HybridSAL Relational Abstractor: User’s Guide

Ashish Tiwari
December 9, 2013

1 Introduction

HybridSal Relational Abstractor is a formal verification tool for verifying safety
properties of cyber-physical (hybrid dynamical) systems. Here, we briefly de-
scribe one standard way of using the tool for performing verification. This
report does mot describe the technical approach, which can be found in other
publications [2, 4, 5]. We focus on the inputs to the tool, how to run the tool,
and the expected outputs of the tool here.

2 Components of the Tool

The HybridSal Relational Abstractor has three main components:

1. Amodelica2hsal translater (optional): This component converts an XML
dump generated by OpenModelica into a HybridSal model.

2. A hsal2hasal relational abstracter: This component takes as input a
model (in HybridSal, such as the one generated by modelica2hsal) and
creates an abstraction that is output in SAL syntax.

3. A SAL model checker that performs verification on the abstract SAL
model.

These three components are run sequentially in that order. There are two
possible outcomes of the verification effort: either the property is proved, or a
counter-example is found and reported (by the last component, the SAL model
checker, in the chain).

While it is not necessary to know about the existence of these three com-
ponents, it is useful to know about them for making best use of the HybridSal
verification technology. In particular, for maximum benefit, the human user
may need to “close-the-loop” — when verification fails and the user believes the
property should have been valid, the user needs to modify the model or the
property by analyzing the counter-example.



3 Installing the Tool

The modelica2hsal translater and the hsal2hasal relational abstracter are
available open-source and are essentially Python scripts that require some stan-
dard Python packages. For Windows platform, there is a pre-built executable
available [4].

The third component, namely the SAL model checker, needs to be installed
separately [1]. For Linux, pre-compiled executables are available and for Win-
dows, Cygwin is required.

4 Running the Tool

An XML dump of a Modelica model can be converted into SAL using the
command:

modelica2sal <filename.xml>

The executable modelica2sal is in the directory HSalRO0T/bin, where HSalR0O0T
is the root directory where the HybridSal tool is installed. This commands per-
forms both the first and second steps — it first creates a HybridSal model and
then creates a SAL abstraction for it. It generates a SAL model. The SAL
model can be model checked as follows:

sal-inf-bmc -d 4 <filenameModel.sal> <propertyName>

Here <filenameModel.sal> is the file generated by the previous command
above. Inside the file <filenameModel.sal>, there should be a property named
<propertyName>.

There are two options for generating the property:

e The user can add the property by hand in the file <filenameModel.sal>
that is created by modelica2sal.

e The property can be specified in JSON format and passed on as an argu-
ment to the modelica2sal tool:

modelica2sal <filename.xml> <propertyFile.json>

Rather than using Modelica XML dump as the starting point, the user can
built a HybridSal model by hand. In that case, verification is performed using
the commands:

hsal2hasal <filenameModel.hsal>
sal-inf-bmc -d 4 <filenameModel.sal> <propertyName>

Properties are of the form G(¢), which is read as “in every reachable state
of the system, the formula ¢ is true”. For example, ¢ can be = < 5, where x is
a state variable in the model.



5 Interpreting the Results

The final output of the verification process, which is generated by the tool
sal-inf-bmc, is either an affirmative answer (saying that the property is valid
in the model), or a negative answer (saying that the property is false in the
model). A negative answer is accompanied with a trace that shows the violation
of the property.

If the property is not true, the user can modify the model (initial states,
values of certain parameters, constraints on inputs) or the property and re-
verify. The modification is done by directly manipulating the HybridSal model
(in the file <filenameModel.hsal>).

6 Caveats

Verification of complex cyber-physical systems is a hard, and in general an
undecidable, problem. Hence verification tools are limited in various ways.
Verification using the HybridSal relational abstraction tool can fail due to many
reasons:

Nonlinearity The tool works only on linear hybrid systems. Such systems
can be nonlinear — but all nonlinearity should be in the form of “mode
changes”. Within each mode, the dynamics have to be linear.

State space representation The HybridSal modeling language represents the
system in its state-space form. Modelica models contain plenty of non-
state variables. The modelica2hsal translater tries to eliminate the non-
state variables and create a HybridSal model. But this process can fail
due to many reasons, which causes failure of the verification process itself.

References

[1] The SAL intermediate language, 2003. Computer Science Laboratory, SRI
International, Menlo Park, CA. http://sal.csl.sri.com/.

[2] S. Sankaranarayanan and A. Tiwari. Relational abstractions for continuous
and hybrid systems. In Proc. 23rd Intl. Conf. on Computer Aided Verifica-
tion, CAV, volume 6806 of LNCS, pages 686—702. Springer, 2011.

[3] A. Tiwari. Approximate reachability for linear systems. In Proc. 6th Intl.
Workshop on Hybrid Systems: Computation and Control, HSCC 2003, vol-
ume 2623 of Lecture Notes in Computer Science, pages 514-525. Springer,
2003.

[4] A. Tiwari. Hybridsal relational abstracter. In Proc. CAV,
volume 7358 of LNCS, 2012. http://www.csl.sri.com/“tiwari/
relational-abstraction/.



[6] A. Zutshi, S. Sankaranarayanan, and A. Tiwari. Timed relational abstrac-
tions for sampled data control systems. In Proc. CAV, volume 7358 of LNCS,
pages 343-361, 2012.

A Detailed Example and the HybridSal Rela-
tional Abstractor Tool

Consider a simple 2-dimensional continuous system defined by

dﬁ = —y+z
a Y
v _
a Y

Assume we are given the initial condition z = 1,y = 2 and the invariant that y
is always non-negative. We wish to prove that x always remains non-negative.

This example can be encoded in HybridSAL as shown in Figure 1. The
HybridSAL syntax is almost identical to the syntax of SAL [1], but for a few
modifications that enable encoding of continuous dynamical systems. The key
changes in HybridSAL are:

e Variables whose name ends in dot denote the derivative. In Figure 1, there
are two state variables x,y, and their derivatives are denoted by variables
named xdot, ydot respectively. These special dot variables can only be used
as left-hand sides of simple definitions (equations) that appear in guarded
commands. Thus, the equation xzdot’ = —y + z denotes the differential
equation dx/dt = —y + x.

e The guard of the guarded command that encodes the system of differential
equation denotes the state invariant; that is, the system is forced to remain
inside the invariant set while evolving as per the differential equations.
This meaning is consistent with the usual semantics of guards in SAL. In
Figure 1, the guard y > 0 Ay’ > 0 says that y > 0 is the mode invariant
for the only mode in the system.

The definition of contexts, modules, and properties (theorems) are exactly as in
the SAL language [1].

The user creates a HybridSAL model, similar to the one shown in Figure 1,
using a text editor. Following the SAL convention for naming files, the Hy-
bridSAL file containing the model in Figure 1 is stored as file Linear1.hsal.
Thereafter, to prove the two properties contained in Linearl.hsal, the user
executes the following commands.

bin/hsal?hasal examples/Linearil.hsal . This command is run from the
root directory of the HybridSAL relational abstraction tool. It will create
a set of files in the subdirectory examples/, including the file Linear1.sal
that contains the relational abstraction of the original model. The process



Linear1l: CONTEXT =
BEGIN

control: MODULE =

BEGIN

LOCAL x,y:REAL

LOCAL xdot,ydot:REAL
INITIALIZATION
x=1; y =2
TRANSITION

L

y >= 0 AND y’ >= 0 -—>
xdot’ = -y + x
ydot’ = -y - x

]

END;

% proved using sal-inf-bmc -i -d 2 Linearl helper
helper: LEMMA
control |- G(0.9239 * x >= 0.3827 * y);

% proved using sal-inf-bmc -i -d 2 -1 helper Linearl correct
correct : THEOREM

control |- G(x >= 0);
END

Figure 1: HybridSAL file describing a simple two-dimensional continuous dy-
namical system, along with two safety properties of that system.

of going from Linearl.hsal to Linearl.sal involves the following stages
(that are all performed in a single run of the above command):

Linearl.hsal — Linearl.hxml — Linearl.haxml — Linearl.xml — Linearl.sal

The hsal2hxml converter is in the subdirectory hybridsal2xml. It is
simply the HybridSAL parser that parses a files and outputs it in .hxml
format. The program bin/hsal2hasal can take as input either a .hsal
file or a .hxml file. It creates .hasal and .haxml — which is a file in
extended HybridSAL syntax — that contains the original model as well as
its relational abstraction. It is an intermediate file that is useful only for
debugging purposes at the moment. In the last stage, the final .xml and
.sal files are easily extracted from the .haxml files.

sal-inf-bmc -i -d 2 Linearl correct . Once the relational abstraction has
been created, it can be model checked. Note that the relational abstraction



(in file Linearl.sal) is an infinite state system. Hence, we can not use fi-
nite state model checkers. We can, however, use the SAL infinite bounded
model checker (sal-inf-bmc) and the k-induction prover (sal-inf-bmc
-1i). The k-induction prover can sometimes fail to prove a correct assertion
because the assertion is not inductive. In such a case, auxiliary lemmas
may be needed to complete a proof. In the running example, we need a
helper lemma. Using the lemma helper, the property correct can be
proved using the command:

sal-inf-bmc -i -d 2 -1 helper Linearl correct

The lemma helper can itself be proved using k-induction as:
sal-inf-bmc -i -d 2 Linearl helper

This completes the discussion of the application of the HybridSAL relational
abstraction tool on the running example. For more complex examples, including
examples of hybrid systems, the reader is referred to the examples/ subdirectory
in the tool. We note a few points here.

Initialization The initial state of the system need not be a single point. It can
be a region of the state space. For example, in Figure 1, the initialization
section can be replaced by the initialization

INITIALIZATION
x IN {z:REAL|O <= z AND z <= 1};
y IN {z:REAL|2 <= z AND z <= 3};

The new model can again be verified using the same set of commands
given above.

Composition The model need not be a single module, and it can be a com-
position of modules. Modules can be purely discrete — they need not all
have dynamics given by differential equations. For example, the example
in the File TGC.hsal describes a model of the train-gate-controller in Hy-
bridSAL that is a composition of five modules. Only one of the five has
continuous differential equations in the dynamics.

Apart from the syntax for writing differential equations, the HybridSAL
input language supports two additional features that are not part of the SAL
language [1]. These features are:

Invariant Apart from INITIALIZATION and TRANSITION blocks, each base-
module can also have an INVARIANT block. The invariant block contains
a formula that is an (assumed) invariant of the system.

In our running example, we can add the Invariant block:

INVARIANT y >= O



in the basemodule, for example, just before/after the INITIALIZATION
block. Then, we could replace the guard y > 0 Ay’ > 0 by the new guard
True in the (only) transition. If ¢ is declared as the invariant, then it has
the effect of adding the formula A ¢’ in the guards of all transitions. This
is performed as a preprocessing step by the HSal Relational Abstractor.

INITFORMULA Instead of INITIALIZATION block, a HybridSAL input file
can contain a INITFORMULA block that has a formula as the initialization
predicate.

In our running example, the initialization block shown above can be re-
placed by

INITFORMULA O <= x AND x <=1 AND 2 <=y AND y <= 3

without changing the meaning of the HybridSAL model.

The INITFORMULA block is also handled during the preprocessing phase.
The preprocessing phase also handles defined constants.

B HSal Relational Abstractor: Flags

The HybridSAL Relational Abstractor tool accepts the following options/flags.

-n, —nonlinear With this option, the tool creates a more precise relational
abstraction, but it may be nonlinear. Even when the input model is
a linear continuous dynamical system, the output could be a nonlinear
discrete time system.

Currently, the SAL model checker can not analyze nonlinear discrete time
systems. Hence, this flag is useful only if using other backend tools that
can handle discrete time nonlinear systems.

By default, this option is not turned on, and the tool creates linear rela-
tional abstractions that can be analyzed by SAL infinite bounded model
checker.

-c, —copyguard With this option, the tool explicitly handles the guard in the
continuous dynamics as state invariants. Recall the HybridSAL code for
the differential equations dz/dt = —y + z,dy/dt = —y — .

[

y >= 0 AND y’ >= 0 -—>
xdot’ = -y + x ;
ydot’ = -y - x
]



Here the guard y > 0Ay’ > 0 says that y should be nonnegative both before
and after the transition. In other words, y > 0 is the mode invariant. We
could have written the same dynamics as follows:

[
y >= 0 -->
xdot’ = -y + x ;
ydot’ = -y - x
]

The new HybridSAL file, when processed with the flag -c, produces the
same output as the original file would produce without the -c flag. Thus,
the -c flag causes copying of the guard of the continuous transitions, but
with variables replaced by their prime forms.

By default, this option is mot turned on, and the tool assumes that the
input HybridSAL file already contains guards on prime variables.

-0, —opt This flag turns on some optimizations in the relational abstractor.
Currently, this flag causes the tool to construct a relational abstraction
that assumes that a certain amount of time is always spent in each mode.
This is an unsound assumption. Hence, the output of the relational ab-
stractor can be unsound when the -o flag is used.

The -o flag is useful if the (sound) relational abstraction is too large to be
analyzable (in reasonable time) by the model checker. In that case, the
user could try to create a simpler, but unsound, abstraction using the -o
flag and model checking it.

By default, this option is not turned on.

-t (timestep), —time (timestep) This flag is still under development. It con-
structs a timed relational abstraction of the given system. This is useful
in cases where all discrete mode switches are time triggered. The value of
timestep should be a real number, which is interpreted as the inverse of
the sampling frequency. It is important to choose the timestep carefully.

The tool is expected to include more options in the future as new extensions
and features are implemented.

C Background: HSal Relational Abstractor

Hybrid dynamical systems are formal models of complex systems that have both
discrete and continuous behavior. It is well-known that the problem of verifying
hybrid systems for properties such as safety and stability is quite hard, both
in theory and in practice. There are no automated, scalable and compositional
tools and techniques for formal verification of hybrid systems.



HybridSAL is a framework for modeling and analyzing hybrid systems. Hy-
bridSAL is built as an extension of SAL (Symbolic Analysis Laboratory). SAL
consists of a language and a suite of tools for modeling and analyzing discrete
state transition systems. HybridSAL extends SAL by allowing specification of
continuous dynamics in the form of differential equations. Thus, HybridSAL
can be used to model hybrid systems. These models can be abstracted into
discrete finite state transition systems using the HybridSAL abstractor. The
abstracted system is output in the SAL language, and hence SAL (symbolic)
model checkers can be used to model check the abstraction. While HybridSAL
can be used to verify intricate hybrid system models, it is based on construct-
ing qualitative abstractions — which can be very coarse at times. Furthermore,
the HybridSAL abstractor is not compositional, and can not abstract modules
independently separately without being very coarse.

To alleviate the shortcomings of the HybridSAL abstractor, we developed the
concept of relational abstractions of hybrid systems. A relational abstraction
transforms a given hybrid system into a purely discrete transition system by
summarizing the effect of the continuous evolution using relations. The state
space of system and its discrete transitions are left unchanged. However, the
differential equations describing the continuous dynamics (in each mode) are
replaced by a relation between the initial values of the variables and final values
of the variables. The abstract discrete system is an infinite-state system that can
be analyzed using standard techniques for verifying systems such as k-induction
and bounded model checking.

Relational abstractions can be constructed compositionally by abstracting
each mode separately. Abstraction and compositionality are crucial for achiev-
ing scalability of verification. We have also developed techniques for construct-
ing good quality relational abstractions. The details are technical and can be
found in papers [2, 3]. The HybridSAL verification framework has been extended
by an implementation of relational abstraction.



