
Cyber-Component Verification Using
HybridSAL

Ashish Tiwari

SRI International, Menlo Park, CA. ashish.tiwari@sri.com

Abstract. This tutorial describes the process of verifying cyber-components
of a complex cyber-physical system. We use the HybridSal verification
tool, which can verify hybrid dynamical systems; that is, systems that
have dynamics described by a combination of differential equations and
discrete state transitions.

1 The Tools

The tools used in the verification of cyber-controllers are the following:

Matlab Simulink Stateflow: We assume that the cyber-components are de-
signed using Matlab’s Simulink Stateflow language. Any changes to the con-
troller models are performed using Matlab.
Preferred version: R13b

Matlab extension for specifying LTL properties: VU has developed scripts
that extend the graphical user interface of Matlab Simulink/Stateflow with
dialog boxes for specifying temporal logic properties using a pattern system.
Desired properties of the controllers are attached to the Simulink subsystem
or Stateflow chart using this extension.

MDL2MGACyber.exe: VU has developed a tool that translates a Matlab
model (exported as a .mdl file) into an XML representation (cyber-composition
language). Both the system and the LTL property are included in the XML
file.
This tool is part of META release.

cc hra verifier.exe: SRI has developed a tool that translates models in the
cyber composition language (.xml files) into the HybridSal formal verifica-
tion language, and then uses the HybridSal relational abstracter, combined
with the SAL infinite bounded model checker, to verify the LTL properties
specified by the user using the Matlab extension described above.
This tool is currently available as an executable (.exe) file.

The Output Visualizer: SRI has developed scripts that will enable visualiza-
tion of the output generated by cc hra verifier.exe in the dashboard.
The visualization and integration scripts are in the Vanderbilt SVN and
available for use.



2 A Simple Exercise

We describe a simple verification exercise using cc hra verifier. It consists of
the following steps.

– Building/editing the cyber model and annotating it with LTL properties
– Converting the Matlab model into the cyber composition language
– Creating a HybridSal representation of the model and the properties
– Verifying the HybridSal model and presenting the results.

2.1 Building/editing the cyber model

We start with controllers designed by VU. The Matlab files for these controllers
are:

– Torque Converter control.mdl
– TorqueReductionSignal.mdl
– SimplifiedShiftController.mdl

These files can be opened in Simulink and edited. For example, Figure 1
shows the SimplifiedShiftController in Simulink.

If the LTL-extension for Matlab, developed by Vanderbilt, is installed, then
LTL properties can be attached to these models directly by right clicking on the
model. Figure 2 shows a screenshot of the process of attaching an LTL property
to the top-level Simulink model of the shift controller. Note that the LTL prop-
erty specifier is template-based – there are predefined LTL templates that the
user can pick. In the example in Figure 2, we have picked the template called
Response, which is useful for specifying properties that state that something
should (eventually) happen if something else has occured. Details of the differ-
ent LTL templates can be found on the website
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

The LTL property specification window that opens up when clicking on the
Response button is shown in Figure 3. Properties can be specified on the input
and output port names of the Simulink top-level block. In the example shown
in Figure 3, the input variable driver gear select and the output variable
gear selected are used to specify the property. Arithmetic operators such as
==,≤,≥, <,> can be used to specify the property. We note that LTL oper-
ators always (written as G) and eventually (written as F) can still be used
inside the property specification blocks of the larger LTL template. In the ex-
ample shown in Figure 3, we have used the G operator to say that if the in-
put driver gear select is consistently set to 1, then eventually the output
gear selected will take a value that is at most 1.

Once the text blocks have been filled, the model and the LTL properties can
both be saved using the standard Simulink save as command. Models (and the
properties) are saved as .mdl files. Multiple properties can be attached to the
same model.

2



Fig. 1. SimplifiedShiftController in Simulink

2.2 Converting Matlab to Cyber Composition language

Using the MDL2MGACyber.exe tool, an XML representation of the models is gen-
erated. The details of calling this conversion tool and its interface in the META
dashboard is not described in this tutorial. For purposes of verification, all we
really need is the XML files generated from the MDL files. Corresponding to the
above mdl files, we get the following files, assuming that the models are saved
with the same name as before even after adding the LTL properties.

– Torque Converter control.xml

– TorqueReductionSignal.xml

– SimplifiedShiftController.xml

The cc hra verifier distribution also contains an example SimplifiedControllerCyberWithProp.xml
file that contains all the three components above in a single file. Note that the
LTL properties are included in the XML files.

3



Fig. 2. Inserting LTL property into the SimplifiedShiftController model in Simulink.
Vanderbilt’s LTL extension must be installed over the basic Matlab Simulink/Stateflow
installation.

2.3 Verifying the CyberComposition XML

The tool cc hra verifier takes as input the XML file generated above and
outputs the result of verifying the LTL properties embedded inside the XML file
against the model in the same file.

Internally, the cc hra verifier tool performs the following actions:

1. First, the tool converts the XML into HybridSal. The result of the conversion
is a new file called <filename>.hsal, where <filename is the basename of
the XML file. The HybridSal file will contain the model and all the LTL
properties that were in the XML file.
For example, if the cc hra verifier tool is used on SimplifiedShiftController.xml,
then it will generate a file called SimplifiedShiftController.hsal.
Interested users can open this file and see the formal representation of the
cyber-models and the LTL properties.

2. Second, a relational abstraction of the HybridSal model is constructed. The
result is stored in a file with the same filename, but with extension “.sal”.

4



Fig. 3. SimplifiedShiftController in Simulink

In the above example, the tool will create a new file called SimplifiedShiftController.sal.

3. Third, the SAL model is model-checked using an infinite-state model checker.

The output is either a counter-example for the property, or a statement that
no counter-example was found.

The result is stored in a file called <filename>Result.txt. For the example
above, cc hra verifier would generate the results in the file SimplifiedShiftControllerResult.sal.

Design/property changes can be made using Matlab on the Simulink/Stateflow
models. The verification process can then be repeated. For example, the state-
flow chart in the shift controller, which is shown in Figure 4, can be edited – by
adding transitions, removing transitions, or changing the guards or actions, etc.
Alternatively, it is also possible to edit the intermediate HybridSal or Sal files
directly and the verification tools can be run on these file using command-line
invocation – this can save time, but the edits are not carried back to the Matlab
models.

5



Fig. 4. The stateflow chart inside the toplevel ShiftController model. This chart
is opened here in Matlab, and it can be edited, saved, and re-verified for the LTL
properties attached to the enclosing toplevel Simulink subsystem.

3 Displaying Results in the Dashboard

We have also developed scripts that enable integration of the tool with the
dashboard. In particular, we have scripts that can display the output of the
verification tool cc hra verifier in the dashboard.

Figure 5 shows the top-level display for the results. Assuming there were two
properties named p2 and AbsenceProperty – the verification results are shown
as in Figure 5. The green color indicates that Property p2 was verified, and the
red color indicates that Property AbsenceProperty was violated.

Further details about the verification results can be obtained by clicking on
the two properties. Clicking on Property p2 shows the screenshot in Figure 6,
while clicking on Property AbsenceProperty shows the screenshot in Figure 7.

6



Fig. 5. Top-level display for the verification results in the dashboard. Note that there
are two properties, called p2 and AbsenceProperty, whose results are displayed. One
property, namely p2, was verified, but the other one, namely AbsenceProperty, was
violated.

4 Remarks

In the above tutorial, only the cyber components were being analyzed. The plant
model is completely abstracted. Hence, the analysis can be coarse. But, the anal-
ysis can still be useful, especially if care is taken in specifying the LTL properties.
In particular, LTL properties should constrain the inputs of the controllers, and
then check that the response of the controller is appropriate for that scenario.
The predefined LTL templates may not be sufficient for this purpose.

The properties p1 and p2 in the HybridSal files were included to illustrate
the utility. Property p1 says that if the input shift requested is consistently
set to 1, then after a few steps, the output gear selected of the controller is
1. This property was found to be invalid. Property p2 says that if the input
shift requested is consistently set to 1, then after a few steps, the output
gear selected of the controller is at most 2. No counter-examples were found for

7



Fig. 6. Details of the verification of Property p2.

this property. However, it is possible to fix the controller logic to make property
p1 true. Failure of p1 was possibly a bug in the designed controller.

8



Fig. 7. Details of the verification of Property AbsenceProperty.

9


