciphers modes of operation to the
program synthesis with dual requirements problem has many advantages, our
approach also suffers from some limitations with respect to the one in [13].
The main limitation of our encoding is that, whereas the approach of [13] is
completely symbolic, we needed to provide a specific domain Dom and interpre-
tation Int for every operation (incluing the permutation Fk). For Dom we chose
bitvectors of length 5. While xor, dup1, and dup2 have natural operations in
the domain of bitvectors. The interpretation of F should be picked carefully so
that it satisfies (exactly) the algebraic relations the actual functions satisfy. We
picked left-rotation by two for the interpretation of F . Although in principle a
bad election for such representation might cause invalid schemes to be accepted
as decryptable, this can be easily avoided in many cases. The full sketch used
for this example can be found at [9]. In Section A.4 of the Appendix we provide
an explanation of its main parts.

Using our tool we could synthesize the well-known modes ECB, OFB, CFB,
CBC, and PCBC, also automatically found in [13], as well as some variants of
those. The tables of Figure 5 show the size parameters needed to obtain each of
them. The reported times corresponds to a complete exploration of the search
space that correspond to the parameters. For example, the second row of the
first table means that, with parameters na = 2, nb = 6, nc = 3, it took our
tool 6.07 seconds to conclude that exactly two instances of the sketch are secure

13

Parameters
Modes Time(s)

na nb nc

2 4 3 CBC 3.25

2 6 3
CBC*
OFB*

6.07

2 6 4 CBC* 22.9

2 6 5
CBC
OFB*
CFB

5.77

Parameters
Modes Time(s)

na nb nc

2 7 6
OFB variant
CBC variant

6.34

2 8 5
CBC*
OFB*
CFB*

39.47

2 9 5
PCBC

OFB variant
109.82

Fig. 5. Results of the synthesis of block cipher modes of operation using Synudic.

and decryptable modes of operation. The modes marked with an asterisk (*)
correspond to redundant variants of the corresponding mode.

6 Conclusion

We presented an approach for program synthesis that relies on using two differ-
ent interpretations for the program variables. The dual interpretation approach
enables specification of both functional and nonfunctional requirements. It also
helps in pruning the synthesis search space. We applied our approach to synthe-
size nonintuitive bitvector manipulation tricks, and secure cryptographic proto-
cols.

We first defined a sketching language that can be used to specify library
functions from which a scheme needs to be generated. The language allows fea-
tures that can be used to further prune the search space of all valid programs.
We translate the synthesis problem in the sketching language to an ∃∀ Yices
formula, and use the Yices ∃∀ SMT solver to solve the constraint and obtain a
possible program. We used our language and the accompanying synthesis tool
to synthesize padding-based encryption schemes and block cipher modes of op-
eration.

The dual interpretation approach is potentially more generally useful. The
second interpretation can carry information pertaining to a predicate abstraction
of the program, but it can as well carry information unrelated to the concrete
semantics, such as provenance or information flow.

Our current implementation is limited in several ways. First, the Yices exists-
forall solver handles only bitvectors, Booleans, and linear arithmetic expressions.
Hence, only these types can be used to define the two interpretations. Our syn-
thesis language allows synthesis of only straight-line programs, and does not
allow, for example, synthesis of functions that are used within other functions.
Such extensions are left for future work.

References

1. R. Alur, R. Bod́ık, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In

14

Formal Methods in Computer-Aided Design, FMCAD, pages 1–17, 2013.
2. G. Barthe, J. M. Crespo, C. Kunz, B. Schmidt, B. Gregoire, Y. Lakhnech, and

S. Zanella-Beguelin. Fully automated analysis of padding-based encryption in the
computational model, 2013. http://www.easycrypt.info/zoocrypt/.

3. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in
Cryptology, EUROCRYPT, volume LNCS 950, 1994.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th ACM
Symp. on Principles of Programming Languages, POPL 1977, pages 238–252, 1977.

5. Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-
Aided Verification (CAV’2014), volume 8559 of Lecture Notes in Computer Science,
pages 737–744. Springer, July 2014.

6. M. Gagné, P. Lafourcade, Y. Lakhnech, and R. Safavi-Naini. Automated verifica-
tion of block cipher modes of operation, an improved method. In Foundations and
Practice of Security, volume 6888 of LNCS, pages 23–31. Springer, 2011.

7. A. Gascón, P. Subramanyan, B. Dutertre, A. Tiwari, D. Jovanovic, and S. Ma-
lik. Template-based circuit understanding. In Formal Methods in Computer-Aided
Design, FMCAD, pages 83–90. IEEE, 2014.

8. A. Gascón and A. Tiwari. A synthesized algorithm for interactive consistency. In
6th Intl Symp NASA Formal Methods, number 8430 in LNCS, pages 270–284, 2014.

9. A. Gascón and A. Tiwari. Synudic: Synthesis using dual interpretation on compo-
nents, 2015. http://www.csl.sri.com/users/tiwari/softwares/auto-crypto/.

10. S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free programs.
In Proc. PLDI, 2011.

11. S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based
program synthesis. In Proc. ICSE (1), pages 215–224. ACM, 2010.

12. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chap-
man and Hall/CRC Press, 2007.

13. Alex J. Malozemoff, Jonathan Katz, and Matthew D. Green. Automated analysis
and synthesis of block-cipher modes of operation. In IEEE 27th Computer Security
Foundations Symposium, CSF, pages 140–152. IEEE, 2014.

14. Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013.
15. Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bod́ık, and Kemal Ebcioglu.

Programming by sketching for bit-streaming programs. In PLDI, 2005.
16. Armando Solar-Lezama, Liviu Tancau, Rastislav Bod́ık, Vijay Saraswat, and Sanjit

Seshia. Combinatorial sketching for finite programs. In ASPLOS, 2006.
17. SRI International. Yices: An SMT solver. http://yices.csl.sri.com/.
18. Henry S. Warren. Hacker’s Delight. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2002.

15

http://www.easycrypt.info/zoocrypt/
http://www.csl.sri.com/users/tiwari/softwares/auto-crypto/
http://yices.csl.sri.com/

A Synudic: Language and Examples

A.1 Synudic: A Language for Synthesis Using Dual Interpretations
on Components

Synudic (Synthesis using dual interpretation on components) is a language for
specifying program synthesis problems with dual requirements (Definition 1). It
also allows users to provide additional restriction on the structure of the program
to be synthesized.

We call a well-formed Synudic term a sketch since it is not really an executable
program, but an incomplete program with a specification. For ease of parsing, a
Synudic sketch is an S-expression.

Synudic sketch ::== (program name Comment∗ Declarations

Library Parameters Blocks Post)

The terminal program name is just a string. A comment is an S-expression with
tag (first element) comment. The S-expressions Library, Declarations and Post

are used to specify the synthesis problem from Definition 1, whereas the S-
expressions Blocks and Parameters are used to outline the program sketch.

Synthesis Problem With Dual Requirements in Synudic. The problem in Defi-
nition 1 is described in Synudic using Library, Declarations, and Post. A li-
brary is an S-expression with tag library followed by tuples of the form (f n),
where f is a function of arity n. It specifies the signature Σ. Declarations is
an S-expression with tag decls followed by (multiple) Yices definitions [17]. It
provides the two different interpretations for the library functions. First, the
domains Dom and Typ are defined as Yices types. Next, for each name ∈ Σ,
there is a Yices function with name fname and another Yices function with
name tname defined in declarations. The function fname specifies Int and the
function tname specifies TCC. Finally, Post is an S-expression with tag ensure

followed by a (quantifier-free) Yices formula. The formula can refer to program
variables – their values in Dom and in Typ both.

Program sketch in Synudic. Users can provide a sketch of a program in Synudic
via Parameters and Blocks. Parameters is an S-expression with tag parameters

followed by strings. Each string is a parameter name that can be used in the
program sketch (blocks) below. A (straight-line) program sketch is given by a
collection of blocks (rather than program lines). Blocks is an S-expression with
tag blocks followed by one or more block. A block is an S-expression of the form

(label param or num (rhs option ∗))

that denotes a block of straight-line code where
(a) label is a string that names the straight-line code block,
(b) param or num is a parameter name or a number that represents the number

16

of lines of code in the block, and
(c) rhs option represents a possible choice of the function name (from the li-
brary) and arguments that can occur on the right-hand side expression on each
line in the block. The syntax for rhs option is as follows:

(func name block label list +)

where func name is a string naming a function from the library followed by finite
number (equal to the arity of the function) of lists of labels. We have a special
label “−” that denotes all previous lines in current block.

For example, (f (L1) (L2)) is a possible rhs option, and its meaning is that
(one possibility for) the rhs-expression of this block is an expression of the form
f(x, y) where x is the value computed on some line in block L1 and y is the value
computed on some line in block L2. The meaning of (f (L1 −) (L2)) would be
that the first argument of f can be a value computed in block L1 or any value
computed in the current block prior to this line. For space reasons, examples of
complete Synudic sketches can be found in Section A in the Appendix.

In the formula expressing the requirements, we refer to program variables by
the line on which they are computed. A line is identified by a pair containing
the block label and a number denoting the line inside that block. Each program
variable can have two values – one each in Dom and Typ – and they are identified
by enclosing the block and line number tuple inside a tag output or type.

A.2 A Synthesized bitvector example

We next present an example program synthesized by our tool. Given a bitvector
x, consider the function f that returns the next higher bitvector that contains the
same number of 1s as x. For example, if f(00110) = 01001. We want a straight-
line program constructed using the usual bitvector operators (for example, as
supported in an SMT solver) that computes f (for all 1 ≤ x ≤ 2n−1, whre
n is the length of the bitvector x). The book “Hacker’s Delight” presents the
following solution:

f(x) = (((x⊕ y)� 2) div y) | (x+ y), where y = x & − x

Our tool generated the following solution:

f(x) = (((x⊕ y) div y)� 2) + (x+ y), where y = x & − x

Our solution swaps the “right-shift by 2 places” and “div” since their order does
not matter; and moreover, the bitwise or is replaced by + because there is no
“carry” bit generated in that particular instance of +.

A.3 A Synudic sketch for cryptographic padding schemes

In Figure 6, we show the declarations part of the sketch in Figure 2. The decla-
rations include

17

(decls

(define-type typ (bitvector 5))

(define-type word (bitvector 5))

(define fG::(-> word word) (lambda (x::word) (bv-rotate-right x 2)))

(define fH::(-> word word) (lambda (x::word) (bv-rotate-left x 3)))

(define foplus::(-> word word word) (lambda (x::word y::word) (bv-xor x y)))

(define foplusr::(-> word word word) (lambda (x::word y::word) (bv-xor x y)))

(define fidentity::(-> word word) (lambda (x::word) x))

(define ism::(-> typ bool) (lambda (x::typ) (bit x 0)))

(define isr::(-> typ bool) (lambda (x::typ) (not (bit x 0))))

(define isrand::(-> typ bool) (lambda (x::typ) (bit x 1)))

(define istopg::(-> typ bool) (lambda (x::typ) (bit x 2)))

(define istoph::(-> typ bool) (lambda (x::typ) (bit x 3)))

(define istopx::(-> typ bool) (lambda (x::typ) (bit x 4)))

(define tG::(-> typ typ bool) (lambda (x::typ y::typ)

(and (isr x) (ism y) (<=> (isrand x) (isrand y)) (not (istoph x))

(istopg y) (not (istoph y)) (not (istopx y)))))

(define tH::(-> typ typ bool) (lambda (x::typ y::typ)

(and (ism x) (isr y) (<=> (isrand x) (isrand y)) (not (istopg x))

(istoph y) (not (istopg y)) (not (istopx y)))))

(define toplusr::(-> typ typ typ bool) (lambda (x::typ y::typ z::typ)

(and (or (and (ism x) (ism y) (ism z)) (and (isr x) (isr y) (isr z)))

(not (istopg z)) (not (istoph z)) (istopx z) (not (istopx y))

(or (istopg x) (istoph x) (istopg y) (istoph y)) (not (istopx x))

(<=> (and (or (isrand x) (isrand y)) (/= x y)) (isrand z)))))

(define toplus::(-> typ typ typ bool) (lambda (x::typ y::typ z::typ)

(and (or (and (ism x) (ism y) (ism z)) (and (isr x) (isr y) (isr z)))

(not (istopg z)) (not (istoph z)) (istopx z)

(or (istopg x) (istoph x) (istopg y) (istoph y))

(<=> (and (or (isrand x) (isrand y)) (/= x y)) (isrand z)))))

(define tidentity::(-> typ typ bool) (lambda (x::typ y::typ) (= x y)))

)

Fig. 6. Declarations used in the sketch for synthesizing various padding-based
encryption schemes.

18

(a) The definition of Dom and Typ (typ and word in the sketch). In this example,
we chose both Dom and Typ to be bitvectors of length 5. While this choice was
already argued above for Typ, in the case of Dom it is arbitrary: larger bitlengths
would mean more computational resources would be required to solve the syn-
thesis problem, but smaller bitlengths could lead to synthesis of schemes that
do not work for arbitrary sizes.
(b) The concrete function definitions that update the data value of the variables,
i.e. the interpretation Int. In this example, we have used bitwise exclusive-or
as the definition of oplus and oplusr, bitvector rotate right by 2 as the defini-
tion of G and bitvector rotate left by 3 as the definition of H. This definitions
are provided by means of the function definitions fG, fH, foplus, foplusr,
and fidentity. While the choice for the interpretation of oplus, oplurs, and
identity are the expected ones, the interpretations of H and G should be picked
carefully so that they satisfy (exactly) the algebraic relations the actual func-
tions satisfy. This may not be possible always, in which case one can choose
interpretations that are likely to lead to general solutions.
(c) Finally, the type constraints induced by function applications, i.e. the inter-
pretation TCC. The definition of TCC by means of the function definitions tG, tH,
toplus, toplusr, and tidentity correspond to the image of TCC for the five
functions in the library.

A.4 A Synudic sketch for block cipher modes of operation

In Figure 7, we provide part of the sketch used to synthesize block cipher modes
of operation. The first part of the blocks section contains the initialization of
the type information of the inputs of the program m,r,and lstart w.r.t T . We
used bitvectors of length 7 as Typ. This domain is enough to encode a slightly
more restrictive variant of T . The reader is referred to [9] for the specifications
in Synudic of the transfer functions to model T , i.e. the mapping TCC.

Next, the structure of the program to be synthesized is defined. Such pro-
grams have 3 main blocks ini, enc, and dec of size na, nb, and nc, respectively.
These correspond to Init, Block, and the decryption algorithm, as explained
above. Note that the available operations to the ini and enc blocks corresponds
to the operations mentioned above, where PRF stands for the evaluation of Fk,
oplus stands for xor, and PRF dec stands for F−, i.e. the decryption operation
of the block cipher. The dup operation is modeled by means of two operations
dup1 and dup2. Moreover, the decryption block has available simplified versions
of all the operations that do not carry type information, since security is not a
requirement in that program. The ensure section of the sketch contains the func-
tional requirement that the program resulted from instanciating the dec block is
a decryption algorithm for the enc block. Moreover, the ensure section contains
the non-functional requirement stating that dec must be type correct w.r.t. T
(see [9] for the full sketch).

19

(bc_modes_sketch

(decls ...)

(parameters na nb nc)

(library ...)

(blocks

(lm 1 ((input m::(bool-to-bv false false false true false false false))))

(lr 1 ((input r:: (bool-to-bv false true false false true true true))))

(lstart 1 ((input start:: (bool-to-bv false false false false false false false))))

(ini na ((oplus (lr -) (lr -)) (dup1 (lr -)) (dup2 (lr -))))

(iniout 1 ((out (ini))))

(ininextiv 1 ((nextiv (ini))))

(startout 1 ((start (lstart))))

(enc nb (

(oplus (startout lm -) (startout lm -))

(PRF (startout lm -))

(dup1 (startout lm -))

(dup2 (startout lm -))

)

)

(encout 1 ((out (enc))))

(encnextiv 1 ((nextiv (enc))))

(dec nc (

(oplus_dec (startout encout -) (startout encout -))

(PRF (startout encout -))

(PRF_dec (startout encout -))

(dup1_dec (startout -))

(dup2_dec (startout -))

)

)

(decout 1 ((out_dec (dec))))

)

(ensure ...)

)

Fig. 7. Sketch used for synthesizing block cipher modes of operation. The decls,
library, and ensure sections are omitted.

20

	Program Synthesis Using Dual Interpretation

