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Systems Biology

• Tremendous amount of experimental data accumulated over the years,

• Which has been used by biologists to build mental models of biological

processes

• But such models have not been formally specified or computationally

analyzed

• Goal: Develop models of biological processes and tools to play with the

models

• So that wet lab experiments can be replaced by faster and less risky

computational ones

Analysis is not the only challenge

Ashish Tiwari, SRI Hybrid modeling of biological networks: 2
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Outline

• Three case studies:

◦ Delta-Notch lateral inhibition

◦ Sporulation initiation in B. Subtilis

◦ Human blood glucose metabolism

• For each case study:

◦ Biology

◦ Formal Model

◦ Analysis technique and results

Ashish Tiwari, SRI Hybrid modeling of biological networks: 3
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Information Metabolism

• Cells are highly responsive to specific chemicals in its environment

Cells receive, process, and respond to information from the env.

Signal → Reception → Transduction → Response(s)

• About half of 25 largest protein families encoded by human genome deal

with information processing

• Signal transduction pathways: sense and process the external stimuli

Information metabolism = Signal transduction + Response

Ashish Tiwari, SRI Cell Signaling Basics: 4
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Signal Transduction

• Membrane-bound receptor protein senses external signalling molecules,

ligand, by binding to them

• Causes the structure of (the intracellular domain of) the receptor to alter

• This causes activation of protein kinases: enzymes that transfer phosphoryl

group from ATP to proteins, thus activating the protein

• Protein phosphatases can undo this by removing the Phosphoryl group,

thus terminating the signalling process

• Errors can lead to cancer

Caveat: There are exceptions to everything, but above is a common scenario.

Ashish Tiwari, SRI Cell Signaling Basics: 5
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Response

• Usually via regulation of gene expression

• Rate of synthesis of proteins changes 1000-fold in bacteria in response to

env. changes

• Differences in gene expression cause different cell types in multicellular

organisms (e.g. muscle and nerve), even though they contain exactly the

same DNA

• Gene expression = transcription + translation

• Transcription is regulated by proteins that bind to specific DNA sites

(promoter regions)

Ashish Tiwari, SRI Cell Signaling Basics: 6
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Delta-Notch Lateral Inhibition

Implicated in cell differentiation

External Signal : External Delta : Binds to receptor Notch

Sensor : Notch : transmembrance receptor protein

Response : Internal Delta : Notch inhibits Delta

: Delta is also a transmembrane protein
Notch

Delta

Delta

Ashish Tiwari, SRI Delta-Notch Cell Signaling: 7
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Delta-Notch: Array of cells

Causes pattern formation across many biological species

Salt-and-Pepper pattern in South African claw-toed frog’s epidermal layer

Ashish Tiwari, SRI Delta-Notch Cell Signaling: 8



'

&

$

%

Colored cells have differentiated into ciliated cells (high Delta, low Notch)

while rest as epidermal cells (low Delta, high Notch)

Ashish Tiwari, SRI Delta-Notch Cell Signaling: 9
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Modeling

Formal models:

• Continuous dynamical systems ( Traditional Sciences)

• Discrete state transition systems ( Computer Science)

• Hybrid systems: Continuous and discrete components

Continuous Behavior

Discrete Mode

Changes

Ashish Tiwari, SRI Delta-Notch Cell Signaling Model: 10
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Hybrid Systems

• Formal models that combine differential equations with discrete boolean

logic

• Natural for modeling

◦ embedded systems

◦ software controlled systems

◦ multi-modal dynamical systems

• Matlab supports modeling and simulation via Simulink and Stateflow

Ashish Tiwari, SRI Delta-Notch Cell Signaling Model: 11
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Traditional → Hybrid Model: I

Trying to build models for the experimental data:

Experimental Data −→ Model Modeling Formalism
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(Levels of Abstractions)
Ashish Tiwari, SRI Delta-Notch Cell Signaling Model: 12
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Traditional → Hybrid Model: II

Dynamics resulting from participation of small number of molecules is

discrete

Transcription: There are only a pair of genes in a cell, and few mRNAs in a

cell

Genes being “on” or “off” can be seen as a discrete switch

Sigmoidal functions is one way to model behavior

Discrete step function is another way

Ashish Tiwari, SRI Delta-Notch Cell Signaling Model: 13
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Delta-Notch: A Hybrid Model for One Cell

vD , vN : concentration of Delta and Notch in a cell

delta is on : vN < threshold2

notch is on : External Delta concentration > threshold 1

So, a cell can be in four modes.

delta is “on” and notch is “off” :

dvD/dt = RD − λDvD

dvN /dt = −λNvN

Composing these hybrid models, we can get models of 2, 4, 8, . . . cells

Ashish Tiwari, SRI Delta-Notch Cell Signaling Model: 14
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Delta-Notch: Analysis Results

Challenges in the analysis:

• Unknown parameters

• Intercellular interaction

In isolation, for given parameters, easy to prove that the cell is bistable:

• if external Delta is high, then Notch is high, Delta is low

• if external Delta is low, then Notch is low, Delta is high

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 15
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Delta-Notch: Analysis Results

Using a symbolic approach, we can show that the above result holds for any

set of parameter values within certain (symbolic) bounds

The multiple cell configuration can also be analyzed :

If a cell differentiates (high Delta), then none of its neighbours can

differentiate

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 16
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Symbolic Systems Biology: Analysis Approach

The approch to analyzing hybrid system models uses an abstraction based on

partitioning the space

dvD/dt = −vD | 1 − vD

dvN /dt = −vN | 1 − vN

Concrete state space: <2

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 17
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Abstraction Algorithm: Choosing Polynomials

• Initial Polynomials of Interest: vD , vN

• To track their progress (increasing, decreasing, constant), I need (the signs

of): ˙vD and ˙vN in all modes. Thus, we get

−vD ,−vN , 1 − vD , 1 − vN .

• To track their progress (increasing, decreasing, constant), I need (the signs

of): ˙1 − vD and ˙1 − vN in all modes. But, this we have already.

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 18
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Partitioning: Choosing Polynomials

vD

vN

10

1

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 19
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Partitioning: Choosing More Polynomials

delta is on : vN < 0.5

notch is on : External Delta concentration > 0.2

• Discrete mode switch conditions:

We need to know when either vN < 0.5 or uN > 0.2 changes.

• To trace this, we need ˙(−vN + 0.5) and ˙(uN − 0.2).

• Now, the sign of ˙(−vN + 0.5), in all modes, is known from the signs of the

already computed polynomials.

• The derivative of uN − 0.2 is 0.

• We also include vD − 0.2 in the set.

Two new polynomials: vD − 0.2 and −vN + 0.5.

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 20
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Partitioning: Choosing More Polynomials

vD

vN

10 0.2

0.5

1

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 21
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Partitioning: Choosing Polynomials

Assuming λD > 0, λN > 0, RD > 0, RN > 0, hD < 0, hN > 0:

vD

vN

RD/LD

RN/LN

-hD

hN0

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 22



'

&

$

%

Abstracting Continuous Dynamics

For each mode l ∈ Q:

if qpi, qpj are abstract variables s.t. ṗi = pj in mode l, then apply rules of the

form:

• if qpi = pos and qpj = pos , then new value q′pi is pos .

• if qpi = pos and qpj = zero, then new value q′pi is pos .

• if qpi = pos and qpj = neg , then new value q′pi is either pos or zero.

• . . .

If qp0, qp1, qp2, . . . , qpn is s.t. ṗi = pi+1 in mode l, then

• if qp0 = qp1 = qp2, . . . qpn−1 = zero and ˙qpn = pos , then new values

q′p0 = q′p1 = q′p2, . . . q
′

pn−1 = pos .

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 23
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Mapping

Each abstract state corresponds to a region where the computed polynomials

are sign-invariant. We know the signs of polynomials of interest and signs of

some of its higher-order derivatives.

g0 : RN + (−1) ∗ vN ∗ λN g3 : vN

g1 : RD + (−1) ∗ vD ∗ λD g4 : uN − hN

g2 : vD g5 : vD − hN

g6 : −vN − hD

For example, sign(ġ3) in modes when “ notch high” is equal to sign(g0).

sign(ġ0) in the same mode is equal to −sign(g0).

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 24
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Abstracting Continuous Dynamics

delta low AND notch high AND

(g4 = pos OR g4 = zero) AND g6 = neg −→

g3’ IN IF g3 = pos THEN IF g0 = pos OR g0 = zero THEN {pos}

ELSE {pos, zero} ENDIF

ELSIF g3 = neg THEN IF g0 = neg OR g0 = zero THEN {neg}

ELSE {neg, zero} ENDIF

ELSE IF g0 = pos THEN {pos}

ELSIF g0 = neg THEN {neg} ELSE {zero} ENDIF

ENDIF;

g0’ IN . . .

g1’ IN . . .
...

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 25
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Abstracting Discrete Transitions

Discrete Transition: (q, ψ(X), q′,New(X)), where

• q, q′: modes,

• ψ(X): enabling condition, and

• New(X): assignments to continuous variables.

Abstract Discrete Transition: ((q, φ1), (q
′, φ2)) if

• The formula φ1 ∧ ψ is satisfiable and

• The formula ∃Xo : ψ(Xo) ∧X = New(Xo) ∧ φ2(X) is satisfiable.

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 26
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Abstracting Discrete Transitions

Current Mode Condition New Mode

not ( delta high

AND notch low)

−vN ≥ hD and uN < hN delta high and

notch low

is abstracted to:

g4 = neg AND (g6 = pos OR g6 = zero)

AND NOT( delta high AND notch low) −→

notch ’ = low

delta ’ = high

where g4 maps to uN − hN and g6 maps to −vN − hD.

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 27
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Discharging Proof Obligations

Using a sound, but incomplete, procedure for reals

(Ref: Tiwari:CSL05)

This gives an automated abstraction algorithm for hybrid automata that are

specified using only expressions in the theory of real closed fields.

We can also detect infeasible abstract states to generate a global invariant of

the resulting abstract model.

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 28
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Model Checking Results

If the system ever reaches a state “ delta high AND notch low” then the

system continues to remain in that state subsequently forever.

G( delta high AND notch low ⇒ G( delta high AND notch low ))

Under additional “fairness” assumptions: The system always eventually

reaches one of these two equilibrium states.

GF(( delta high AND notch low) OR ( delta low AND notch high))

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 29
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Two Cell Cluster

A two cell complex is created by composing two single cells.

Certain variables (which are not “local” to the module) need to be renamed to

avoid conflicts. E.g. the names delta and notch are renamed.

Communication is captured by renaming variables to the same name. E.g. g4

of one cell and g5 of the other are renamed to the same variable.

twocells: MODULE =

LOCAL vd1, vd2 IN

( (RENAME g4 TO vd2, g5 TO vd1 IN cell)

[]

(OUTPUT delta2, notch2 IN

(RENAME g4 TO vd1, g5 TO vd2, delta TO delta2, notch TO notch2 IN cell)) );

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 30
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Two and Four Cells: Results

Model checking shows that the states where one cell has high Delta and low

Notch concentration, while the other has low Delta and high Notch

concentration, are stable states for a two cell complex.

The cell fate is determined by whether initially vD1 < vD2 ∧ vN 1 > vN 2

With four cells, there are three stable states:

• Cells 1 and 4 differentiate

• Only cell 2 differentiates

• Only cell 3 differentiates

Ashish Tiwari, SRI Delta-Notch Cell Signaling Analysis: 31
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Sporulation Initiation

B. Subtilis is an Anthrax-like bacteria

• Shows a variety of different responses when stressed

A complex stress response network has been proposed

motility, degradative enzyme synthesis, competence, sporulation

• Sporulation is one possible response

• Decision to sporulate is a big one for the bacteria

• Cell undergoes several transformations after commitment

How and when does B.Subtilis commit to sporulation?

Ashish Tiwari, SRI B.Subtilis Biology: 32
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The Biologists View

Ashish Tiwari, SRI B.Subtilis Biology: 33
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Understanding the Network

Decision to sporulate regulated by Spo0AP

Spo0A obtains P through phosphorelay:

(Protein Kinase) : Spo0FP : Spo0BP : Spo0AP

Regulation by phosphatases: Spo0E, RapA

Quorum Sensing: RapA dephosphorates Spo0FP; however, under high

cell-density, Pep5i binds to RapA

Stress Sensor: KinA phosphorolates Spo0F, but KinI inhibits this. However,

under stress, KipA binds to KipI

Global Switch: SinR represses transcription of spo0A, SinI binds to SinR;

Spo0AP promotes sinI transcription, SinR represses it

Ashish Tiwari, SRI B.Subtilis Biology: 34
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The SinIR component

Example of a “component”: SinI-SinR global bistable switch

sinI sinR

SinI SinR

SinI + SinR <−−> [SinI.SinR]

Spo0AP2

influences spo0A

• Tetrameric SinR represses spo0A

• SinI inactivates SinR repression by binding to it

• sinI expression is controlled by Spo0A-P, SinR, Hpr, and AbrB

dSinI /dt = ∆I − λISinI − kSinI SinR

dSinR/dt = ∆R − λRSinR − kSinI SinR

∆I = if(Spo0AP = high and SinR = low)

then 1 elsif (. . .) else (. . .)

Ashish Tiwari, SRI B.Subtilis Modeling: 35
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SinI-SinR Components

In isolation, assuming simple dynamics for Spo0AP , the SinI-SinR

component exhibits bistability

Either

(1) Spo0AP is high and SinR is low, or

(2) Spo0AP is low and SinR is high

But only for certain values of the parameters

These are derived as constraints using a refinement paradigm

∆I ,∆R > 0

λI = λR > 0

Ashish Tiwari, SRI B.Subtilis Modeling: 36
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Our View

A component based view of the Sporulation Initiation Network in B.Subtilis

PhosphoRelay

SinIR/SiwtchKipI/KipA

Stress/Nutrient

Soj

RapA/Quorum

Sensing

Main Sensor

/ Oscillator

sigmaA

spo0E

density,hpr,comA

stress

stress nutrients signal sigmaA

spo0AP

sinRsoj

KinP

kipI

Ashish Tiwari, SRI B.Subtilis Modeling: 37
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Analysis: B.Sub I

Model Refinement: Unknown parameters need to be constrained to observe

desired stable states

Given that SinR4 low and Spo0AP medium is a stable state

A sufficient condition is that flow field vectors point inwards in each

polygonal face: ( box invariance)

Equivalent to a quantified formula, which is equivalent to

V bm− 3 ∗ V ba/2 − V bmp+ V bap > 0

where

V bm, V bmp: forward and reverse rate for phosphate transfer from Spo0F to

Spo0B

V ba, V bap: forward and reverse rate for phosphate transfer from Spo0B to

Spo0A

Ashish Tiwari, SRI B.Subtilis Analysis: 38
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Analysis: B.Sub II

Using our abstraction + model-checking approach, we check the abstract

model for stability properties

Observation: The set of states with SinR4 low and Spo0AP high cannot be a

stable region.

Why?: SinR4 low, and Spo0AP is high,

implies: transcription of Spo0A is switched off

implies: concentration of Spo0A drops

implies: drop in the concentration of Spo0AP

implies: system out of the stable region

The model checkers produces this behavior

Ashish Tiwari, SRI B.Subtilis Analysis: 39
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Analysis: B.Sub III

Incorrect transcriptional control logic:

Under the initial logic proposed for SinI-SinR operon, observed that system

does not reach a high Spo0AP and low SinR4 state

Forced us (and our collaborating biologists) to change the logic

Ashish Tiwari, SRI B.Subtilis Analysis: 40
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Analysis: B.Sub IV

SinR4 low and Spo0AP medium still not stable!

• the cell produces Spo0FP, Spo0BP, and consequently some Spo0AP

(because of baseline Spo0A synthesis);

• eventually, Spo0AP goes high and AbrB gets low;

• this causes SinR4 to go low;

• but Spo0AP reverts back to low; and SigmaH goes high;

• now, AbrB becomes high, SinI drops, and SinR4 becomes high.

Reason: Stochastic and noise bahavior that is captured by the

HybridAbstractor.

Reach stable region as a “transient”

Had to constrain the response rates of AbrB, Hpr, and SigmaH further

Ashish Tiwari, SRI B.Subtilis Analysis: 41
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Human Blood Glucose Metabolism

• Glucose concentration remains in a narrow range throughout the day

• Glucose turnover is approx. 2 mg/kg/min (in 70 kg adult)

• Plasma glucose concentration balance between

◦ intake (glucose absorption from the gut)

◦ tissue utilization (glycolysis, other pathways, glycogen synthesis)

◦ endogenuous production (glycogenolysis, gluconeogenesis)

• Controlled mainly by hormones: insulin and glucagon

Ashish Tiwari, SRI Blood Glucose Biology: 42
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Glucose Homeostasis Controllers

Insulin and anti-insulin hormone, glucagon,

• Secreted by pancreatic islets of Langerhans (β- and α-cells)

• In response to glucose levels

• Insulin works by promoting

◦ uptake of glucose into tissues,

◦ glycogen synthesis

◦ intracellular glucose metabolism

Glucagon:

◦ glycogen → glucose

◦ glucose synthesis

Ashish Tiwari, SRI Blood Glucose Biology: 43
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Modeling Human Blood Glucose Metabolism

Different level of details

• Organ/tissue-level compartmental model

• Intracellular signaling and response model

Organ-level compartmental model:

Inputs: Meals, Exercises, Injected Insulin,

Outputs: Glucose and Insulin concentration in different organs

Ashish Tiwari, SRI Blood Glucose Modeling: 44
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Model: Human Blood Glucose Metabolism

A module each for Glucose, Insulin, Glucagon, and Pancreas Insulin

Response.

Glucagon
Insulin

Glucose

Pancreatic

7 cont. vars. 8 cont. vars.

1 cont. var.

Insulin Release
3 cont. vars.

Ashish Tiwari, SRI Blood Glucose Modeling: 45
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Dynamical System Model

Modeling blood glucose metabolism in human body:

VB

CI VI

CBo

CBo

INTERSTITIAL FLUID

CAPILLARY BLOOD
CBi

The mass balances for a typical physiologic compartment:

VB
˙CBo = QB(CBi − CBo) + PA(CI − CBo) − rRBC

VIĊI = PA(CBo − CI) − rT

V : volume, C: concentration, Q: flow, r: rate

Modeling convection, diffusion, and metabolic sink.

Ashish Tiwari, SRI Blood Glucose Modeling: 46
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Discrete Components in the Model

rKGE: kidney glucose excretion rate

Continuous Model:

rKGE =







71 + 71 tanh[0.11(GK − 460)] 0 ≤ GK ≤ 460mg/dl

−330 + 0.872GK GK ≥ 460mg/dl

Discrete Model:

rKGE =







0 0 ≤ GK ≤ 460mg/dl

−330 + 0.872GK GK ≥ 460mg/dl

Faulty modes in biology indeed behave like discrete switches

Ashish Tiwari, SRI Blood Glucose Modeling: 47
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Discrete Components of Model

As conservative models of the experimental data

Experimental Data −→ Model Modeling Formalism
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Ashish Tiwari, SRI Blood Glucose Modeling: 48
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Modeling

Human blood glucose metabolism:

• The body is divided into six compartments: brain, heart and lungs, gut,

liver, kidney, periphery

• Each compartment is modeled using the generic framework

(interstitial space (diffusion) neglected often)

• Mostly linear dynamics except

◦ Pancreas Insulin Response (PIR)

◦ Certain metabolic uptake and sinks (all modeled using sigmoidal

functions)

• Type-I diabetic patient modeled by eliminating PIR

• Treatment via insulin injection: extra input term in the equations for heart

and lung compartment
Ashish Tiwari, SRI Blood Glucose Modeling: 49
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The Insulin Component

BRAIN

HEART & LUNGS

LIVER GUT

KIDNEY

PERIPHERY

I_B

I_H

I_L I_G

I_K

I_PV

I_PI

Insulin

Insulin source/sink

Ashish Tiwari, SRI Blood Glucose Modeling: 50
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Analysis: Glucose I

Observations:

• Glucagon concentration changes very slowly

• If change in environment, first insulin concentrations stabilize, followed by

glucose concentrations

• If insulin conc. drop, then glucose conc. increase, and vice-versa.

• Insulin module can be analyzed in isolation

Insulin Module:

Input: Insulin injection

Output: Insulin concentrations in various compartments

Ashish Tiwari, SRI Blood Glucose Analysis: 51
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Analysis: Glucose II

If the rate of insulin injection is changed, say from 20 units/sec to 25 units/sec,

what is the maximum ranges of fluctuation in the concentrations of insulin in

various compartments.
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Ashish Tiwari, SRI Blood Glucose Analysis: 52
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Approximate Reachability for Linear Systems

Linear system ~̇x = A~x

Let ~r be an eigenvector of AT corresponding to eigenvalue k < 0

Consider f(~x) = ~rT~x

Question: What is ḟ?

ḟ = ~rT~x = ~rTA~x = k~rT~x

∴ in all reachable states, f lies between 0 and f(~(0))

This gives an over-approximation of the reach set

This analysis can be extended to complex eigenvalues too

Ashish Tiwari, SRI Blood Glucose Analysis: 53
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Analysis: Glucose III

Using approximate reachability computation for linear systems techniques,

we can automatically compute:

Insulin Concentration stable1 stable2 Reachable Range

Brain 26 33 26–38

Heart 26 33 26–35

Gut 26 33 25–34

Liver 14 18 8–19

Kidney 23 29 23–34

Peri. Vascul. 20 20 20–29

Peri. Interst. 2.2 2.8 1–3

Ashish Tiwari, SRI Blood Glucose Analysis: 54



'

&

$

%

Analysis: Glucose IV

• The worst case insulin concentrations can be used to determine ranges for

the glucose concentrations

• To verify that blood glucose concentration remains within 80–120 mg/dl.

• This can be used to design or verify controllers of pumps for automatic

insulin injection

• This analysis is tolerant to minor changes in parameter values

Ashish Tiwari, SRI Blood Glucose Analysis: 55
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The HybridSal Abstractor

• Creates a conservative discrete approximation of the hybrid model

• The discrete abstraction has all behaviors of the original nondeterministic

(partially unspecified) model

• The abstractor works compositionally and abstracts the models by

abstracting its components of the model

• It can ignore certain parts of the model and focus on other parts of interest

to the biologist

• It can create multiple abstract views of the same base model

• Unknown rate constants can be symbolically constrained, such as (

k12 > k21)

Ashish Tiwari, SRI Tools overview: 56
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The Sal Model Checker

• The discrete abstract model is explored using a symbolic model checker

• Routinely search through state space of size 2100 and beyond

• Can extract interesting behaviors that the model exhibits:

Under the given environment, can the cell go into a high SpooAP state?

• Can also provably verify that certain things never happen

It is impossible for the concentrations of proteins A and B to be high

simultaneously.

If the cell enters a particular configuration, it does not get out of it unless

the environmental signals change.
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The HybridSal Tool Architecture

Decision

Procedure Checker

HybridSAL Model

Hybrid
Abstractor Abstract Model (SAL)

SAL Model− Yes/No/ Reachable States

The decision procedure for the quantifier-free theory of reals powers the

HybridSal tools
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Summary

• Modeling biological systems is challenging: what level of abstraction, what

question do you want to ask

• Hybrid systems provides a rich language for modeling such systems

• Unknown parameters and noise need to be handled

• Automated analysis tools can help refine models and suggest experiments

◦ Models are robust: parameters, noise

◦ Techniques based on abstraction well-suited

◦ Abstraction verifies robustness!
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Summary: Analysis Techniques

• Qualitative abstraction: for creating sound discrete abstractions of hybrid

systems

• Approximating reach sets using structural analysis of the differential

equations:

linear algebra, algebraic and differential geometry

• Decision procedure for reals:

◦ Abstraction based theorem proving: Theorem provers should abstract

◦ Sound, but incomplete hierarchies of decision procedures based on

abstraction, refinement

• Model reduction

• Model refinement
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