
Synthesis of Loop-free Programs

Sumit Gulwani
Microsoft Research, Redmond

sumitg@microsoft.com

Susmit Jha ∗

University of California, Berkeley
jha@eecs.berkeley.edu

Ashish Tiwari †

SRI International, Menlo Park
tiwari@csl.sri.com

Ramarathnam Venkatesan
Microsoft Research, Redmond

venkie@microsoft.com

Abstract
We consider the problem of synthesizing loop-free programs that
implement a desired functionality using components from a given
library. Specifications of the desired functionality and the library
components are provided as logical relations between their respec-
tive input and output variables. The library components can be used
at most once, and hence the library is required to contain a reason-
able overapproximation of the multiset of the components required.

We solve the above component-based synthesis problem using a
constraint-based approach that involves first generating a synthesis
constraint, and then solving the constraint. The synthesis constraint
is a first-order ∃∀ logic formula whose size is quadratic in the
number of components. We present a novel algorithm for solving
such constraints. Our algorithm is based on counterexample guided
iterative synthesis paradigm and uses off-the-shelf SMT solvers.

We present experimental results that show that our tool Brahma
can efficiently synthesize highly nontrivial 10-20 line loop-free
bitvector programs. These programs represent a state space of ap-
proximately 2010 programs, and are beyond the reach of the other
tools based on sketching and superoptimization.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; I.2.2 [Artificial Intelligence]:
Program Synthesis

General Terms Algorithms, Theory, Verification

Keywords Program Synthesis, Component-based Synthesis, SMT

1. Introduction
Composition has played a key role in enabling configurable and
scalable design and development of efficient hardware as well as
software systems. Hardware developers find it useful to design spe-
cialized hardware using some base components, such as adders and

∗Work done while visiting SRI International.
†Research supported in part by NSF grants CNS-0720721, CSR-EHCS-
0834810 and CSR-0917398.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $5.00.

multiplexers, rather than having to design everything using univer-
sal gates at bit-level. Similarly, software developers prefer to use li-
brary features and frameworks. Composition has also played a key
role in enabling scalable verification of systems that have been de-
signed in a modular fashion. This involves verifying specifications
of the base/constituent components in isolation, and then assum-
ing these specifications to verify specification of the higher-level
system made up of these components.

In this paper, we push the above-mentioned applications of com-
position to another dimension, that of synthesis. We focus on the
component-based synthesis problem where the goal is to build a
system by composing base components. Automating component-
based synthesis is attractive for many reasons. First, the designed
system is correct by construction, which obviates the need for ver-
ification. Second, the designed system can be guaranteed to be op-
timal in terms of using the fewest possible number of components.
Third, automation improves developer’s productivity, since finding
the exact set of components and their correct composition can be a
daunting task, especially when the base component library is huge.

We present a synthesis procedure that takes as input a specifi-
cation for the desired program and specifications of the base com-
ponents, and synthesizes a circuit-style composition – a straight-
line program – using these base components. Our procedure is
semi-automated as it relies on the user to provide one additional
piece of information: an over-approximation of the number of times
each base component is used in the desired program. Our syn-
thesis procedure views the base component library as a multiset
whose elements are treated as resources that can be used at most
once. Hence, our procedure can be seen as solving a resource-
bounded component-based synthesis problem. Our procedure is
also restricted to discovering only straight-line programs. Note that
loop-free control-flow can be encoded as a straight-line program
by providing the ite (if-then-else) operator as a base component,
but synthesizing loops is left for future work. The reliance on the
user for making copies of the base components and for discovering
loops is indicative that the true success of program synthesis may
lie in an interactive process that combines higher-level insights of
humans with computational capabilities of computers.

While our focus on synthesizing loop-free programs may ap-
pear narrow, it is nevertheless a significant goal in itself [12]. Tech-
niques for synthesizing loop-free code will be needed when syn-
thesizing more complex code patterns. Synthesis of loops requires
techniques that are mostly orthogonal to the techniques for syn-
thesizing straight-line code, and hence it is fruitful to study them
separately [13]. Loop-free program synthesis has several indepen-
dent applications too that have been pursued in different com-
munities recently; such as, optimizing the core of many compute

intensive loops (superoptimizers) [28], synthesizing API call se-
quence (e.g., Jungloid [26]), bitvector algorithms, geometry con-
structions [18, 14], text-editing [24, 38] and table-manipulation
programs [16]. Finally, despite its appearance, loop-free program
synthesis is challenging as the search space of loop-free programs
is still huge.

While we foresee several applications of component-based pro-
gram synthesis, most of the examples in this paper relate to dis-
covering intricate bitvector programs, which combine arithmetic
and bitwise operations. Bitvector programs can be quite unintu-
itive and extremely difficult for average, or sometimes even expert,
programmers to discover methodically. Consider, for example, the
problem of turning-off the rightmost 1-bit in a bitvector x. This can
be achieved by computing x&(x − 1), which involves composing
the bitwise & operator and the arithmetic subtraction operator in an
unintuitive manner. In fact, the upcoming 4th volume of the classic
series art of computer programming by Knuth has a special chapter
on bitwise tricks and techniques [23]. In this paper, we demonstrate
how to semi-automate the discovery of small, but intricate, bitvec-
tor programs using the currently available formal verification tech-
nology. This semi-automation can be exposed to users in at least
two different ways. First, software development environments can
provide this capability to help programmers write correct and effi-
cient code. Alternatively, compilers can use the synthesis procedure
to optimize implementations or make them more secure. Superop-
timizers, for example, perform automatic translation of a given se-
quence of instructions into an optimal sequence of instructions for
performing aggressive peephole optimizations [5] or binary transla-
tion [6]. Rather than achieve efficiency, the goal of such translation
can also be to reduce vulnerability in software. For example, any
piece of code that computes the average of two numbers, x and y,
by evaluating (x+y)/2 is inherently flawed and vulnerable since it
can overflow. However, using some bitwise tricks, the average can
be computed without overflowing (e.g., (x|y) − ((x ⊕ y)>> 1)).
Compilers can replace vulnerable snippets of code by the discov-
ered equivalent secure code.

The number of straight-line programs that can be constructed
using a given set of base library components is exponential in
the number of base components. Rather than performing a naive
exponential search for finding the correct program, our synthesis
algorithm relegates all exponential reasoning to tools that have been
engineered for efficiently performing exponential search, namely
the Satisfiability (SAT) and Satisfiability Modulo Theory (SMT)
solvers1. SMT solvers use intelligent backtracking and learning to
overcome the complexity barrier. SMT solvers can be used to verify
that a given (loop-free) system meets a given specification. In this
paper, we show how to use the same SMT solving technology to
synthesize systems that meet a given specification.

Existing synthesis techniques based on superoptimizers [28, 11,
22] and sketching [32, 33] can also be used to solve the component-
based synthesis problem. Superoptimizers explicitly perform an ex-
ponential search. Sketching solves a more general program synthe-
sis problem, and is not designed for solving the component-based
synthesis problem. When they are used to solve the component-
based synthesis problem, both superoptimizers and sketching were
empirically found to not scale. In contrast, our technique leaves the
inherent exponential nature of the problem to the underlying SMT
solver, whose engineering advances over the years have made them
effective at solving the “usually-not-so-hard” instances that arise in
practice, and hence end up not requiring exponential reasoning.

1 SMT solving is an extension of SAT solving technology to work with
theory facts, rather than just propositional facts. In fact, there is a SMT
solving competition that is now held every year, and it has stimulated
improvement in solver implementations [1].

Our assumption that we are given (by developers) logical spec-
ifications of the desired program may appear to be unrealistic. It is
not. The logical specification can be given in the form of an (unopti-
mized) program, which are easy to write. In fact, we did exactly this
in our experiments. In many domains, writing such logical speci-
fications is much less time-consuming than discovering optimized
straight-line code.

Our synthesis algorithm is based on a constraint-based ap-
proach that involves reducing the synthesis problem to that of solv-
ing a constraint. This involves the two key steps of constraint gen-
eration and constraint solving.

In the constraint generation phase, the synthesis problem is
encoded as a constraint, referred to as synthesis constraint. Our
synthesis constraint has two interesting aspects.

• The synthesis constraint is a first-order logic formula.
The synthesis problem can be viewed as a generalization of
the verification problem. It is well known that verification of
a straight-line program can be reduced to proving validity of
a first-order logic formula, and hence the synthesis problem
can be reduced to finding satisfiability of a second-order logic
formula. But, the non-trivial aspect of our encoding is that it
generates a first-order logic formula. This is significant because
off-the-shelf constraint solvers cannot effectively solve second-
order formulas.
• The size of the synthesis constraint is quadratic in the number

of components.
One way to generate a first-order logic constraint would be
to use the constraint generation methodology used inside the
sketching technique, which is also a constraint-based technique.
However, the size of the constraint generated by the sketching
technique could potentially be exponential in the number of
components. In contrast, our encoding yields a constraint that
is guaranteed quadratic in the number of components.

In the constraint solving phase, we use a refined form of the
classic counterexample guided iterative synthesis technique [10,
30] built on top of off-the-shelf SMT solvers. The synthesis con-
straint obtained from our encoding is an ∃∀ formula, which can-
not be effectively solved using off-the-shelf SMT solvers directly.
The counterexample guided iterative synthesis technique involves
choosing some initial set of test values for the (∀) universally quan-
tified variables and then solving for the (∃) existentially quantified
variables in the resulting constraint using SMT solvers. If the solu-
tion for the existentially quantified variables works for all choices
of universally quantified variables, then a solution has been found.
Else, a counterexample is discovered and the process is repeated
after adding the counterexample to the set of test values for the uni-
versally quantified variables. We use this method, suitably adapted
to handle definitions correctly, to solve our synthesis constraint.

We have implemented our constraint generation and constraint
solving technique in a tool called Brahma. We have applied Brahma
to several different examples. Majority of the examples come from
the domain of bitvector program synthesis using a set of compo-
nents that implement basic bitvector operations. These programs
typically involve unintuitive composition of the bitvector opera-
tions, and are quite challenging to synthesize manually. Brahma
is able to synthesize (equivalent variants of) a variety of bitvec-
tor programs picked up from a classic book [37] in time ranging
from 1.0 to 2778.7 seconds. In contrast, the Sketch and AHA tools,
based respectively on sketching and super-optimization, time-out
on 9 and 12 of the 25 examples respectively where timeout was set
to 3600 seconds. Sketch is slower by an average factor of 20 on the
remaining examples.

Contributions and Organization

• We define the problem of component-based synthesis using a
set of base components (Section 3).
• We present an encoding that reduces the synthesis problem to

that of finding a satisfying assignment to a first-order logic
constraint with quantifier alternation, whose size is at most
quadratic in the number of base components. (Section 5).
• We present a novel technique for solving first-order logic con-

straints with quantifier alternation using off-the-shelf SMT
solvers (Section 6).
• We apply our constraint generation and solving technique to a

set of benchmark examples. We also experimentally compare
our technique with other existing techniques, namely sketching
and superoptimization, that can be used to synthesize bitvector
programs (Section 7). Tools based on other techniques either
perform order of magnitude slower or timeout and fail to yield
a solution.

2. Running Example
First, we introduce a small example to give a high-level overview
of our technique. We also use this example as a running example to
illustrate several details of our technique in following sections.

Consider the task of designing a bitvector program that masks
off the right-most significant 1-bit in an input bitvector. More
formally, the bitvector program takes as input one bitvector I and
outputs a bitvector O such that O is obtained from I by setting
the right-most significant 1-bit in I to 0. For example, the bitvector
program should transform the bitvector 01100 into 01000.

A simple method to accomplish this would be to iterate over the
input bitvector starting from the rightmost end until a 1 bit is found
and then set it to 0. However, this algorithm is worst-case linear
in the number of bits in the input bitvector. Furthermore, it uses
undesirable branching code inside a loop.

There is a non-intuitive, but elegant, way to achieving the de-
sired functionality in constant time by using a tricky composition
of the standard subtraction operator and the bitwise logical & oper-
ator, which are supported by almost every architecture. The desired
functionality can be achieved using the following composition:

I & (I − 1)

The reason why we can do this seemingly worst-case linear task in
unit time using the subtraction operator and the logical bitwise-and
operator is because the hardware implementations of these opera-
tors manipulate the constituent bits of the bitvectors in parallel in
constant time.

One way to discover the above tricky composition would be ex-
haustive enumeration. Let f1 denote a unary component that imple-
ments the subtract-one operation, and let f2 denote a binary com-
ponent that implements a binary bitwise-and operation. Suppose
we knew that the desired functionality can be achieved by some
unknown composition of these two components f1 and f2. We can
then simply enumerate all different ways of composing a unary op-
erator and a binary operator, and then verify which one of them
meets the functional specification with the help of an SMT solver
(using the process described in Section 4). Figure 1 shows the six
different straight-line-programs that can be obtained from compo-
sition of one unary and one binary operator. Of these the programs
shown in 1(e) and 1(f) provide the desired functionality. There is
a major problem with this explicit enumeration approach; it is too
expensive. In fact, superoptimizers [28] do such an exhaustive enu-
meration, and hence fail to scale beyond composition of 4 compo-
nents.

In contrast, our technique encodes (instead of explicitly enu-
merating) the space of all (six) possible straight-line programs for
composing the two operations f1 and f2 using a logical formula
ψwfp. The formula ψwfp uses (five) integer variables, each corre-
sponding to an input or output of some component. Intuitively, the
integer variable corresponding to the output of some component
denotes the line number at which the component is positioned. The
integer variable corresponding to an input of some component de-
notes the line number where the actual parameter corresponding
to that input is defined. The formula ψwfp is such that the satis-
fying assignments to the integer variables have a one-to-one cor-
respondence with the different straight-line programs that can be
obtained from composition of these operators. In conjunction with
some other constraints that encode the functional specifications of
the base component programs and the desired program, our tech-
nique generates a formula that we refer to as the synthesis con-
straint. A satisfying assignment to the integer variables that satis-
fies the synthesis constraint corresponds to the desired straight-line
program. The synthesis constraint is a first-order logic constraint
with quantifier alternation, and is not amenable to solving directly
using off-the-shelf constraint solvers. One of the key technical con-
tributions of the paper is an algorithm to find satisfying assignments
to such synthesis constraints by using an off-the-shelf SMT solver.

Even though there is no provable polynomial time guarantee as-
sociated with our technique, there is a crucial difference between
the exponential exhaustive enumeration technique and our tech-
nique based on synthesis-constraint generation and solving. The
number of variables in the synthesis constraint is linear in the
number of components and the size of the synthesis constraint is
quadratic in the number of components. The winning advantage
comes from the fact that we ride upon the recent engineering ad-
vances made in SMT solving technology to solve a constraint with
a linear number of unknowns as opposed to explicitly performing
an exhaustive enumeration over an exponential search space.

3. Problem Definition
The goal of this paper is to synthesize a program by using a given
set of base software components. The program as well as the base
components are specified using their functional description. This
description is given in the form of a logical formula that relates the
inputs and the outputs.

For simplicity of presentation, we assume that all components
have exactly one output. We also assume that all inputs and the out-
put have the same type. These restrictions can be easily removed.

Formally, the synthesis problem requires the user to provide:

• A specification 〈~I,O, φspec(~I,O)〉 of the program, which in-
cludes

a tuple of input variables ~I and an output variable O.

an expression φspec(~I,O) over the variables ~I and O that
specifies the desired input-output relationship.

• A set of specifications {〈~Ii, Oi, φi(~Ii, Oi)〉 | i = 1, . . . , N},
called a library, where φi(~Ii, Oi) is a specification for base
component fi. All variables ~Ii, Oi are assumed distinct.

The goal of the synthesis problem is to discover a program
f impl that correctly implements the specification φspec using only
the components provided in the library. The program f impl is
essentially a straight-line program that takes as input ~I and uses the
set {O1, . . . , ON} as temporary variables in the following form:

f impl(~I):

Oπ1 := fπ1(~Vπ1); . . . ; OπN := fπN (~VπN);
return OπN ;

fφimpl(I):

1 O2 := f2(I, I);
2 O1 := f1(O2);

return O1;

fφimpl(I):

1 O2 := f2(I, I);
2 O1 := f1(I);

return O1;

fφimpl(I):

1 O1 := f1(I);
2 O2 := f2(I, I);

return O2;

fφimpl(I):

1 O1 := f1(I);
2 O2 := f2(O1, O1);

return O2;

fφimpl(I):

1 O1 := f1(I);
2 O2 := f2(O1, I);

return O2;

fφimpl(I):

1 O1 := f1(I);
2 O2 := f2(I,O1);

return O2;
lI1 = 1 lO1 = 2
lI2 = 0 lO2 = 1
lI′2 = 0

lI1 = 0 lO1 = 2
lI2 = 0 lO2 = 1
lI′2 = 0

lI1 = 0 lO1 = 1
lI2 = 0 lO2 = 2
lI′2 = 0

lI1 = 0 lO1 = 1
lI2 = 1 lO2 = 2
lI′2 = 1

lI1 = 0 lO1 = 1
lI2 = 1 lO2 = 2
lI′2 = 0

lI1 = 0 lO1 = 1
lI2 = 0 lO2 = 2
lI′2 = 1

(a) (b) (c) (d) (e) (f)

Figure 1. The first row shows six different ways of composing a unary component f1 and a binary component f2 to synthesize a straight-line
program fφimpl with one input I . Second row shows an integer encoding of the corresponding program using location variables.

where

• each variable in ~Vπi is either an input variable from ~I , or a
temporary variable Oπj such that j < i,
• π1, . . . , πN is a permutation of 1, . . . , N , and
• the following correctness criteria holds:

∀~I,O1, . . . , ON :
(
φπ1(~Vπ1 , Oπ1) ∧ · · · ∧ φπN (~VπN , OπN)

)
⇒ φspec(~I,OπN) (1)

The last formula above is called the verification constraint. It states
the correctness criterion for the output program: for all inputs
~I , if OπN is the output of the implementation on ~I , then OπN

should also be the output of the specification on ~I; that is, the
implementation should imply the specification.

We note that the implementation above is using all components
from the library. We can assume this without any loss of generality.
Even when there is a correct implementation using fewer compo-
nents, that implementation can always be extended to an implemen-
tation that uses all components by adding dead code. Dead code can
be easily identified and removed in a post-processing step.

We also note that the implementation above is using each base
component only once. If there is an implementation using multiple
copies of the same base component, we assume that the user pro-
vides multiple copies explicitly in the library (discussed further in
Section 7.3). Such a restriction of using each base component only
once is interesting in two regards: It can be used to enforce efficient
or minimal designs. This restriction also prunes down the search
space of possible designs making the problem finite and tractable.

Informally, the synthesis problem seeks to come up with an
implementation – using only the base components in the given
library – that implies the given specification.

EXAMPLE 1 (Problem Definition). The problem definition for the
running example in Sec. 2 can be stated as:

• The formal specification of the desired program to be synthe-
sized is given by the following relationship φspec between the
input bitvector I and the output bitvector O. We use b to denote
the total number of bits in the bitvectors, and I[j] to denote the
bit at jth position in bitvector I , when viewed as an array of
bits.

φspec(I,O) :=

b∧
t=1

((
I[t] = 1 ∧

b∧
j=t+1

I[j] = 0

)
⇒O[t] = 0 ∧

∧
j 6=t

O[j] = I[j]

• The number of base components in the library isN = 2. One of

them is a unary component f1 that implements the subtract-one

operation, and its formal specification is given by the following
relationship φ1 between its input parameter I1 and output O1.

φ1(I1, O1) := O1 = (I1 − 1)

The other component is a binary component that implements
the bitwise-and operation, and its formal specification is given
by the following relationship φ2 between its input parameters
I2, I

′
2 and output O2.

φ2(I2, I
′
2, O2) := O2 = (I2 & I ′2)

4. Revisiting Verification Constraint
Before we describe our approach for solving the synthesis prob-
lem – consisting of the synthesis constraint generation phase and
the constraint solving phase – we will perform two steps in this
section to support the transition to these two phases. First, we will
rewrite the verification constraint in Eq. 1 so that it resembles the
synthesis constraint. Second, we discuss solving of the verification
constraint, which is a small part of the process of solving the syn-
thesis constraint.

Consider the verification constraint in Eq. 1. We can replace
each atomic fact φπi(

~Vπi , Oπi) in the antecedent by φπi(
~Iπi , Oπi)∧

~Iπi = ~Vπi . We can also replace the fact φspec(~I,OπN) in the
consequent by φspec(~I,O) provided we add O = OπN in the
antecedent. Hence, the verification constraint can be rewritten as:

∀~I,O, ~I1, . . , ~In, O1, . . , ON :(
(O = OπN) ∧

N∧
i=1

(φi(~Ii, Oi) ∧ ~Ii = ~Vi)

)
⇒ φspec(~I,O)

We now split the antecedent in the above formula into two
parts φlib and φconn. We also group together the formal inputs and
outputs of the base components into two sets P and R to rewrite
the above verification constraint as:

∀~I,O,P,R : (φlib(P,R) ∧ φconn(~I,O,P,R))⇒ φspec(~I,O) (2)

where

φlib := (

N∧
i=1

φi(~Ii, Oi)), φconn := (O = OπN) ∧ (
N∧
i=1

~Ii = ~Vi),

Here P and R denote the union of all formal inputs (Parameters)
and formal outputs (Return variables) of the components:

P :=
⋃N
i=1

~Ii R :=
⋃N
i=1{Oi} = {O1, . . . , ON}

Note that φlib represents the specifications of the base compo-
nents, and φconn represents the interconnections that includes the
mappings from formals to actuals and from the return variable of
some component to the output of the program. Observe that φconn

is a conjunction of equalities between a variable in P ∪ {O} and a
variable in R ∪ ~I . The connectivity constraint φconn determines:

• the order in which base components occur in the program.
• the value of each input parameter of each base component.

EXAMPLE 2 (Verification Constraint). The verification constraint
for the program in Figure 1(e) when regarded as a solution to the
running example formally described in Example 1 is the following
formula.

∀I,O, I1, I2, I ′2, O1, O2 (φlib ∧ φconn ⇒ φspec)

where φlib := φ1(I1, O1) ∧ φ2(I2, I
′
2, O2)

and φconn := I1 = I ∧ I2 = O1 ∧ I ′2 = I ∧ O = O2

and φ1, φ2, φspec are as defined in Example 1.

We now briefly discuss the process of solving the verification
constraint, which is a universally quantified formula. The complex-
ity of deciding the validity of the formula in Eq. 2 depends on the
expression language used for defining φspec and φi’s. If this ex-
pression language is a subset of the language that can be handled
by Satisfiability Modulo Theory (SMT) solvers, then we can use
off-the-shelf SMT solvers to decide the formula in Eq. 2 and thus
solve the verification problem. Specifically, we can check validity
of a (universal) formula by asking an SMT solver for checking sat-
isfiability of the negation of that formula.

5. Synthesis Constraint
In this section, we show how to reduce the problem of straight-line-
program synthesis to that of finding a satisfying assignment to a
first order logic constraint. Given a library of base components, and
a specification for the desired program, we show how to generate a
formula that encodes the existence of a program that is constructed
using the base components and that meets the given specification.

Consider the verification constraint in Eq. 2. We are given φspec

and φlib as part of the synthesis problem. However, we do not
know the interconnections φconn between the inputs and outputs of
the base components. Hence, the synthesis problem is equivalent to
solving the following constraint:

∃φconn : ∀~I,O,P,R :

(φlib(P,R) ∧ φconn(~I,O
′,P,R))⇒ φspec(~I,O)

where we have a second-order existential quantifier over the set of
all possible interconnections.

In the remaining part of this section, we show how to convert
the second-order existential quantifier into a first-order existential
quantifier. The basic idea is to introduce new first-order integer-
valued variables, referred to as location variables, whose values
decide the interconnections between the various components. To
describe a program, we have to determine which component goes
on which location (line-number), and from which location (line-
number or program input) does it get its input arguments. This
information can be described by a set of location variables L

L := {lx | x ∈ P ∪R}
that contains one new variable lx for each variable x in P∪R with
the following interpretation associated with each of these variables.

• If x is the output variable Oi of component fi, then lx repre-
sents the line in the program where the component fi is posi-
tioned.
• If x is the jth input parameter of component fi, then lx repre-

sents the location “from where component fi gets its jth input”.

A location above refers to either a line of the program, or
to some program input. To represent different possible locations,
we use integers in the set {0, . . ,M − 1}, where M is the sum

of the number N of components in the library and the number
|~I| of program inputs, i.e., M = N + |~I|, with the following
interpretation.

• The jth input is identified with the location j − 1.
• The jth line or the assignment statement in the program is

identified with the location j + |~I| − 1.

EXAMPLE 3 (Location Variables). For our running example for-
mally described in Example 1, the set L of location variables con-
sists of 5 integer variables. L = {lO1 , lO2 , lI1 , lI2 , lI′2}. The vari-
ables lO1 and lO2 denote the location at which the components f1
and f2 are positioned respectively. The variable lI1 denotes the lo-
cation of the definition of the input to the unary component f1. The
variables lI2 and lI′2 denote the locations of the definitions of the
first and the second input respectively of the binary component f2.
Since there are two components and one input, we have N = 2
andM = 3. The variables lO1 , lO2 take values from the set {1, 2},
while the variables lI1 , lI2 , lI′2 take values from the set {0, 1, 2}.

The synthesis constraint, which uses the location variables L, is
given in Eq. 4 in Section 5.3. We next discuss the key constituents
of the synthesis constraint. For notational convenience (for the
discussion below), we also define lx for the global inputs ~I and
output O. We define lO to be equal to M − 1, denoting that the
output O of the program is defined on the last line of the program.
For the jth input x to the program, we define lx to be j−1, which is
the integer location that we associated with the jth program input.

5.1 Encoding Well-formed Programs: ψwfp

We noted above that every straight-line program can be encoded by
assigning appropriate values from the set {0, . . ,M − 1} to vari-
ables in L. On the other hand, any possible assignment to variables
in L from the set {0, . . ,M − 1} does not necessarily correspond
to a well-formed straight-line program. We require the variables in
L to satisfy certain constraints to guarantee that they define well-
formed programs. The following two constraints guarantee this.

Consistency Constraint : Every line in the program has at most
one component. In our encoding, lOi encodes the line number
where component fi is positioned. Hence for different i, lOi

should be different. Thus we get the following consistency
constraint.

ψcons :=
∧

x,y∈R,x 6≡y

(lx 6= ly)

Acyclicity Constraint : In a well-formed program, every variable
is initialized before it is used. In our encoding, component fi
is positioned at location lOi and its inputs are coming from
locations {lx | x ∈ ~Ii}. Thus, we get the following acyclicity
constraint.

ψacyc :=
N∧
i=1

(
∧

x∈~Ii,y≡Oi

lx < ly)

The acyclicity constraint says that, for every component, if
x is an input of that component and y is an output of that
component, then the location lx where the input is defined,
should be earlier than the location ly where the component is
positioned and its output is defined.

We now define ψwfp(L) to be following constraint that encodes
the interpretation of the location variables lx along with the consis-
tency and acyclicity constraints.

ψwfp(L) :=
∧
x∈P

(0 ≤ lx ≤M − 1) ∧
∧
x∈R

(|~I| ≤ lx ≤M − 1) ∧

ψcons(L) ∧ ψacyc(L)

We note that if the location variables L satisfy ψwfp, then L de-
fines a well-formed straight-line program in static single assign-
ment (SSA) form [7], whose assignments make calls to the compo-
nents in the library. Specifically, the function Lval2Prog returns
the program corresponding to a given valuation L as follows: in
the ith line of Lval2Prog(L), we have the assignment Oj :=
fj(Oσ(1), . . , Oσ(t)) if lOj = i, lIkj = lσ(k) for k = 1, . . , t, where

t is the arity of component fj , and (I1j , . . , I
t
j) is the tuple of input

variables ~Ij of fj .
Our encoding has the following natural property.

THEOREM 1. Let L be the set of all valuations of L that satisfy the
well-formedness constraint ψwfp. Let Π be the set of all straight-
line programs in SSA form that take input ~I and contain the N
assignments, Oi := f(~Vi), such that every variable is defined
before it is used. Then, the mapping Lval2Prog goes from L to
Π and it is bijective.

EXAMPLE 4 (Well-formedness Constraint). For our running ex-
ample formally described in Example 1, the constraint ψwfp is:

ψwfp := ψcons ∧ ψacyc ∧
∧
x∈P

(0 ≤ lx ≤ 2) ∧
∧
x∈R

(1 ≤ lx ≤ 2)

where ψcons := (lO1 6= lO2)

and ψacyc := (lI1 < lO1) ∧ (lI2 < lO2) ∧ (lI′2 < lO2)

Here P = {~I1, ~I2, ~I ′2} and R = {O1, O2}. There are 6 solutions
for lI1 , lI2 , lI′2 , lO1 , lO2 that satisfy the constraint ψwfp. Each of
these solutions correspond to a syntactically distinct and well-
formed straight-line program obtained by composition of unary
component f1 and binary component f2. These 6 solutions and the
corresponding straight-line-programs are shown in Figure 1.

5.2 Encoding Dataflow in Programs: ψconn

Given an interconnection among components specified by values
of location variables L, we can relate the input/output variables
of the components and the program by the following connectivity
constraint:

ψconn :=
∧

x,y∈P∪R∪~I∪{O}

(lx = ly ⇒ x = y)

The constraint ψconn will play the role of φconn later.

5.3 Putting it all together
We are now ready to present the (first-order) synthesis constraint
that encodes the synthesis problem.

We showed how the set of all valid programs can be described
by valuations of the location variables L. Hence, the synthesis
problem reduces to finding a value for the variables L such that
(1) this valuation corresponds to a well-formed program and
(2) the corresponding well-formed program is correct, as described
by the verification constraint (Eq. 2).
In other words, we get the following synthesis constraint:

∃L : (ψwfp(L) ∧ ∀~I,O,P,R :

φlib(P,R) ∧ ψconn(~I,O,P,R, L)⇒ φspec(~I,O)) (3)

We merge the (temporary) variables P and R and call it the set
T . We rewrite the formula in Eq. 3 by pulling out the universal

quantifier to get the following synthesis constraint.

∃L∀~I,O, T : ψwfp(L) ∧
(φlib(T) ∧ ψconn(~I,O, T, L)⇒ φspec(~I,O)) (4)

EXAMPLE 5 (Synthesis Constraint). Of the 6 solutions to the lo-
cation variables L described in Example 4, there are 2 solutions
that satisfy the entire synthesis constraint. These two solutions are
shown in Figure 1(e) and Figure 1(f).

The following theorem states that the synthesis constraint in
Eq. 4 is quadratic in size and it exactly encodes our synthesis
problem. Hence, solving the synthesis problem is equivalent to
solving the synthesis constraint. The proof of the theorem follows
from the definition of Lval2Prog, Theorem 1, and the definitions
of the verification and synthesis constraints.

THEOREM 2 (Synthesis Constraint). Let (φspec, φlib) be the given
specifications. Let ψ be the corresponding synthesis constraint,
defined in Eq. 4, that is derived from the given specifications. The
size of ψ is O(n +m2) where n is the size of (φspec, φlib) and m
is the number of base components in the library. Furthermore, ψ is
valid if and only if there is a straight-line program that implements
the specification φspec using only the components in φlib.

PROOF: The number of variables in L is O(m) and hence the size of
ψ is seen to be O(n+m2).

(⇒): Suppose ψ is valid. This implies that there exists a value for
L, sayL0, such thatψwfp(L0) holds and the formula ∀~I,O,P,R :

φlib(P,R) ∧ ψconn(~I,O,P,R, L0) ⇒ φspec(~I,O) is valid.
Since ψwfp(L0) holds, we can use Theorem 1 to get a Program
Lval2Prog(L), call it P . Now, the definition of Lval2Prog
and the constraint ψconn together guarantee that the connec-
tivity constraint φconn defined by P and the connectivity con-
straint ψconn(L0) are equivalent. Since we know ∀~I,O,P,R :
φlib ∧ ψconn ⇒ φspec is valid, it follows that the formula
∀~I,O,P,R : φlib ∧ φconn ⇒ φspec is also valid. This shows
that the verification constraint for correctness of P is valid.

(⇐): Suppose there is a straight-line program, say P , that cor-
rectly implements the given specification φspec using only the
components in φlib. Given a program P , we can immediately
define values for the location variablesL such that φconn is equiv-
alent to ψconn(L). Since the program P is assumed to be well-
formed, this valuation of L will satisfy ψwfp. Furthermore, since
P is correct, the verification constraint is valid. Replacing φconn

in the verification constraint by ψconn shows that the synthesis
constraint is also valid. �

6. Synthesis Constraint Solving
In this section, we show how to solve the synthesis constraint (Eq. 4
in Section 5.3). In particular, we show how to find an assignment
to the decision variables L that would witness the validity of the
synthesis constraint.

Our procedure is built over the standard counterexample-guided
iterative refinement paradigm [10, 30]. It solves ∃L∀~I : φ(L, ~I) by
iteratively finding values for L that work for more and more values
of ~I . Let S denote a finite set of valuations of ~I . In each iteration,
our procedure first finds a valuation forL that works for the choices
in S. It then tests if the discovered valuation for L works for all ~I .
If it does not, then a valuation of ~I for which it does not work is
added to the set S and the process is repeated.

The Procedure ExAllSolver shown in Figure 2 is a high-level
description of our solver for the synthesis constraint. It alternates

ExAllSolver(ψwfp, φlib, ψconn, φspec):

1 // ∃L∀~I,O, T : ψwfp ∧ (φlib ∧ ψconn ⇒ φspec)
// is a synthesis constraint

2 // Output: synthesis failed or values for L

3 S := {~I0} // ~I0 is an arbitrary input
4 while (1) {
5 model := T-SAT(∃L,O1, . . . , On, T1, . . . , Tn : ψwfp(L)∧∧

~Ii∈S(φlib(Ti) ∧ ψconn(~Ii, Oi, Ti, L)

∧φspec(~Ii, Oi)));
if (model 6= ⊥) {

6 currL := model|L
} else {

7 return("synthesis failed");
}

8 model := T-SAT(∃~I,O, T :ψconn(~I,O, T, currL)∧
φlib(T) ∧ ¬φspec(~I,O));

if (model 6= ⊥) {
9 ~I1 := model|~I; S := S ∪ {~I1};

} else {
10 return(currL);

}
11 }

Figure 2. Counterexample guided ∃∀ solver for solving the syn-
thesis constraint. Note that Line 5 and Line 8 use different formu-
las. If successful, the procedure outputs values for L that can be
used to extract the desired straight-line program (Theorem 1).

between finite synthesis – finding a valuation for L that works some
finite choices of ~I – and verification – checking that the valuation
works for all ~I – and, in each iteration, the two steps learn from
each other. The new value for L is always guided by a set of inputs
on which the previous choice for L failed.

A technical issue worth pointing out in Procedure ExAllSolver
is that it handles variables O, T differently from the variables ~I
even though they are all universally quantified in the synthesis
constraint. Intuitively, this is because O, T are not “independent”
variables, but their values depend on ~I and L. Specifically, Proce-
dure ExAllSolver uses the following two different variants of the
synthesis constraint in its two steps. The formula (Fver) is same
as the synthesis constraint, while the formula (Fsyn) is a weaker
version of the synthesis constraint.

(Fver) ∃L ∀~I,O, T : (ψwfp ∧ (φlib ∧ ψconn ⇒ φspec))

(Fsyn) ∃L ∀~I ∃O, T : (ψwfp ∧ (φlib ∧ ψconn ∧ φspec))

The two phases of the procedure can now be described as follows.

Finite Synthesis (Lines 5-7): In this step, we synthesize a design
that works for finitely many inputs. Specifically, the procedure
finds values for L that work for all the inputs in S (Line 5,6).
If no such values are found, we terminate and declare that no
design could be found (Line 7). Line 5 is effectively solving for
Formula (Fsyn), which is different from the synthesis constraint.

Verification (Lines 8-10): In this step, we verify if the synthesized
design – that we know works for the inputs in S – also works
for all inputs. Specifically, if the generated value currL for L
work for all inputs, then we terminate with success. If not, then
we find an input ~I1 on which it does not work and add ~I1 to
S (Line 9). Line 8 is verifying Formula (Fver), which is the
synthesis constraint.

The function T-SAT checks for satisfiability modulo theory of
an existentially quantified formula. If the formula is satisfiable, then

it returns a model, i.e., values for the existential variables that make
the formula true. Note that the function T-SAT is essentially a call
to the SMT solver.

We need to argue that Procedure ExAllSolver always returns
the correct answer on termination. This is stated in Theorem 3. But,
before that, we need a lemma that relates the two formula (Fsyn)
and (Fver). Under the assumption that the implementations fi’s of
the base components in the library are all terminating, we can prove
that (Fver) logically implies (Fsyn).

LEMMA 1. Suppose the implementation of each base component
fi in the library is terminating. Then, (Fver) logically implies
(Fsyn).

PROOF: Suppose (Fver) holds. Let L0 be the values of L that
show validity of (Fver). We need to prove that (Fsyn) also holds.
We will show that the values L0 will also make the formula
(Fsyn) valid. Let ~I be an arbitrary input. We need to show
that there are values for P,R and O such that φlib(P, O) ∧
ψconn(~I,O,P,R, L0) holds. Since ψwfp(L0) is true, it follows
from Theorem 1 that there is a well-formed program P . Since
all components in the library are assumed to be terminating, the
program P on input ~I will compute at least one value for each
variable in the program. These values will make the formula
φlib(P, O) ∧ ψconn(~I,O,P,R, L0) true. �

The following theorem states the correctness of our constraint
solving procedure, and its proof follows from Lemma 1.

THEOREM 3. Suppose that Procedure ExAllSolver is called with
the input ψwfp(L), φlib(T), ψconn(~I,O, T, L), and φspec(~I,O),
where T := (P ∪R). Then,

(a) If the procedure terminates with answer synthesis success-
ful, then the synthesis constraint is valid.

(b) If the procedure terminates with answer synthesis failed,
then the synthesis constraint is not valid.

PROOF: Proof of Part (a): First, since currL is (a part of) a
model for the formula in Line 6, the value of currL in the pro-
gram always satisfies the constraint ψwfp(L). Second, the proce-
dure returns synthesis successful only when the constraint
∃~I,O, T : φlib∧ψconn∧¬φspec is unsatisfiable. This means that
the verification constraint, ∀~I,O, T : φlib ∧ ψconn ⇒ φspec, is
valid. This completes the proof of Part (a).

Proof of Part (b): The procedure returns synthesis failed
only when the constraint ∃L,O1, . . . , On, T1, . . . , Tn : ψwfp(L)∧∧

Pi∈S(φlib(Ti)∧ψconn(~Ii, Oi, Ti, L)∧φspec(~Ii, Oi)) is unsat-
isfiable. By Lemma 1, this implies that the verification constraint
is unsatisfiable. �

Now we have all the components – synthesis constraint genera-
tion (Eq. 4), synthesis constraint solving (Figure 2), and the map-
ping from values of L to programs (Lval2Prog) – to describe our
overall approach. Our complete synthesis procedure is described in
Figure 3, and its correctness follows from the correctness of the
three steps, namely Theorem 1, Theorem 2 and Theorem 3.

7. Experimental Results
In this section, we present an experimental evaluation of our syn-
thesis technique. We also experimentally compare our technique
with other existing techniques.

Benchmarks We selected 25 examples, numbered P1-P25, from
the book Hacker’s Delight, commonly referred to as the Bible of

P1(x) : Turn-off rightmost
1 bit. This is the running ex-
ample in the paper.
1 o1:=bvsub (x,1)
2 res:=bvand (x,o1)

P2(x) : Test whether an un-
signed integer is of the form
2n−1

1 o1:=bvadd (x,1)
2 res:=bvand (x,o1)

P3(x) : Isolate the right-
most 1-bit
1 o1:=bvneg (x)
2 res:=bvand (x,o1)

P4(x) : Form a mask that
identifies the rightmost 1 bit
and trailing 0s
1 o1:=bvsub (x,1)
2 res:=bvxor (x,o1)

P5(x) : Right propagate
rightmost 1-bit
1 o1:=bvsub (x,1)
2 res:=bvor (x,o1)

P6(x) : Turn on the right-
most 0-bit in a word
1 o1:=bvadd (x,1)
2 res:=bvor (x,o1)

P7(x) : Isolate the right-
most 0-bit
1 o1:=bvnot (x)
2 o2:=bvadd (x,1)
3 res:=bvand (o1,o2)

P8(x) : Form a mask that
identifies the trailing 0’s
1 o1:=bvsub (x,1)
2 o2:=bvnot (x)
3 res:=bvand (o1,o2)

P9(x) : Absolute Value
Function
1 o1:=bvshr (x,31)
2 o2:=bvxor (x,o1)
3 res:=bvsub (o2,o1)

P10(x, y) : Test if nlz(x) ==
nlz(y) where nlz is number
of leading zeroes
1 o1:=bvand (x,y)
2 o2:=bvxor (x,y)
3 res:=bvule (o2,o1)

P11(x, y) : Test if nlz(x) <
nlz(y) where nlz is number
of leading zeroes
1 o1:=bvnot (y)
2 o2:=bvand (x,o1)
3 res:=bvugt (o2,y)

P12(x, y) : Test if nlz(x)
<= nlz(y) where nlz is
number of leading zeroes
1 o1:=bvnot (y)
2 o2:=bvand (x,o1)
3 res:=bvule (o2,y)

P13(x) : Sign Function
1 o1:=bvshr (x,31)
2 o2:=bvneg (x)
3 o3:=bvshr (o2,31)
4 res:=bvor (o1,o3)

P14 (x, y) : Floor of aver-
age of two integers without
over-flowing
1 o1:=bvand (x,y)
2 o2:=bvxor (x,y)
3 o3:=bvshr (o2,1)
4 res:=bvadd (o1,o3)

P15 (x, y) : Ceil of aver-
age of two integers without
over-flowing
1 o1:=bvor (x,y)
2 o2:=bvxor (x,y)
3 o3:=bvshr (o2,1)
4 res:=bvsub (o1,o3)

P16 (x, y) : Compute max
of two integers
1 o1:=bvxor (x,y)
2 o2:=bvneg (bvuge (x,y))
3 o3:=bvand (o1,o2)
4 res:=bvxor (o3,y)

P17(x) : Turn-off the right-
most contiguous string of 1
bits
1 o1:=bvsub (x,1)
2 o2:=bvor (x,o1)
3 o3:=bvadd (o2,1)
4 res:=bvand (o3,x)

P18(x) : Determine if an in-
teger is a power of 2 or not
1 o1:=bvsub (x,1)
2 o2:=bvand (o1,x)
3 o3:=bvredor (x)
4 o4:=bvredor (o2)
5 o5:=!(o4)
6 res:=(o5 && o3)

P19(x,m, k) : Exchanging
2 fields A and B of the same
register x where m is mask
which identifies field B and
k is number of bits from end
of A to start of B
1 o1:=bvshr (x,k)
2 o2:=bvxor (x,o1)
3 o3:=bvand (o2,m)
4 o4:=bvshl (o3,k)
5 o5:=bvxor (o4,o3)
6 res:=bvxor (o5,x)

P20(x) : Next higher un-
signed number with same
number of 1 bits
1 o1:=bvneg (x)
2 o2:=bvand (x,o1)
3 o3:=bvadd (x,o2)
4 o4:=bvxor (x,o2)
5 o5:=bvshr (o4,2)
6 o6:=bvdiv (o5,o2)
7 res:=bvor (o6,o3)

P21(x, a, b, c) : Cycling
through 3 values a,b,c
1 o1:=bvneg (bveq (x,c))
2 o2:=bvxor (a,c)
3 o3:=bvneg (bveq (x,a))
4 o4:=bvxor (b,c)
5 o5:=bvand (o1,o2)
6 o6:=bvand (o3,o4)
7 o7:=bvxor (o5,o6)
8 res:=bvxor (o7,c)

P22(x) : Compute Parity
1 o1:=bvshr (x,1)
2 o2:=bvxor (o1,x)
3 o3:=bvshr (o2,2)
4 o4:=bvxor (o2,o3)
5 o5:=bvand (o4,0x11111111)
6 o6:=bvmul (o5,0x11111111)
7 o7:=bvshr (o6,28)
8 res:=bvand (o7,0x1)

P23(x) : Counting number of bits
1 o1:=bvshr (x,1)
2 o2:=bvand (o1,0x55555555)
3 o3:=bvsub (x,o2)
4 o4:=bvand (o3,0x33333333)
5 o5:=bvshr (o3,2)
6 o6:=bvand (o3,0x33333333)
7 o7:=bvadd (o4,o6)
8 o8:=bvshr (o7,4)
9 o9:=bvadd (o8,o7)

10 res:=bvand (o9,0x0F0F0F0F)

P24(x) : Round up to the next highest
power of 2

1 o1:=bvsub (x,1)
2 o2:=bvshr (o1,1)
3 o3:=bvor (o1,o2)
4 o4:=bvshr (o3,2)
5 o5:=bvor (o3,o4)
6 o6:=bvshr (o5,4)
7 o7:=bvor (o5,o6)
8 o8:=bvshr (o7,8)
9 o9:=bvor (o7,o8)

10 o10:=bvshr (o9,16)
11 o11:=bvor (o9,o10)
12 res:=bvadd (o10,1)

P25(x, y) : Compute higher order half
of product of x and y

1 o1:=bvand (x,0xFFFF)
2 o2:=bvshr (x,16)
3 o3:=bvand (y,0xFFFF)
4 o4:=bvshr (y,16)
5 o5:=bvmul (o1,o3)
6 o6:=bvmul (o2,o3)
7 o7:=bvmul (o1,o4)
8 o8:=bvmul (o2,o4)
9 o9:=bvshr (o5,16)

10 o10:=bvadd (o6,o9)
11 o11:=bvand (o10,0xFFFF)
12 o12:=bvshr (o10,16)
13 o13:=bvadd (o7,o11)
14 o14:=bvshr (o13,16)
15 o15:=bvadd (o14,o12)
16 res:=bvadd (o15,o8)

Figure 4. Benchmark Examples. The functions used in the examples have the usual semantics defined in SMTLIB QF BV logic [2].

CompositionSynthesis(φspec, {φi | i = 1, . . . , N}):
// Input: φspec: component specification
// {φi | i = 1, . . . , N}: library specification
// Output: Failure/Program implementing φspec

1 Let ∃L∀~I,O,P,R : ψwfp ∧ (φlib ∧ ψconn ⇒ φspec)
be the synthesis constraint.

2 L := ExAllSolver(ψwfp, φlib, ψconn, φspec);
3 if (L 6= "synthesis failed") {

return(Lval2Prog(L));
4 } else {

return("synthesis failed")};
5 }

Figure 3. Algorithm for the component-based synthesis problem.

Q1(a, b, c): Evaluate
a ∗ h2 + b ∗ h+ c

1 o1:=a * h
2 o2:=o1+ b
3 o3:=o2* h
4 res:=o3+ c

Q2(x): Compute x31

1 o1:=x * x
2 o2:=o1* o1
3 o3:=x * o2
4 o4:=o2* o3
5 o5:=o4* o2
6 o6:=o5* o4
7 res:=o6* o4

Figure 5. Representative Arithmetic Benchmark Examples. The
arithmetic functions used in the examples have the usual semantics.

bit twiddling hacks [37]. We picked 2 non-bitvector benchmarks
Q1-Q2.

The bitvector examples are described in Figure 4. The examples,
P1-P25, are numbered in increasing order of complexity: P1 is a
2-line program and P25 is a 16-line program. Example Q1-Q2 in
Figure 5 involve arithmetic. For each example, we provided the
specification of the desired circuit by specifying the functional
relationship between the inputs and output of the circuit. We also
provided the set of base components (in the form of their functional
specifications) used in these examples.

We chose 25 bitvector programs because they use ingenious
little programming tricks that can “sometimes stall programmers
for hours or days” and their correctness is “not at all obvious
until explained or fathomed” [37]. Furthermore, it allows us to use
existing tools based on superoptimization [4, 28] and sketching [32,
33] as a baseline for experimentally evaluating our work. We chose
the 2 additional benchmarks to illustrate the need for SMT solvers.

Some programs in our benchmarks require us to also discover
constants, such as 0xffff, that may occur in the program. Our syn-
thesis framework can be easily extended to discovering such con-
stants by introducing a generic base component fc that simply out-
puts an arbitrary constant c. Then, in the final synthesis constraint
(Equation 4), we existentially quantify over c too.

Implementation and Experimental Setup We implemented our
technique in a tool called Brahma. It uses Yices 1.0.21 [3] as the un-
derlying SMT solver, which supports reasoning for quantifier-free
bitvectors and rational linear arithmetic. For bitvector examples,
we synthesized programs to work on bit-vectors of size 32 bits.
We used the optimization of synthesizing for increasingly large bit-
vector lengths until verification succeeded on bitvectors of size 32
bits. We ran our experiments on 8x Intel(R) Xeon(R) CPU 1.86GHz
with 4GB of RAM. Brahma was able to synthesize the desired pro-
grams for each of the benchmark examples. We now present various
statistics below.

Benchmark Brahma Sketch ratio AHA
Id #lines Iter. runtime runtime Sketch/ time(sec)

sec sec Brahma [#cand]
1 2 3 4 5 6 7

P1 2 2 3.2 69.8 22 0.1[1]
P2 2 3 3.6 28.9 8 0.1[1]
P3 2 3 1.4 91.8 63 0.1[1]
P4 2 2 3.3 68.4 21 0.1[1]
P5 2 3 2.2 67.9 31 0.1[1]
P6 2 2 2.4 87.0 36 0.1[1]
P7 3 2 1.0 69.6 68 1.7[9]
P8 3 2 1.4 70.0 51 1.4[9]
P9 3 2 5.8 85.1 15 6.5[5]

P10 3 14 76.1 timeout NA 10.4[1]
P11 3 7 57.1 timeout NA 9.3[1]
P12 3 9 67.8 timeout NA 9.5[1]
P13 4 4 6.2 193.7 31 timeout
P14 4 4 59.6 935.3 16 timeout
P15 4 8 118.9 726.5 6 timeout
P16 4 5 62.3 820.8 13 timeout
P17 4 6 78.1 626.1 8 108.6[9]
P18 6 5 45.9 117.2 2 timeout
P19 6 5 34.7 472.8 14 timeout
P20 7 6 108.4 timeout NA timeout
P21 8 5 28.3 timeout NA timeout
P22 8 8 279.0 timeout NA timeout
P23 10 8 1668.0 timeout NA timeout
P24 12 9 224.9 timeout NA timeout
P25 16 11 2778.7 timeout NA timeout
Q1 4 2 0.2 timeout NA –
Q2 7 4 295.8 timeout NA –

Table 1. Comparing our tool Brahma with Sketch and AHA. Time-
out was 1 hour. NA denotes not applicable. The table shows the
runtime for Brahma (Col. 4), Sketch (Col. 5) and AHA (Col. 7)
on 25 benchmarks sorted by lines of code (Col. 2). We also report
the number of iterations needed by Brahma (Col. 3), ratio of run-
times of Brahma and Sketch (Col. 6) and the number of candidate
solutions found by AHA (within brackets in Col. 7).

7.1 Performance of Synthesis Algorithm
Table 1 reports some interesting statistics about the synthesis algo-
rithm (presented in Fig. 3). The total time taken by the algorithm
(col. 4) on the various examples varies between 1.0 to 2778.7 sec-
onds. We also report the number of iterations taken by the loop
(col. 3) inside our constraint solving algorithm in Fig. 2 while per-
forming the refined counterexample guided iterative synthesis. The
small number of these iterations (which varies between 2 to 14)
illustrates the effectiveness of our technique in using counterexam-
ples for iterative synthesis.

There has been a huge investment in building formal reasoning
technology for performing verification of hardware or software sys-
tems. In this paper, we show that this verification technology can be
lifted to perform synthesis. In that context, the number of iterations
required by our technique points out the extra factor of computa-
tional resources required to go from verification to synthesis. The
largest example in our experimental evaluation took over 45 min-
utes but it involved only 11 iterations. Hence, the largest SAT prob-
lem solved during synthesis is roughly 11 times the size of the SAT
problem for verification. Any improvement in satisfiability solvers
for verification would also directly increase the scalability of our
technique.

Ratio Normalized
No. of Runtime of Runtime Constraint Size

Comps. Brahma Sketch Sketch/Brahma Brahma Sketch
1 2 3 4 5 6
2 0.11 0.27 2.45 1 1
3 0.14 0.83 5.93 1.52 5.00
4 0.20 2.09 10.45 1.91 19.85
5 0.25 6.78 27.12 2.36 48.01
6 0.36 19.69 54.70 3.18 129.26
7 0.33 164.80 499.39 3.76 242.04

Table 2. Comparing Brahma and Sketch on running example by
increasing the number of components. Constraint size is normal-
ized with respect to the size for 2 components.

7.2 Comparison with Sketch and AHA
We experimentally compared the implementation of our synthe-
sis technique Brahma with two other existing tools for synthesis,
namely Sketch and AHA.

Sketch The Sketch tool [32, 33] takes as input a sketch – a pro-
gram with holes – and synthesizes programs by correctly filling the
holes. Hence, for comparing Sketch with Brahma, we expressed the
component based design problem as a sketch. There are many dif-
ferent ways of achieving this, and after consultation with the Sketch
team, we picked one encoding that produces a sketch that has size
linear in the size of the component based synthesis problem. We
note that implicit in the sketch is an upper bound on how many
times a component can be used. The Sketch tool can not solve the
unbounded component based synthesis problem. We used version
v1.3.0 of Sketch for comparison with our technique.

At a high level, the approach used in Sketch for synthesis is
similar to the approach used by Brahma – both generate constraints
in the first step and then use off-the-shelf solvers to solve these
constraints in the second step. However, there are fundamental
differences in the constraints generated by the two techniques as
well as the algorithms used for solving the constraints.

Sketch internally generates Boolean constraints, which are
solved using Boolean satisfiability solvers. Brahma generates for-
mulas in a richer logic, which are solved using Satisfiability Mod-
ulo Theory (SMT) solvers. As a result, Sketch performs poorly
when there is reasoning in a theory, such as linear arithmetic, in-
volved. Sketch times out on the arithmetic examples, Q1 and Q2,
whereas Brahma easily synthesizes them. (The description of Q1-
Q2 may appear to involve nonlinear expressions, but nonlinear
reasoning can be eliminated easily and SMT solvers can be used).

Since Sketch is a generic tool, and not tailored for component
based synthesis, it uses a suitably general translation of the syn-
thesis problem into a Boolean constraint. Consequently, while the
size of the (SMT) constraints generated by Brahma is provably
quadratic in the number of components, experimental evidence in-
dicates that the size of the constraints generated by Sketch is either
exponential or a high degree polynomial in the number of holes
or components. To highlight this difference, we used Brahma and
Sketch to synthesize the running example, but we successively in-
creased the number of components in the library. The time taken
by Sketch, reported in Col. 3 of Table 2, appears to scale expo-
nentially, whereas the time taken by Brahma, reported in Col. 2 of
Table 2, appears to scale non-exponentially as the number of com-
ponents in the library increases from 2 to 7. The ratio of Sketch
runtime to Brahma runtime, shown in col. 4 of Table 2, increases
from 2 to nearly 500. In Table 2, we also show the normalized size
of the constraints generated by both techniques against the number
of components (Col. 5 and Col. 6 for Brahma and Sketch respec-
tively). We normalize the size of the constraints with respect to the

Benchmark Verification Runtime(ms)

Brahma Sketch Ratio

P1 35 18 1.94
P2 11 16 0.69
P3 98 57 1.72
P4 58 31 1.87
P5 59 45 1.31
P6 78 32 2.43
P7 03 11 0.27
P8 78 66 1.18
P9 14 08 1.75

P10 48 NA NA
P11 29 NA NA
P12 29 NA NA
P13 12 16 0.75
P14 69 38 1.82
P15 108 56 1.93
P16 77 41 1.88
P17 109 78 1.40
P18 72 47 1.53
P19 64 52 1.23
P20 96 NA NA
P21 42 NA NA
P22 127 NA NA
P23 103 NA NA
P24 62 NA NA
P25 184 NA NA

Table 3. Comparing the verification times of Brahma and Sketch.
Timeout was 1 hour. For the similar verification step, Sketch is
slower only by an average factor of 1.4 (maximum factor is 2.43) on
all examples. NA denotes that Sketch timeouts on that example and
hence there is no verification time. For the algorithmically-different
synthesis step, as shown in Table 1, Sketch was slower by a factor of
20 on examples on which it terminates – so, even if we normalize
for use of different constraint solvers, sketch continues to be an
order-of-magnitude slower.

constraint size for 2 components. This ensures a fair comparison
of the rate of increase in constraint size with increase in number of
components for the two tools irrespective of the absolute size of the
generated constraints which may depend on optimizations and pre-
processing. Clearly, for both tools, the runtime is correlated with
the size of the constraint, but constraints generated by Brahma are
much more succinct and scale better than Sketch.

The total runtime of Sketch on the bitvector examples is pre-
sented in col. 5 in Table 1. Sketch times out on 6 examples and is
slower by an average factor of over 20 on other examples (col. 6).
One might speculate that the runtime gains of Brahma over Sketch
arise because Brahma uses a different SMT solver. However, this
is not true, since Brahma and Sketch are experimentally observed
to take comparable time for performing the verification step; see
Table 3. It follows that the differences are entirely due to the algo-
rithmic improvements in Brahma.

AHA The AHA tool [4] is a superoptimizer, endorsed by our
benchmark book [37] as A Hacker’s Assistant. It is based on an
idea by Henry Massalin [28], and was made widely available by
Granlund and Kenner as the GNU superoptimizer [11]. For exper-
imental comparison, we provided the set of base components as
a set of library functions. AHA enumerates all possible composi-
tion of these functions to generate candidate programs (in a way
described in Figure 1), but it tests the correctness of the candidate
programs only on some inputs, and often outputs a number of po-

tential solutions. The solutions produced by AHA must be verified
in order to select the right solution. Table 1 lists the total number
of solutions generated by AHA (col. 7 within [brackets]) and the
total time (col. 7) taken for generation and verification of these so-
lutions. AHA times out on 12 examples. The better performance
of Brahma is explained by the fact that Brahma does not perform
an exhaustive enumeration of the exponential state space, but re-
lies on a non-trivial strategy of candidate selection and elimination
though SMT solving. Thus, we exploit the engineering advances in
the underlying SMT solving technology for an efficient search.

7.3 Choice of Multi-set of Base Components
We now discuss the strategy that we used for choosing the multi-
set of base components for our benchmark examples. Picking the
multi-set of base components is the only step in our approach that
currently requires human guidance.

In our experiments, we started with a common multi-set of
base components, referred to as the standard library, for all bench-
marks. The standard library included 12 components, one each for
performing standard operations, such as bitwise-and, bitwise-or,
bitwise-not, add-one, bitwise-xor, shift-right, comparison, add, and
subtract operations. The standard library was sufficient for synthe-
sizing the first 17 benchmark examples. For other examples, the
library was augmented with a set of new components suggested by
the user. We call this set the extended library. (Giving user the
option to extend libraries can facilitate hierarchical synthesis – the
user can specify a synthesized program as a new component in the
extended library.)

For the above-mentioned incremental design technique to be
successful, it is pertinent that the synthesis engine not only synthe-
size correct designs quickly but also report infeasibility of the syn-
thesis problem quickly. In our experiments, we noted that Brahma
reports infeasibility of design rather quickly. More specifically,
when the standard library was insufficient, Brahma terminated in
less than 100 seconds on almost all examples. Hence, reliance on
human guidance can be reduced using a strategy where compo-
nents are successively added to the library until synthesis is suc-
cessful.

Regarding the issue of synthesis of optimal designs – designs
that use the minimal number of components – we observed that
in experiments, we always got minimal designs. However, this is
not a guarantee. Minimality can, however, be ensured by iteratively
removing each component as long as a design exists.

8. Related Work
The component-based synthesis problem was recently indepen-
dently formulated for the case when the components were finite-
state machines with outputs (transducers) [25]. Our formulation
allows for high-level components whose specifications are given
using logical formulas in rich theories. More recently, linear-time
programs were synthesized from specification automata recogniz-
ing the input/output relation [15].

Counterexample Guided Inductive Synthesis Inductive synthe-
sis refers to the process of generating a system from input-output
examples. This process involves using each new input-output ex-
ample to refine the hypothesis about the system until convergence
is reached. Inductive synthesis had its origin in the pioneering work
by Gold on language learning [10] and by Shapiro on algorith-
mic debugging and its application to automated program construc-
tion [30]. The inductive approach [29, 9] for synthesizing a pro-
gram involves debugging the program with respect to positive and
negative examples until the correct program is synthesized. The
negative examples can be counterexamples discovered while try-
ing to prove a program’s correctness. Counterexamples have been

used in incremental synthesis of programs [33, 17] and switching
logic for hybrid systems [20].

We have recently extended the ideas described in this paper to
provide an alternative to writing formal specifications for synthe-
sis [19], wherein logical specification of the desired program is re-
placed by an input-output oracle. This is especially important for
the application of software deobfuscation. Quite interestingly, this
also obviates the need for having a verifier, albeit at the cost of
introducing potential unsoundness in the process. In contrast, the
approach in this paper makes use of a verifier and we show how to
transform a verifier into a synthesizer. This theme of transforming
a verifier into a synthesizer is also present in recent work [36, 34],
where the focus is on synthesizing code fragements along with in-
ductive invariants as first-order instantiations of user-provided tem-
plates. In contrast, our focus in this paper is restricted to straight-
line code fragments, but with the benefit of requiring the user to
only provide a multi-set of required components.

Automated API Composition The Jungloid mining tool [26] syn-
thesizes code-fragments (over a given set of API methods anno-
tated with their type signatures) given a simple query that describes
the desired code in terms of input and output types. We push this
work forward to synthesizing code-fragments that meet a functional
specification as opposed to simply type specifications. Typing con-
straints can also be easily incorporated in our synthesis constraints.

DIPACS [21] compiler incorporates an AI planner to replace a
call of a programmer-defined abstract algorithm with a sequence
of library calls. It uses programmer-compiler interaction to prune
undesirable compositions. DIPACS requires the library (or applica-
tion) programmer to specify behavior of the library procedures (or,
desired effect of the abstract algorithm) using high-level abstrac-
tions, such as predicates sorted and permutation. Furthermore, it
then needs axioms for these predicates. This is similar to some early
work on automatic program synthesis [27, 35], where a theorem
prover was used instead of an AI planner. This early work was later
extended [8] to perform schema-guided deductive synthesis. Our
approach does not use abstract predicates and axioms and relies
on the predicates provided by the SMT solver. Our approach can
only solve synthesis problems whose formalization can be done in
SMT-supported theories, whereas the work on deductive synthesis
uses more general-purpose deductive engines, but at the price of
requiring axiomatization and performing incomplete reasoning. In
our approach, the SMT solver reasons about the implicit theories
using decision procedures.

Sketching Sketching [32, 33, 31] relies on the developer to come
up with the algorithmic insight and uses the sketch compiler to fill
in missing details using counterexample guided inductive synthe-
sis. In contrast, our tool seeks to discover algorithmic insights, al-
beit at cost of being more suited for a special class of programs.
We chose bitvector programs as our main application domain since
coming up with algorithmic insight is the hard part here.

Super-optimizers Superoptimization is the task of finding an op-
timal code sequence for a straight-line target sequence of instruc-
tions, and it is used in optimizing performance-critical inner loops.
One approach to superoptimization has been to simply enumerate
sequences of increasing length or cost, testing each for equality
with the target specification [28]. Another approach has been to
constrain the search space to a set of equality-preserving trans-
formations expressed by the system designer [22] and then select
the one with the lowest cost. Recent work has used superoptimiza-
tion [5, 6] to automatically generate general purpose peephole op-
timizers by optimizing a small set of instructions in the code. In
these approaches, the exhaustive state space search is quite expen-
sive making them amenable to only discovering optimal instruc-
tions of length four or less in reasonable amount of time.

Use of satisfiability solving for synthesis SAT solvers have been
used for synthesis previously: Massalin [28] used them for verifi-
cation of candidate synthesized programs and Sketching [33] used
them to implement the inductive program synthesis technique. We
use SMT solving to implement our algorithm for solving synthesis
constraints. This makes our synthesis approach more efficient as
well as more general.

9. Conclusion and Future Work
Program synthesis has the potential to revolutionize the process
of system development. Up until recently, automating synthesis
of non-trivial programs has mostly been impractical. However,
huge engineering advances in logical reasoning have significantly
changed the landscape. These advances have enabled verification
of large systems, and in this paper, we show that they can also be
used to synthesize 10-20 line programs with some help from the
user and using computational resources that are within one order of
magnitude of the resources required for verification.

We have applied our component-based synthesis methodology
to synthesis of bit-vector circuits. However, our solution applies
more generally to other naturally resource-constrained domains,
such as loop-free assembly of physical components (e.g., FPGA
circuits, or even some physical/chemical/biological systems). In
such situations, the user naturally starts out with resource con-
straints that provide a good over-approximation of the multi-set of
available components.

We also foresee generalizations of our formulation of the
component-based synthesis problem. This includes synthesizing
programs with richer control structure, such as loops and recursion,
and synthesizing from partial specifications. There is also potential
for using richer theories, and limited first-order reasoning that is
supported by modern SMT solvers, to synthesize from components
whose specifications use richer logical formulas. A followup prob-
lem worth investigating is to approximate some functionality using
a given multi-set of components. We believe that our paper lays
down the foundation for investigating such a line of work.

Acknowledgment We thank Viktor Kuncak, Rishabh Singh and
other members of the Sketch team, and the anonymous reviewers
for their help and valuable feedback.

References
[1] Satisfiability modulo theories competition (smt-comp).

http://www.smtcomp.org/2009/index.shtml.

[2] SMTLIB: Satisfiability modulo theories lib. http://smtlib.org.

[3] Yices: An SMT solver. http://yices.csl.sri.com.

[4] The AHA! (A Hacker’s Assistant) Superoptimizer, 2008. Download:
http://www.hackersdelight.org/aha.zip, Documentation:
http://www.hackersdelight.org/aha/aha.pdf.

[5] S. Bansal and A. Aiken. Automatic generation of peephole
superoptimizers. In ASPLOS, 2006.

[6] S. Bansal and A. Aiken. Binary translation using peephole
superoptimizers. In OSDI, 2008.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
An efficient method of computing static single assignment form. In
POPL, 1989.

[8] B. Fischer and J. Schumann. Autobayes: A system for generating
data analysis programs from statistical models. J. Funct. Program.,
13(3):483–508, 2003.

[9] P. Flener and L. Popelmnsky. On the use of inductive reasoning in
program synthesis: Prejudice and prospects. In LOBSTR. 1994.

[10] E. M. Gold. Language identification in the limit. Information and
Control, 10(5):447–474, 1967.

[11] T. Granlund and R. Kenner. Eliminating branches using a superopti-
mizer and In PLDI, 1992.

[12] S. Gulwani. Dimensions in program synthesis. In PPDP, pages
13–24. ACM, 2010.

[13] S. Gulwani. Automating string processing in spreadsheets using
input-output examples. In POPL, 2011.

[14] S. Gulwani, V. Korthikanti, and A. Tiwari. Synthesizing geometry
constructions. In PLDI, 2011.

[15] J. Hamza, B. Jobstmann, and V. Kuncak. Synthesis for regular
specifications over unbounded domains. In FMCAD, 2010.

[16] B. Harris and S. Gulwani. Spreadsheet table transformations from
examples. In PLDI, 2011.

[17] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A simple
inductive synthesis methodology and its applications. In OOPSLA,
pages 36–46, 2010.

[18] R. N. Jackiw and W. F. Finzer. The geometer’s sketchpad:
programming by geometry. In Watch what I do: programming by
demonstration, pages 293–307. MIT Press, 1993.

[19] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari. Oracle-guided
component-based program synthesis. In ICSE, pages 215–224, 2010.

[20] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari. Synthesizing switching
logic for safety and dwell-time requirements. In Proc. 1st ACM/IEEE
Intl. Conf. on Cyber-Physical Systems, ICCPS, pages 22–31, 2010.

[21] T. A. Johnson and R. Eigenmann. Context-sensitive domain-
independent algorithm composition and selection. In PLDI, 2006.

[22] R. Joshi, G. Nelson, and K. H. Randall. Denali: A goal-directed
superoptimizer. In PLDI, 2002.

[23] D. E. Knuth. The art of computer programming. http://
www-cs-faculty.stanford.edu/~knuth/taocp.html.

[24] T. A. Lau, P. Domingos, and D. S. Weld. Version space algebra and
its application to programming by demonstration. In ICML, 2000.

[25] Y. Lustig and M. Vardi. Synthesis from component libraries. In Proc.
FoSSaCS, pages 395–409, 2009.

[26] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid mining:
helping to navigate the API jungle. In PLDI, pages 48–61, 2005.

[27] Z. Manna and R. Waldinger. A deductive approach to program
synthesis. ACM TOPLAS, 2(1):90–121, 1980.

[28] H. Massalin. Superoptimizer - a look at the smallest program. In
ASPLOS, pages 122–126, 1987.

[29] S. Muggleton, editor. Inductive Logic Programming, volume 38 of
The APIC Series. Academic Press, 1992.

[30] E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press,
Cambridge, MA, USA, 1983.

[31] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodı́k, V. A. Saraswat,
and S. A. Seshia. Sketching stencils. In PLDI, pages 167–178, 2007.

[32] A. Solar-Lezama, R. Rabbah, R. Bodı́k, and K. Ebcioglu. Program-
ming by sketching for bit-streaming programs. In PLDI, 2005.

[33] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. Seshia, and V. Saraswat.
Combinatorial sketching for finite programs. In ASPLOS, 2006.

[34] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification
to program synthesis. In POPL, pages 313–326, 2010.

[35] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Under-
wood. Deductive composition of astro. software from subroutine
libraries. In CADE, ’94.

[36] A. Taly, S. Gulwani, and A. Tiwari. Synthesizing switching logic
using constraint solving. In VMCAI, pages 305–319. Springer, 2009.

[37] H. S. Warren. Hacker’s Delight. Addison-Wesley, ’02.

[38] I. H. Witten and D. Mo. TELS: learning text editing tasks from
examples. In Watch what I do: programming by demonstration, pages
293–307. MIT Press, Cambridge, MA, USA, 1993.

	Introduction
	Running Example
	Problem Definition
	Revisiting Verification Constraint
	Synthesis Constraint
	Encoding Well-formed Programs: wfp
	Encoding Dataflow in Programs: conn
	Putting it all together

	Synthesis Constraint Solving
	Experimental Results
	Performance of Synthesis Algorithm
	Comparison with Sketch and AHA
	Choice of Multi-set of Base Components

	Related Work
	Conclusion and Future Work

