
'

&

$

%

HybridSAL Relational Abstracter

Ashish Tiwari

SRI International

Menlo Park

CA 94025

Ashish Tiwari HybridSAL Relational Abstracter: 1/24

'

&

$

%

HybridSAL = SAL + ODEs

3−3 0

10

The goal is to prove that the robot remains inside
Safe starting from Init:

Init := (x ∈ [−1, 1], y = 0, vx = 0, vy = 0)

Safe := (|x| ≤ 3)

The robot can move in 2 modes:

• Mode 1: Force applied in (1, 1)-direction (NE)

dx

dt
= vx,

dvx

dt
= 1.2(1−vx)+0.1(vy−1),

dy

dt
= vy ,

dvy

dt
= 1.2(1−vy)+0.1(vx−1)

• Mode 2: Force applied in (−1, 1)-direction (NW)

dx

dt
= vx,

dvx

dt
= −1.2(1+vx)+0.1(vy−1),

dy

dt
= vy ,

dvy

dt
= 1.2(1−vy)+0.1(vx−1)

Ashish Tiwari HybridSAL Relational Abstracter: 2/24

'

&

$

%

Example: Driving a Robot

Consider a non-deterministic controller:

• Switch to NE mode when moving left and −1.5 ≤ x ≤ −1

• Switch to NW mode when moving right and 1 ≤ x ≤ 1.5

A possible simulation trajectory:

−3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

Position x

P
os

iti
on

 y

Position
x=−3
x=3
Alt Position

Does the robot ever hit the wall – for all initial states and switchings?

Ashish Tiwari HybridSAL Relational Abstracter: 3/24

'

&

$

%

HybridSAL: Modeling the Plant

plant: MODULE =

BEGIN

INPUT direction : BOOLEAN

OUTPUT x, vx, y, vy : REAL

INITIALIZATION

x IN {z: REAL | -1 ≤ z AND z ≤ 1};
vx = 0; vy = 0; y = 0

TRANSITION

[direction = TRUE -->

xdot’ = vx; vxdot’ = -12/10*(1 + vx) + 1/10*(vy - 1);

ydot’ = vy; vydot’ = 12/10*(1 - vy) + 1/10*(vx + 1)

[] direction = FALSE -->

xdot’ = vx; vxdot’ = 12/10*(1 - vx) + 1/10*(vy - 1);

ydot’ = vy; vydot’ = 12/10*(1 - vy) + 1/10*(vx - 1)

]

END;

Ashish Tiwari HybridSAL Relational Abstracter: 4/24

'

&

$

%

HybridSAL: Modeling the Controller

controller: MODULE =

BEGIN

OUTPUT direction, flag: BOOLEAN

INPUT x, vx : REAL

TRANSITION

[vx ≤ 0 AND vx’ ≤ 0 AND x’ ≤ -1 AND x’ ≥ -3/2 -->

direction’ = FALSE

[] vx ≥ 0 AND vx’ ≥ 0 AND x’ ≥ 1 AND x’ ≤ 3/2 -->

direction’ = TRUE

[] ...

]

END;

Note: the initial value of direction is unconstrained

Ashish Tiwari HybridSAL Relational Abstracter: 5/24

'

&

$

%

HybridSAL: Modeling the System

robotnav: CONTEXT

BEGIN

plant: MODULE = ...

controller: MODULE = ...

system: MODULE = plant || controller ;

correct: THEOREM

system ` G(-3 ≤ x AND x ≤ 3);

END

Is the property correct true or false?

Demo: File examples/robotnav.hsal

Ashish Tiwari HybridSAL Relational Abstracter: 6/24

'

&

$

%

HybridSAL Analysis

Verification of HybridSAL models is done in two steps:

Abstract: filename.hsal hsal2hasal−→ filename.sal

Model Check: filename.sal
sal-inf-bmc -i filename property

−→ Proved/Invalid

If Proved, then property is valid over the concrete system
If Invalid, then property may be false over the concrete system
If failed to prove and failed to find a CE, then property is most likely valid over the
concrete system, but need to find an k-inductive invariant

Demo: bin/hsal2hasal examples/robotnav.hsal

Demo: File examples/robotnav.sal

Ashish Tiwari HybridSAL Relational Abstracter: 7/24

'

&

$

%

HybridSAL to SAL

The HybridSal Relational Abstracter

• creates a discrete infinite-state abstraction

• does not abstract the state-space;
only the ODE transitions are over-approximated by discrete transitions
~x→ ~x′ if there is a solution F of the ODE s.t. F (0) = ~x and F (t) = ~x′ for
some t ≥ 0

• HybridSAL finds an over-approximation→ without finding F

• completely automatic for linear ODEs

Ashish Tiwari HybridSAL Relational Abstracter: 8/24

'

&

$

%

Relational Abstraction: Examples

continuous-time continuous-space continuous-space discrete-time

concrete system relational abstraction

ẋ = 1, ẏ = 1 x′ − x = y′ − y ∧ y′ ≥ y

ẋ = 2, ẏ = 3 (x′ − x)/2 = (y′ − y)/3 ∧ y′ ≥ y
dx
dt = −x x ≥ x′ > 0 ∨ x ≤ x′ < 0 ∨ x = x′ = 0

dx
dt = −x+ y max(|x|, |y|) ≥ max(|x′|, |y′|) ∧
dy
dt = −x− y x2 + y2 ≥ x′2 + y′

2

d~x
dt = A~x (cT~x ≥ cT ~x′ > 0 ∨

cT~x ≤ cT ~x′ < 0 ∨
cT~x = cT ~x′ = 0) ∧ . . .

Ashish Tiwari HybridSAL Relational Abstracter: 9/24

'

&

$

%

WHY Relational Abstraction

Concept: Analyze hybrid systems by first replacing ODEs by their relational
abstraction

Why is this a good idea?

• separation of concerns

◦ use knowledge from control/system theory/linear algebra/Lyapunov
functions/barriers to construct high-quality relationalizations of ODEs

◦ then use verification techniques for infinite-state systems

• accuracy improves as we get closer to decidable classes

◦ relationalization is lossless for timed automata, LHAs

◦ almost lossless for other decidable classes of CDSs

• good quality abstractions automatically computed for linear ODEs

• generalizes to timed relational abstraction etc.

Ashish Tiwari HybridSAL Relational Abstracter: 10/24

'

&

$

%

Relational Abstraction: Challenge

Is it possible to compute relational abstractions?

We do not want to abstract discrete-time transition relations, because model
checkers (and static analyzers) can handle them

Is it possible to compute relational abstractions of continuous-time dynamics?

• For linear ODEs, both real and complex left eigenvectors yield high quality
relational abstractions

• For nonlinear ODEs, there are generic methods that are not fully automated

Ashish Tiwari HybridSAL Relational Abstracter: 11/24

'

&

$

%

Relational Abstraction: Definition

Abstract model defines how the input relates to the output

d~x

dt
= f(~x) (1)

⇓ (2)

~x → ~y if ~x, ~y are related by R(~x, ~y) (3)

Example:

dx

dt
= −x (4)

⇓ (5)

~x → ~y if (x ≤ y < 0) ∨ (0 < y ≤ x) ∨ (x = y = 0) (6)

Ashish Tiwari HybridSAL Relational Abstracter: 12/24

'

&

$

%

Computing Relational Abstractions

Suppose dynamics are d~x
dt = A~x

• Compute left eigenvector ~cT of A

~cTA = λ~cT

• Note that
d(~cT~x)

dt
= ~cT

d~x

dt
= ~cTA~x = λ~cT~x

• Thus, we can relate the initial value of cT~x and its future value cT~x′ as
follows:

0 < ~cT~x′ ≤ ~cT~x ∨ 0 > ~cT~x′ ≥ ~cT~x ∨ 0 = ~cT~x′ = ~cT~x

if λ < 0. And if λ > 0, then ~x, ~x′ swap places.

This idea generalizes to d~x
dt = A~x+~b

Ashish Tiwari HybridSAL Relational Abstracter: 13/24

'

&

$

%

Computing Relational Abstractions 2

Suppose dynamics are d~x
dt = A~x

Suppose we have generated relations for all real eigenvalues

Now suppose there is a complex eigenvalue a+ bι

• Find two vectors ~cT and ~dT such that d~cT ~x
dt

d~dT ~x
dt

 =

 a −b
b a

 d~cT ~x
dt

d~dT ~x
dt


• Thus, the values of ~cT~x and ~dT~x spiral in (or spiral out) if a < 0 (respectively

if a > 0)

• Hence, we can relate their initial values to their future values

(~cT~x)2 + (~dT~x)2 ≥ (~cT~x′)2 + (~dT~x′)2

if a < 0, and the inequalities are reversed if a > 0

Ashish Tiwari HybridSAL Relational Abstracter: 14/24

'

&

$

%

HybridSAL: Old vs New

Old HybridSAL:

HybridSAL QualitativeAbstraction
=⇒ SAL

Resulting SAL was finite-state model, could be model checked

New HybridSAL:

HybridSAL RelationalAbstraction
=⇒ SAL

Resulting SAL is infinite-state model, can be infinite bounded model checked

Ashish Tiwari HybridSAL Relational Abstracter: 15/24

'

&

$

%

Model Checking Relational Abstraction

The output of relational abstracter is an infinite-state SAL model

• How to verify the abstract system?

◦ k-induction and infinite BMC
sal-inf-bmc --help

◦ scalability?
Relational abstracter is very fast.
sal-inf-bmc is the bottleneck
One reason is disjunctive relational abstraction

• Can we generate nonlinear relational abstractions?

◦ Yes, they will be more precise

◦ But, current SMT solvers can’t analyze those abstractions

Ashish Tiwari HybridSAL Relational Abstracter: 16/24

'

&

$

%

Demo Continued

Demo: sal-inf-bmc -i -d 2 robotnav correct

No counter example is found, but unable to prove either

Demo: sal-inf-bmc -i -d 4 robotnav correct

Proved!

Demo: sal-inf-bmc -i -d 12 robotnav wrong

Counter-example reported.

Ashish Tiwari HybridSAL Relational Abstracter: 17/24

'

&

$

%

Timed Relational Abstraction

Why Timed Relational Abstraction?

• A controller is designed, and verified for stability, in the continuous domain

• The controller is implemented on, say, a time triggered architecture

• Is the system still stable?

Timed relational abstraction is an approach we are developing to analyze designs
in the presence of platform constraints

Ashish Tiwari HybridSAL Relational Abstracter: 18/24

'

&

$

%

Timed Relational Abstraction: Definition

What is TRA?

A timed relational abstraction of a component is a relation between the initial state
of the component and the state of the component after time T

Timed relational abstraction captures what a component can do in T time units

TRA of dx(t)
dt = f(x) is a relation R(x(0), x(T)) that relates all possible pairs

x(0), x(T), where T is the sampling period

Ashish Tiwari HybridSAL Relational Abstracter: 19/24

'

&

$

%

Timed Relational Abstraction: Illustration

Controller

dx/dt = f(x, u)

y = h(x)

Plant

u

u = g(y)

Controller

u = g(y)

x(t+T) < F(x(t),u(t))

y(t+T) < H(x(t),y(t))

TRA of Plant

yu

Every T time units:

1. Controller reads y

2. Controller computes u

Controller implemented on TTA

3. Controller sends u to plant

TRA

disc. time controller

cont. time plant disc.time non−det plant

disc.time controller

y

Ashish Tiwari HybridSAL Relational Abstracter: 20/24

'

&

$

%

Relational vs. Timed Relational Abstraction

Consider a system consisting of a P/PI controller + plant

• Relational abstraction can be used verify safety of the system
But it assumes the controller is running in continuous time

• In reality, the controller is implemented in software running on some platform

• Suppose the platform imposes the restriction that the controller executes once
every T seconds

• Timed relational abstraction can be used to verify safety/stability of such a
system

• Results: The system can be safe/stable for certain T , but fail to be safe/stable
for larger T .

Ashish Tiwari HybridSAL Relational Abstracter: 21/24

'

&

$

%

Timed Relational Abstraction in HybridSAL

HybridSAL can analyze controllers running on a time-triggered platform

At command-line, we specify the sampling period T

Demo: examples/PTimed.hsal: A simple P controller in HybridSAL

Demo: bin/hsal2hasal -t 0.01 examples/PTimed.hsal

Demo: sal-inf-bmc -i -d 10 PTimed stable

Proved!

Demo: bin/hsal2hasal -t 0.1 examples/PTimed.hsal

Demo: sal-inf-bmc -i -d 10 PTimed stable

Counter-example

Ashish Tiwari HybridSAL Relational Abstracter: 22/24

'

&

$

%

Another Demo of TRA in HybridSAL

Demo: examples/PISatTimed.hsal:
A PI controller, whose integrator is saturated, in HybridSAL

Demo: bin/hsal2hasal -t 0.01 examples/PISatTimed.hsal

Demo: sal-inf-bmc -i -d 10 PISatTimed stable

Proved!
Demo: sal-inf-bmc -i -d 10 PISatTimed wrong

Counter-example returned.

Demo: bin/hsal2hasal -t 0.1 examples/PISatTimed.hsal

Demo: sal-inf-bmc -i -d 10 PISatTimed stable

Counter-example

Ashish Tiwari HybridSAL Relational Abstracter: 23/24

'

&

$

%

More About HybridSAL

bin/hsal2hasal -h

Other options:

-n : creates nonlinear abstract models

-mdt <T> : assume minimum dwell time of T units in each mode

(system forced to spend at least T units in each mode)

Other examples:
nav.hsal: Hybrid system navigation benchmark
powertrain.hsal: Powertrain from Ford
drivetrain.hsal: Simple drivetrain in HybridSal
InvPenTimed.hsal: Inverted pendulum in HybridSal

Ashish Tiwari HybridSAL Relational Abstracter: 24/24

'

&

$

%

HybridSAL: Restrictions

All ODEs should be linear

Not full syntax of SAL supported
Actively developing

Careful of deadlocks

Alternative to sal-inf-bmc ?
Generating (helper) invariants

Ashish Tiwari HybridSAL Relational Abstracter: 25/24

