
'

&

$

%

HybridSAL: Tool for Analyzing Hybrid Systems

Using Relational Abstraction

Background: Few automated tools for verifying systems with mixed discrete and
continuous dynamics, and none are compositional

Accomplishment: We have developed two new techniques for analyzing open
components based on

• certificate-based techniques for generating assume-guarantee pairs

• relational abstractions

1

'

&

$

%

HybridSAL Supports Relational Abstraction

Progress: The HybridSAL tool can construct relational abstractions

HybridSAL HybridSAL HSAL

Abstractor RelAbstractor

Constructs quali-
tative abstractions
of HybridSAL
models

⇐ Formal language
for describing
systems with
hybrid dynamics

⇒ Constructs
relational
abstractions
of HybridSAL
models

Finite state Old New Infinite state

2

'

&

$

%

HSAL Relational Abstractor

The use case:

1. User creates a HybridSAL model of the system/component of interest

• Using a text editor

• From Vanderbilt’s CyPhy environment

Model resides in filename.hsal

2. User adds properties of interest to the model
Properties also go inside filename.hsal

3. HSal RelAbstractor automatically constructs filename.sal

4. Sal model checkers can be used to verify filename.sal
sal-inf-bmc -i -d 5 filename property

These steps can be seen in the demo

3

'

&

$

%

HSAL Relational Abstractor

Is developed compositionally

Independently usable components of HSAL Relational Abstractor:

• hsal2hxml: A parser for HybridSAL, creates HSAL model in XML

• hxml2hsal: Pretty printer for HSAL XML

• hsal2hasal: HSal relational abstractor, from .hsal, or .hxml to .hasal
The original model and its abstraction are both stored in .hasal file
hsal2hxml can parse .hasal file
hxml2hsal can also pretty print .haxml file

• hasal2sal: Extract the abstract SAL model from .hasal file

Key Idea: Enriched components, .hasal file stores components, properties, and
abstractions

4

'

&

$

%

Relational Abstraction: Concept

Consider a dynamical system (X,→) where

X :variables defining state space of the system

→:binary relation over state space defining system dynamics

We do not care if

• the system is discrete- or continuous- or hybrid-time, or

• the system has a discrete, continuous, or hybrid state space

For discrete-time systems,→ is the one-step transition relation
For continuous-time systems,→= ∪t≥0

t→ where t→ is the transition relation
corresponding to an elapse of t time units

5

'

&

$

%

Relational Abstraction: Concept

Relational abstraction of a dynamical system (X,→) is another dynamical system
(X,→) such that

TransitiveClosure(→) ⊆ →

Relational Abstraction: An over-approximation of the transitive closure of the
transition relation

Benefit:
Eliminates need for iterative fixpoint computation
Useful for proving safety properties, and establishing conservative safety bounds

6

'

&

$

%

Relational Abstraction: Example

For the continuous-time continuous-space dynamical system:

dx

dt
= −x+ y

dy

dt
= −x− y

we have the following continuous-space discrete-time relational abstraction:

(x, y)→ (x′, y′) := max(|x|, |y|) ≥ max(|x′|, |y′|)

If initially x ∈ [0, 3], y ∈ [−2, 2], then in any future time, x, y will remain in the
range [−3, 3]

7

'

&

$

%

Relational Abstraction: Challenge

Is it possible to compute relational abstractions?

We do not want to abstract discrete-time transition relations, because model
checkers (and static analyzers) can handle them (compute fixpoint)

Is it possible to compute relational abstractions of continuous-time dynamics?

8

'

&

$

%

Computing Relational Abstractions

We have an algorithm for computing relational abstractions of linear systems

Dynamics Relational Abstraction

ẋ = 1, ẏ = 1 x′ − x = y′ − y

ẋ = 2, ẏ = 3 (x′ − x)/2 = (y′ − y)/3

~̇x = A~x (0 ≤ p′ ≤ p) ∨ (0 ≥ p′ ≥ p), where

p = ~cT~x, ~c eigenvector of AT corr. to negative eigenvalue

~̇x = A~x+~b . . .

Why are such simple dynamics important?
Timed automata, Multirate automata, linear hybrid systems

9

'

&

$

%

Computing Relational Abstractions

For linear systems, we can use plenty of linear algebra to automatically generate
relational abstractions

More generally, we can use the certificate-based approach to generate relational
abstractions using constraint solving

By fixing a form for the relational abstraction, we can find the abstraction by
solving an ∃∀ formula

The algorithm for creating relational abstractions of linear systems can be viewed
as a special case of this generic method, where the ∃∀ problems are being solved
using linear algebra tricks.

10

'

&

$

%

Relational Abstraction: Summary

Benefit: Enables analyzability
of complex systems

Abstraction

(T
im

e
x

 S
p

ac
e)

A
n

al
y

za
b

il
it

y

1
/

Complexity (Size of state space x Type of Dynamics x Property)

Compositional Analysis

Feature: Compositional analy-
sis: Abstracts open compo-
nents with hybrid dynamics

Feature: Compatible with
other abstraction and model
checking techniques

Novelty: Abstracts the transition
relation, not the state space

Relational

Abstraction

Concrete

6 Components

Scope: Applies to all dynamical sys-
tems. Effective relational abstrac-
tions can be computed for several
classes.

11

'

&

$

%

Relational Abstraction: Examples

System

Convergent

System

Oscillating

Spiral

System

Spiral

System

Class d~x
dt

RelAbs

Timed
System

ẋ = 1,
ẏ = 1

x′−x =

y′ − y

Multirate
System

ẋ = 2,
ẏ = 3

x′−x
2

=

y′−y
3

Linear
Hybrid
System

~̇x =

A~x

(0 ≤
p′ ≤ p

.

On Hybrid System bench-
marks, verification time
reduces from 10 hours to a few
minutes (100x improvement).

12

'

&

$

%

Demo: TGC Example

Consider a train-gate-controller system: Is it safe? From [Dutertre and Sorea, 2004]

t1
x <= 5

g0

raise, y:=0

g3
y <= 2

lower, y:=0

GATE

c0

exit, z:=0

c3
z <= 1

approach, z:=0

z=1
lower

CONTROLLERraise

c1
z <= 1

g1
y <= 1

down

g2

y >= 1
up

t0

out

t3
x <= 5

t2
x <= 5

approach, x:=0

in
TRAINexit x > 2

c2

13

'

&

$

%

Demo: Navigation Example

Consider a robot moving in a 2d space. It should reach A, while avoid-
ing B.
Dynamics:

~̇x = ~v

~̇v = A(~v − ~vd)

The direction ~vd depends on
the position in the grid
Can verify instances in min-
utes using HSAL RelAbs and
sal-inf-bmc

From [Ansgar and Ivancic, 2004]

14

'

&

$

%

Backup: Abstraction vs RelAbstraction

Two methods for abstracting
continuous/hybrid systems

• predicate abstraction:
Implemented in Hybrid-
SAL

• relational abstraction:
New approach that we
will demonstrate here

15

'

&

$

%

Abstraction for Open Systems

Relational Abstraction
Abstract model defines how the input relates to the output

d~x

dt
= f(~x) (1)

⇓ (2)

~x → ~y if ~x, ~y are related by R(~x, ~y) (3)

Example:

dx

dt
= −x (4)

⇓ (5)

~x → ~y if (x ≤ y < 0) ∨ (0 < y ≤ x) (6)

16

'

&

$

%

Computing Relational Abstractions

Suppose dynamics are d~x
dt = A~x

• Compute left eigenvector ~cT of A

~cTA = λ~cT

• Note that
d(~cT~x)

dt
= ~cT

d~x

dt
= ~cTA~x = λ~cT~x

• Thus, we can relate the initial value of cT~x and its future value cT~x′ as
follows:

0 < ~cT~x′ ≤ ~cT~x ∨ 0 > ~cT~x′ ≥ ~cT~x

if λ < 0. And if λ > 0, then ~x, ~x′ swap places.

This idea generalizes to d~x
dt = A~x+~b

17

'

&

$

%

Computing Relational Abstractions 2

Suppose dynamics are d~x
dt = A~x

Suppose we have generated relations for all real eigenvalues

Now suppose there is a complex eigenvalue a+ bι

• Find two vectors ~cT and ~dT such that d~cT ~x
dt

d~dT ~x
dt

 =

 a −b
b a

 d~cT ~x
dt

d~dT ~x
dt


• Thus, the values of ~cT~x and ~dT~x spiral in (or spiral out) if a < 0 (respectively

if a > 0)

• Hence, we can relate their initial values to their future values

(~cT~x)2 + (~dT~x)2 ≥ (~cT~x′)2 + (~dT~x′)2

if a < 0, and the inequalities are reversed if a > 0

18

'

&

$

%

Qualitative vs Relational Abstraction

Consider ẋ = −x

Qualitative abstraction:
if qx = pos then qx′ ∈ {pos, zero}
if qx = neg then qx′ ∈ {neg, zero}
if qx = zero then qx′ = zero

Relational abstraction:
0 ≤ x′ ≤ x ∨ 0 ≥ x′ ≥ x

If initially x = 5, then qualitative abstraction can prove x is never neg

If initially x = 5, then relational abstraction can prove x remains between 0 and 5

19

'

&

$

%

Demo of (Prototype) Timed Relational Abstraction

New: First version of Timed Relational Abstraction

Why TRA?

• A controller is designed, and verified for stability, in the continuous domain

• The controller is implemented on a time triggered architecture

• Is the system still stable?

What is TRA? Abstraction of dx(t)
dt = f(x) by a relation R(x(0), x(T)) that

relates all possible pairs x(0), x(T), where T is the sampling period

20

'

&

$

%

Example 1: Timed Proportional Controller

Consider plant dx
dt = 5 ∗ x+ u

Consider a P-controller u = −30 ∗ x

This is clearly stabilizing in the continuous domain.

Time-triggered implementation of this controller need not be provably stabilizing.

When T = 0.01, the controller is still stabilizing

When T = 0.1, it is not so

21

'

&

$

%

Example 2: Timed PI Controller

Consider plant dx
dt = 5 ∗ x+ u

Consider a PI-controller u = −30 ∗ x− y, where dy
dt = x

When T = 0.05, the controller is stabilizing

When T = 0.1, the controller is stabilizing

When T = 0.5, it is not so

22

'

&

$

%

Example 3: Inverted Pendulum

A linearized plant :=

 dx
dt = y

dy
dt = 20 ∗ x+ 16 ∗ y + 4 ∗ u

A controller :=



y ≥ 2 −→ u = −16
y ≤ −2 −→ u = 16

16 ∗ x− y ≤ −10 −→ u = −16
16 ∗ x− y ≥ 10 −→ u = 16

Else −→ u = u

A continuous controller results in a stable system

For any sampling period T , resulting system is not stable

23

