
HybridSAL Relational Abstracter

Ashish Tiwari

SRI International, Menlo Park, CA. ashish.tiwari@sri.com

Abstract. In this paper, we present the HybridSAL relational abstracter
– a tool for verifying continuous and hybrid dynamical systems. The in-
put to the tool is a model of a hybrid dynamical system and a safety
property. The output of the tool is a discrete state transition system
and a safety property. The correctness guarantee provided by the tool
is that if the output property holds for the output discrete system, then
the input property holds for the input hybrid system. The input is in
HybridSal input language and the output is in SAL syntax. The SAL
model can be verified using the SAL tool suite. This paper describes
the HybridSAL relational abstracter – the algorithms it implements, its
input, its strength and weaknesses, and its use for verification using the
SAL infinite bounded model checker and k-induction prover.

1 Introduction

A dynamical system (X, a→) with state space X and transition relation
a→ ⊆ X×X

is a relational abstraction of another dynamical system (X, c→) if the two systems

have the same state space and
c→ ⊆ a→. Since a relational abstraction contains all

the behaviors of the concrete system, it can be used to perform safety verification.
HybridSAL relational abstracter is a tool that computes a relational ab-

straction of a hybrid system as described by Sankaranarayanan and Tiwari [8].
A hybrid system (X,→) is a dynamical system with
(a) state space X := Q × Y, where Q is a finite set and Y := Rn is the n-
dimensional real space, and
(b) transition relation →:=→cont ∪ →disc, where →disc is defined in the usual
way using guards and assignments, but→cont is defined by a system of ordinary
differential equation and a mode invariant. One of the key steps in defining the
(concrete) semantics of hybrid systems is relating a system of differential equa-
tion dy

dt = f(y) with mode invariant φ(y) to a binary relation over Rn, where y
is a n-dimensional vector of real-valued variables. Specifically, the semantics of
such a system of differential equations is defined as:

y0 →cont y1 if there is a t1 ∈ R≥0 and a function F from [0, t1] to Rn s.t.

y0 = F (0),y1 = F (t1), and

∀t ∈ [0, t1] :

(
dF (t)

dt
= f(F (t)) ∧ φ(F (t))

)
(1)

The concrete semantics is defined using the “solution” F of the system of differ-
ential equations. As a result, it is difficult to work directly with it.

The relational abstraction of a hybrid system (X, c→cont∪
c→disc) is a discrete

state transition system (X, a→) such that
a→ =

a→cont ∪
c→disc, where

c→cont ⊆
a→cont. In other words, the discrete transitions of the hybrid system are left

untouched by the relational abstraction, and only the transitions defined by
differential equations are abstracted.

The HybridSal relational abstracter tool computes such a relational abstrac-
tion for an input hybrid system. In this paper, we describe the tool, the core
algorithm implemented in the tool, and we also provide some examples.

2 Relational Abstraction of Linear Systems

Given a system of linear ordinary differential equation, dxdt = Ax+b, we describe

the algorithm used to compute the abstract transition relation
a→ of the concrete

transition relation
c→ defined by the differential equations.

The algorithm is described in Figure 1. The input is a pair (A, b), where A is
a (n×n) matrix of rational numbers and b is a (n×1) vector of rational numbers.
The pair represents a system of differential equations dx

dt = Ax + b. The output
is a formula φ over the variables x,x′ that represents the relational abstraction
of dx

dt = Ax + b. The key idea in the algorithm is to use the eigenstructure of
the matrix A to generate the relational abstraction.

The following proposition states the correctness of the algorithm.

Proposition 1. Given (A, b), let φ be the output of procedure linODEabs in
Figure 1. If →cont is the binary relation defining the semantics of dx

dt = Ax + b
with mode invariant True (as defined in Equation 1), then →cont ⊆ φ.

By applying the above abstraction procedure on to the dynamics of each
mode of a given hybrid system, the HybridSal relational abstracter constructs
a relational abstraction of a hybrid system. This abstract system is a purely
discrete infinite state space system that can be analyzed using infinite bounded
model checking (inf-BMC), k-induction, or abstract interpretation.

We make two important remarks here. First, the relational abstraction con-
structed by procedure linODEabs is a Boolean combination of linear and nonlin-
ear expressions. The nonlinear expressions can be replaced by their conservative
linear approximations. The HybridSal relational abstracter performs this ap-
proximation by default. It generates the (more precise) nonlinear abstraction
(as described in Figure 1) when invoked using an appropriate command line
flag. Both inf-BMC and k-induction provers rely on satisfiability modulo theory
(SMT) solvers. Most SMT solvers can only reason about linear constraints, and
hence, the ability to generate linear relational abstractions is important. How-
ever, there is significant research effort going on into extending SMT solvers to
handle nonlinear expressions. HybridSal relational abstracter and SAL inf-BMC
have been used to create benchmarks for linear and nonlinear SMT solvers.

Second, Procedure linODEabs can be extended to generate even more pre-
cise nonlinear relational abstractions of linear systems. Let p1, p2, . . . , pk be k
(linear and nonlinear) expressions found by Procedure linODEabs that satisfy

2

linODEabs(A, b): Input: a pair (A, b), where A ∈ Rn×n, b ∈ Rn×1.
Output: a formula φ over the variables x,x′

1. identify all variables x1, . . . , xk s.t. dxi
dt

= bi where bi ∈ R ∀i
let E be {x

′
i−xi

bi
| i = 1, . . . , k}

2. partition the variables x into y and z s.t. dx
dt

= Ax + b can be rewritten as[
dy
dt
dz
dt

]
=

[
A1 A2

0 0

] [
y
z

]
+

[
b1
b2

]
where A1 ∈ Rn1×n1 , A2 ∈ Rn1×n2 , b1 ∈ Rn1×1, b2 ∈ Rn2×1, and n = n1 + n2

3. set φ to be True
4. let c be a real left eigenvector of matrix A1 and let λ be the corresponding real

eigenvalue, that is, cTA1 = λcT

5. if λ == 0 ∧ cTA2 == 0: set E := E ∪ { c
T (y′−y)

cT b1
}; else: E := E

6. if λ 6= 0: define vector d and real number e as: dT = cTA2/λ and e = (cT b1 +
dT b2)/λ
let p(x) denote the expression cTy+dTz+ e and let p(x′) denote cTy′+dTz′+ e
if λ > 0: set φ := φ∧ [(p(x′) ≤ p(x) < 0)∨(p(x′) ≥ p(x) > 0)∨(p(x′) = p(x) = 0)]
if λ < 0: set φ := φ∧ [(p(x) ≤ p(x′) < 0)∨(p(x) ≥ p(x′) > 0)∨(p(x′) = p(x) = 0)]

7. if there are more than one eigenvectors corresponding to the eigenvalue λ, then
update φ or E by generalizing the above

8. repeat Steps (4)–(7) for each pair (c, λ) of left eigenvalue and eigenvector of A1

9. let c + ıd be a complex left eigenvector of A1 corresponding to eigenvalue α+ ıβ
10. using simple linear equation solving as above, find c1, d1, e1 and e2 s.t. if p1

denotes cTy + c1
Tz + e1 and if p2 denotes dTy + c2

Tz + e2 then

d

dt
(p1) = αp1 − βp2

d

dt
(p2) = βp1 + αp2

let p′1 and p′2 denote the primed versions of p1, p2
11. if α ≤ 0: set φ := φ ∧ (p21 + p22 ≥ p′1

2
+ p′2

2
)

if α ≥ 0: set φ := φ ∧ (p21 + p22 ≤ p′1
2

+ p′2
2
)

12. repeat Steps (9)–(11) for every complex eigenvalue eigenvector pair
13. set φ := φ ∧

∧
e1,e2∈E e1 = e2; return φ

Fig. 1. Algorithm implemented in HybridSal relational abstracter for computing rela-
tional abstractions of linear ordinary differential equations.

the equation dpi
dt = λipi. Suppose further that there is some λ0 s.t. for each i

λi = niλ0 for some integer ni. Then, we can extend φ by adding the following
relation to it:

pi(x
′)njpj(x)ni = pj(x

′)nipi(x)nj (2)

However, since pi’s are linear or quadratic expressions, the above relations will
be highly nonlinear unless ni’s are small. So, they are not currently generated
by the relational abstracter. It is left for future work to see if good and useful
linear approximations of these highly nonlinear relations can be obtained.

3

3 The HybridSal Relational Abstracter

The HybridSal relational abstracter tool, including the sources, documentation
and examples, is freely available for download [10].

The input to the tool is a file containing a specification of a hybrid system
and safety properties. The HybridSal language naturally extends the SAL lan-
guage by providing syntax for specifying ordinary differential equations. SAL
is a guarded command language for specifying discrete state transition systems
and supports modular specifications using synchronous and asynchronous com-
position operators. The reader is referred to [7] for details. HybridSal inherits all
the language features of SAL. Additionally, HybridSal allows differential equa-
tions to appear in the model as follows: for each real-valued variable x, the user
defines a dummy variable xdot which represents dx

dt . A differential equation can
now be written by assigning to the xdot variable. Assuming two variables x, y,
the syntax is as follows:

guard(x,y) AND guard2(x,x’,y,y’) --> xdot’ = e1; ydot’ = e2

This represents the system of differential equations dx
dt = e1, dydt = e2 with mode

invariant guard(x, y). The semantics of this guarded transition is the binary rela-
tion defined in Equation 1 conjuncted with the binary relation guard2 (x, x′, y, y′).
The semantics of all other constructs in HybridSal match exactly the semantics
of their counterparts in SAL.

Figure 2 contains sketches of two examples of hybrid systems modeled in
HybridSal. The example in Figure 2(left) defines a module SimpleHS with two
real-valued variables x, y. Its dynamics are defined by dx

dt = −y+x, dydt = −y−x
with mode invariant y ≥ 0, and by a discrete transition with guard y ≤ 0. The
HybridSal file SimpleHS.hsal also defines two safety properties. The latter one
says that x is always non-negative. This model is analyzed by abstracting it

bin/hsal2hasal examples/SimpleEx.hsal

to create a relational abstraction in a SAL file named examples/SimpleEx.sal,
and then (bounded) model checking the SAL file

sal-inf-bmc -i -d 1 SimpleEx helper

sal-inf-bmc -i -d 1 -l helper SimpleEx correct

The above commands prove the safety property using k-induction: first we prove
a lemma, named helper, using 1-induction and then use the lemma to prove the
main theorem named correct.

The example in Figure 2(right) shows the sketch of a model of the train-gate-
controller example in HybridSal. All continuous dynamics are moved into one
module (named timeElapse). The train, gate and controller modules define
the state machines and are pure SAL modules. The observer module is also a
pure SAL module and its job is to enforce synchronization between modules on
events. The final system is a complex composition of the base modules.

The above two examples, as well as, several other simple examples are pro-
vided in the HybridSal distribution to help users understand the syntax and
working of the relational abstracter. A notable (nontrivial) example in the dis-
tribution is a hybrid model of an automobile’s automatic transmission from [2].

4

SimpleEx: CONTEXT = BEGIN

SimpleHS: MODULE = BEGIN

LOCAL x,y,xdot,ydot:REAL

INITIALIZATION

x = 1; y IN {z:REAL| z <= 2}
TRANSITION

[y >= 0 AND y’ >= 0 -->

xdot’ = -y + x ;

ydot’ = -y - x

[] y <= 0 --> x’ = 1; y’ = 2]
END;

helper: LEMMA SimpleHS |-

G(0.9239*x >= 0.3827*y);

correct : THEOREM

SimpleHS |- G(x >= 0);

END

TGC: CONTEXT = BEGIN

Mode: TYPE = {s1, s2, s3, s4};
timeElapse: MODULE = BEGIN

variable declarations

INITIALIZATION x = 0; y = 0; z = 0

TRANSITION

[mode invariants -->

--> xdot’ = 1; ydot’ = 1; zdot’ = 1]
END;

train: MODULE = . . .
gate: MODULE = . . .
controller: MODULE = . . .
observer: MODULE = . . .
system: MODULE = (observer || (train []

gate [] controller [] timeElapse));

correct: THEOREM system |- G (...) ;

END

Fig. 2. Modeling hybrid systems in HybridSal: A few examples.

Users have to separately download and install SAL model checkers if they wish
to analyze the output SAL files using k-induction or infinite BMC.

The HybridSal relational abstracter constructs abstractions compositionally;
i.e., it works on each mode (each system of differential equations) separately.
It just performs some simple linear algebraic manipulations and is therefore
very fast. The bottleneck step in our tool chain is the inf-BMC and k-induction
step, which is orders of magnitude slower than the abstraction step (we have
not tried abstract interpretation yet). The performance of HybridSal matches
the performance reported in our earlier paper [8] on the navigation benchmarks
(which are included with the HybridSal distribution). In [8] we had used many
different techniques (not all completely automated at that time) to construct
the relational abstraction.

4 Discussion: Strengths and Weaknesses

The HybridSal relational abstracter is a tool for verifying hybrid systems. The
other common tools for hybrid system verification consist of (a) tools that it-
eratively compute an overapproximation of the reachable states [4], (b) tools
that directly search for correctness certificates (such as inductive invariants or
Lyapunov function) [6, 9], or (c) tools that compute an abstraction and then an-
alyze the abstraction [5, 1, 3]. Our relational abstraction tool falls in category (c),
but unlike all other abstraction tools, it does not abstract the state space, but
abstracts only the transition relation.

The key benefit of relational abstraction is that it cleanly separates reason-
ing on continuous dynamics (where we use control theory or systems theory)
and reasoning on discrete state transition systems (where we use formal meth-

5

ods.) Concepts such as Lyapunov functions or inductive invariants (aka barrier
certificates) for continuous systems are used to construct very precise relational
abstractions, and formal methods is used to verify the abstracted system. In fact,
for several classes of simple continuous dynamical systems, lossless relational ab-
stractions can be constructed, and hence all incompleteness in verification then
comes from incompleteness of k-induction provers.

The relational abstraction methodology and tool have certain weaknesses,
which we now enumerate. (a) Relational abstraction generates verification prob-
lem on a discrete, infinite state space system, which are difficult to automatically
handle. (b) Our tool does not use the mode invariants when creating relational
abstractions. (c) Our tool performs calculations using floating point arithmetic
and hence the computed eigenvalues and eigenvectors can have numerical er-
rors. (d) There are other techniques for discovering relational invariants that
are not automated in our tool presently. (e) Our tool can not handle nonlinear
differential equations presently. (f) Our tool can not efficiently handle platform
constraints imposed on control systems, such as sampling frequency, sensing and
actuating delays, etc [11].We note that this is the first version of the tool and
we hope to enhance the tool to address some of the above concerns in future
releases of the tool.

References

1. R. Alur, T. Dang, and F. Ivancic. Counter-example guided predicate abstraction
of hybrid systems. In TACAS, volume 2619 of LNCS, pages 208–223, 2003.

2. A. Chutinan and K. R. Butts. SmartVehicle baseline report: Dynamic analysis of
hybrid system models for design validation. Ford Motor Co., 2002. Tech. report,
Open Experimental Platform for DARPA MoBIES, Contract F33615-00-C-1698.

3. E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, O. Stursberg, and M. Theobald.
Verification of hybrid systems based on counterexample-guided abstraction refine-
ment. In TACAS, volume 2619 of LNCS, pages 192–207, 2003.

4. G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid systems.
In CAV, volume 6806 of LNCS, pages 379–395, 2011.

5. Hybridsal: Modeling and abstracting hybrid systems. http://www.csl.sri.com/

users/tiwari/HybridSalDoc.ps.
6. S. Prajna, A. Papachristodoulou, and P. A. Parrilo. SOSTOOLS: Sum of Square

Optimization Toolbox for MATLAB, 2002. Available from http://www.cds.

caltech.edu/sostools and http://www.aut.ee.ethz.ch/~parrilo/sostools.
7. The SAL intermediate language, 2003. Computer Science Laboratory, SRI Inter-

national, Menlo Park, CA. http://sal.csl.sri.com/.
8. S. Sankaranarayanan and A. Tiwari. Relational abstractions for continuous and

hybrid systems. In CAV, volume 6806 of LNCS, pages 686–702, 2011.
9. T. Sturm and A. Tiwari. Verification and synthesis using real quantifier elimina-

tion. In ISSAC, pages 329–336, 2011.
10. A. Tiwari. Hybridsal relational abstracter. http://www.csl.sri.com/~tiwari/

relational-abstraction/.
11. A. Zutshi, S. Sankaranarayanan, and A. Tiwari. Timed relational abstractions for

sampled data control systems. Submitted, Under review.

6

A Supplementary Material

Proof. (Proof sketch for Proposition 1) First, let p(x) be the linear expression
cTy + dTz + e discovered in Step (6). Then,

dp

dt
= cT (A1y +A2z + b1) + dT b2 = λcTy + λdTz + cT b1 + dT b2

= λ ∗ (cTy + dTz + c) = λ ∗ p

Hence, p(x(t)) = p(x(0))eλt. Therefore, the relation added in Step (6) to φ will
hold between an initial state x and a future state x′.

Next, consider the quadratic relations added to φ in Step (11). Let p1, p2 be
as defined in Step (10). Then,

d(p21 + p22)

dt
= 2p1(αp1 − βp2) + 2p2(βp1 + αp2) = 2α(p21 + p22)

Hence, p1(x(t))2 + p2(x(t))2 = (p1(x(0))2 + p2(x(0))2)e2αt, and therefore, the
relation added in Step (11) to φ will hold between an initial state x and a future
state x′.

Next, consider the relations added in Step (13). It is easy to observe that
every expression s(x,x′) in the set E is equal to the time t taken to reach x′

from x following the linear ODE dynamics. Hence, all these expressions need to
be equal, as stated in Step (13).

Finally, the nonlinear relationship in Equation 2 holds for any binary reach-
able pair of states (x,x′) because(

pi(x
′)

pi(x)

)nj

=

(
pj(x

′)

pj(x)

)ni

= eninjλ0t

ut

7

