
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Attacking a Feedback Controller

Ashish Tiwari 1,2

Computer Science Laboratory
SRI International

Menlo Park, U.S.A

Abstract

We consider the problem of generating sensor spoofing attacks on feedback controllers. The attacker has
the option of remaining in a stealth mode – wherein it spoofs some sensor but only by an amount that
is indistinguishable from noise. Later, the attacker can launch a full attack and try to force the system
to get into an unsafe region. Using bounded model checking on an example adaptive cruise controller, we
show that (1) remaining in a stealth mode is not very benefecial for the attacker, and (2) there is a phase
transition between two classes of attacks: attacks that are small and indistinguishable, but that are unable
to make the system unsafe by themselves, and attacks that are large, and possibly easily detected, but that
easily take the system to an unsafe state. The preliminary experiments suggest that a control system is
most vulnerable when it is just engaged (at discrete switches). Moreover, if it is guarded with a safety
envelope based monitor and can ignore sensor data that is outside the safety envelope, then it is relatively
difficult to compromise safety of such a control system by just sensor spoofing.

Keywords: bounded model checking, feedback control, sensor spoofing, safety

1 Introduction

A control system consists of sensors, controllers, and actuators. Sensors gather

data about the state of the system. Controllers use the sensor data to compute

an appropriate control action. Actuators then perform the control action and thus

effect a change in system state, which is then sensed by the sensors again in the

next cycle. In such a feedback system, the controllers rely on sensors to provide

good quality data to ensure that the system operates correctly and safely even in

an uncertain environment.

We are constantly embedding such control systems inside larger cyber-physical

systems that are increasing becoming connected to the outside world. As a result,

the attack surface is growing swiftly, and it is not difficult to spoof sensors and inject

wrong data into the system. There are known instances of GPS spoofing attacks

1 This work was sponsored in part by Defense Advanced Research Projects Agency (DARPA) and Air Force
Research Laboratory (AFRL), under contract FA8750-12-C-0284, and the National Science Foundation
grant CNS-1423298. The views, opinions, and/or findings contained in this report are those of the authors
and should not be interpreted as representing the official views or policies, either expressed or implied, of
the funding agencies.
2 Email: tiwari@csl.sri.com

c©2015 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:tiwari@csl.sri.com

Tiwari

on unmanned aerial vehicles [1]. Modern automobiles have also been shown to have

several attack surfaces that an attacker can use to compromise computers/networks

within a car and inject sensor spoofing attacks [5,2].

One way to improve security of any system would be to eliminate the attack

vectors. This is an uphill battle since systems are increasingly becoming more

connected and communicate extensively with other devices. Here, we take the view

that it will be difficult to completely eliminate all attack surfaces, and inevitably,

there will always be some channels available for an attacker to exploit.

We also assume that it may be possible to perform anomaly detection and build

a safety monitor that can be used to detect attacks. Specifically, one could possibly

compute a safety envelope for the nominal operation of the system, and then, at

runtime, monitor that the system remains inside the safety envelope [13]. In such a

setting, a sensor spoofing attack that sends “wild” sensor readings to the controller

may get easily detected and countered. It may be beneficial for the attacker to

change the sensor values only slightly. That way, the attacker could remain unde-

tected and cause the system to reach some intermediate state before launching a

full-blown attack. Would such a strategy be helpful for the attacker? Are there

good deviation values for the attacker to use – ones that will guarantee that they

remain undetected, but still push the system into an unsafe state? These questions

form the starting point of our investigation in this paper.

Our goal here is to analyze sensor spoofing attack strategies in the presence of

runtime monitors. Our approach is based on using formal verification tools on a

model of a controller for adaptive cruise control. Specifically, we build a model of

two vehicles moving in a 1-dimensional road where the rear vehicle’s acceleration is

controlled by a feedback law. The goal of the controller is to ensure that the rear

vehicle never crashes into the car in front. We assume that an attacker can spoof

the velocity sensor of the rear car. We create a timed relational abstraction of the

system model and then use infinite bounded model checking to answer some of the

questions posed above.

In formalize the problem of interest in Section 2, we present the results of our

experiments in Section 3, and thereafter, in Section 4, we present details of our

experimental setup.

1.1 Related Work

Recently there has been increasing interest in studying control systems and cyber-

physical systems under adversarial attack. There is considerable amount of work on

attack-resilient state estimation, since if we can determine the correct state (even in

presence of an attack), then the rest of the system can be used unchanged as it would

just rely on the estimated state [4,9,7,8]. For linear systems, the state estimation

problem in presence of attacks can be cast as an optimization problem [4,9]. Fawzi

et al. [4] assume existence of redundant sensors and provide theoretical guarantees

on the maximum number of attacks that can be handled. Extending the work

in [4], an attack-resilient state estimation procedure is presented that also handles

presence of noise and modeling errors in [7]. It is shown that the attacker cannot

destabilize the system by exploiting the difference between the model used for state

2

Tiwari

estimation and the real physical system. A method for coding the sensor outputs

to enable detection of false data injection attacks is presented in [6]. Assuming that

the sensor itself is not compromised, the result in [6] is a low-cost alternative to

encryption of sensor data.

2 Problem Description

We assume we have a plant being controlled by a controller. The plant dynamics

are given by

d~x

dt
=P (~x, ~u)(1)

where ~x is the state space of the plant and ~u is the control input. (The actuator

dynamics are included in the plant dynamics). A feedback controller is used to

produce the values ~u from the sensor readings ~y as follows.

~u=C(~y)(2)

Here C is some function. The sensor values ~y are a function S of the current state

~x; when modeling sensor attacks, the function S can include the attack model.

~y =S(~x)(3)

By putting the three equations above together, we get a model of the feedback

control system under attack. Let Sys denote this model.

The controller under study is activated (or engaged) when certain conditions on

the state space are met. Let Init denote these conditions.

Init⊂R|~x|(4)

The system starts in some initial state in the set Init, and then generates an

execution trace according to the Equation 1, Equation 2, and Equation 3. By a

slight abuse of notation, let Sys also denote a function that maps a tuple consisting

of a sensor model S, an initial state ~x0, and a time instance t to the state reached

at time t.

Sys(S, ~x0, t)∈R|~x|(5)

The function Sys is the semantics of the system.

The system is expected to remain inside some safe set of states. Let Safe denote

the safe set.

Safe⊂R|~x|(6)

Ideally, we want Sys(S, ~x0, t) ∈ Safe for all time t ≥ 0, for all initial states ~x0 ∈
Init, and for all reasonable sensor attacks S.

2.1 Sensor Attacks

Let us make things a bit more concrete by assuming that all the plant state variables

~x can be sensed (by different sensors). Hence, when there is no attack, the function

S above would just be the identity function. Let us also assume, for simplicity,

that the attacker just offsets the value of the sensor by some constant picked from

a range. Hence, under these two assumptions, Equation 3 takes the form

3

Tiwari

~y = ~x + ~c ~c ∈ D(7)

where D ⊂ Rn is the domain of attack. If the attacker has the ability to spoof a

single sensor, then D would contain vectors that have only one nonzero entry.

We assume the attack is carried out in two modes: a stealth mode and an evident

mode. In the stealth mode, the offset in the sensor value introduced by the attacker

is bounded by a small number. In the evident mode, this offset is much larger.

Intuitively, the attacker tries to remain undetected in the stealth mode, and hence

the attacker does not deviate the correct sensor value by a large amount. Now,

Equation 3 takes the form

~y =

Sstealth(~x) if in stealth mode

Sevident(~x) if in evident mode
(8)

Accordingly, Equation 7 will take the form

~y =

 ~x + ~c ~c ∈ Dstealth if in stealth mode

~x + ~c ~c ∈ Devident if in evident mode
(9)

Assume that exactly one sensor, say the sensor corresponding to index 1, is

under attack. Let us fix the domains of attack.

Dstealth = {~c | |c1| ≤ stbound, ci = 0 for i 6= 1}(10)

Devident = {~c | |c1| ≤ evbound, ci = 0 for i 6= 1}
Here, stbound and evbound are two parameters such that stbound < evbound.

Let us also assume that the attacker stays in stealth mode for tstealth time

and then switches to the evident mode. Let ttoAttack denote the time taken by the

attacker in the evident mode to push the system into an unsafe state.

ttoAttack = inf{t | Sys(Sevident, ~x1, t) 6∈ Safe,(11)

~x1 = Sys(Sstealth, ~x0, tstealth), ~x0 ∈ Init}

Objective: The goal of the paper is to study how the the parameters stbound,

evbound, tstealth, influence the value ttoAttack.

3 Main Results

We postpone the detailed description of the plant and the controller to later. We

first present the experiments and the results of the experiments.

3.1 No Stealth Mode

We first considered the scenario where the attacker spends zero time in stealth

mode, that is, tstealth = 0. In Figure 1, we plot the time taken to reach unsafe

state ttoAttack (on y-axis) against the strength of the evident attack evbound (on

x-axis).

As expected, Figure 1 shows that the time taken to reach an unsafe state de-

creases as we increase the range of values that can be used to offset the value of a

compromised sensor. Note that sharp fall in the plot followed by the gradual decline

4

Tiwari

 0

 5

 10

 15

 20

 25

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

 T
im

e
 t
o
 U

n
s
a
fe

 S
ta

te
,
t t

o
A

tt
a
c
k

 Strength of Attack, evbound

Time to Reach Unsafe State Without Stealth Mode

’figTTA.dat’

Fig. 1. Time taken to reach unsafe state ttoAttack (on y-axis) against the strength of the evident attack
evbound (on x-axis). As we increase evbound, the value of ttoAttack decreases.

later. At evbound = 2.1, the attack failed to take the system to an unsafe state,

and at evbound = 2.2, the system was compromised in just 6 seconds. The drop in

the value of ttoAttack is more gradual as evbound increases from 2.2 to 6.5.

If a safety envelope based monitoring approach is implemented for this control

system, then a value of 2.1 would be a good choice for defining the safety envelope.

The controller is able to ensure safety for deviations in sensor values less-than 2.1;

and a safety monitor could “throw away” sensor values that are off by more than

2.1. Such a safety monitor then could almost guarantee safe operation of the system.

We make two remarks that hold for all plots in this paper. First, the values of

ttoAttack did not vary continuously – the experimental setup forced the values of

ttoAttack to be even numbers. Second, the value 24 was used as a substitute for any

number larger than 24, including ∞.

3.2 Attacker Silent in Stealth Mode

For the second set of results, we considered the scenario where the attacker spends

nonzero amount of time in stealth mode (tstealth 6= 0), but the attacker does not

change sensor values in stealth mode (stbound = 0). For this scenario, in Figure 2,

we plot the time taken to reach unsafe state ttoAttack (on y-axis) against the time

tstealth spent in stealth mode (on x-axis). We have one line in the plot for each

value of the strength evbound of the evident attack.

As we increase the time spent in stealth mode, the time taken in evident mode

to reach an unsafe state also increases. This matches with what one would expect,

since here, in the stealth mode, we have stbound = 0, and hence the system is not

under attack until time tstealth. As a result, in the tstealth units of time after it

is engaged, the controller is able to take the system into a “good region of state

space” from where it becomes difficult for the attacker to move the system to an

unsafe state.

5

Tiwari

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

 A
d
d
it
io

n
a
l
T

im
e
 t
o
 U

n
s
a
fe

 S
ta

te
,
t t

o
A

tt
a
c
k

 Stealth Time, tstealth

 Time to Reach Unsafe State, while Inactive in Stealth Mode

evbound=2.8
evbound=2.7
evbound=2.6

evbound=2.55
evbound=2.54,2.53

Fig. 2. Effect of increasing stealth time when the attacker is silent in the stealth mode: It becomes
progressively more difficult to get the system into an unsafe region.

Fig. 3. Effect of increasing stealth time: It becomes progressively more difficult to get the system into an
unsafe region.

It is worth comparing the results in Figure 2 with those in Figure 1. When the

attacker could start the attack as soon as the controller was engaged, a value of 2.2

or greater for evbound was enough for the attacker to cause the system to enter an

unsafe state within 6 seconds (Figure 1). But, if the attacker was even 2 seconds late

in starting the attack (and the controller had just 2 seconds of “unattacked” time),

it needed a value of evbound larger than 2.6 to get the system into an unsafe state

in under 6 seconds. The tolerance of the feedback controller to attacks increases

with time.

3.3 Attacker Conservative in Stealth Mode

For the third set of results, we considered the scenario where the attacker spends

nonzero amount of time in stealth mode (tstealth 6= 0), and the attacker launches

a “relatively mild” attack in the stealth mode (stbound = 1). For this scenario, in

Figure 3, we plot the time taken to reach unsafe state ttoAttack (on y-axis) against

the time tstealth spent in stealth mode (on x-axis). We have one line in the plot

for each value of the strength evbound of the evident attack.

One would expect that the attacker can use the time spent in stealth mode

to drive the system into a state from where it can quickly force the system into

an unsafe state in the evident mode. That is, we expect ttoAttack to decrease

as tstealth increases, assuming the other two parameters, stbound and evbound,

remain unchanged. However, the plot in Figure 3 indicates otherwise. It shows

that the attacker is unable to decrease ttoAttack by increasing tstealth. On the

contrary, ttoAttack increases as tstealth increases, much in the same way as it did

when the attacker was silent in the stealth mode (Figure 2). In some sense, the

6

Tiwari

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

 A
d
d
it
io

n
a
l
T

im
e
 t
o
 U

n
s
a
fe

 S
ta

te
,
t t

o
A

tt
a
c
k

 Stealth Time, tstealth

 Time to Reach Unsafe State, Stealth Attack Severity stbound=2

evbound=2.8
evbound=2.7
evbound=2.6

evbound=2.55
evbound=2.54,2.53

Fig. 4. Effect of increasing stealth time: It becomes progressively more difficult to get the system into an
unsafe region.

feedback controller is able to “handle” the small attack launched by the attacker in

the stealth mode.

Keeping the parameters evbound and tstealth fixed, we now compare the change

in ttoAttack with change in stbound. For that, we need to compare Figure 3 (where

attacker did something in the stealth mode, stbound = 1) with Figure 2 (where

the attacker did nothing in the stealth mode, stbound = 0). We note that the

value of ttoAttack when stbound = 1 is no more than the value of ttoAttack when

stbound = 0; and in many cases, it is slightly less.

3.4 Attacker Incautious in Stealth Mode

For the final set of results, we considered the scenario where the attacker spends

nonzero amount of time in stealth mode (tstealth 6= 0), and the attacker launches

a “relatively bold” attack in the stealth mode (stbound = 2). For this scenario, in

Figure 4, we plot the time taken to reach unsafe state ttoAttack (on y-axis) against

the time tstealth spent in stealth mode (on x-axis). We have one line in the plot

for each value of the strength evbound of the evident attack.

In this case, we do observe an instance of ttoAttack decreasing as tstealth
increases. Specifically, when stbound = 2 and evbound is any value in

{2.53, 2.54, 2.6, 2.7, 2.8}, we observe that ttoAttack decreases as tstealth increases

from 2 to 4. In this case, the attacker can indeed benefit by remaining in stealth

mode. However, ttoAttack rises with tstealth for all values of tstealth greather-than

4, so there is only a small window where an attacker can benefit from a stealth

mode.

We again note that, comparing Figure 3 and Figure 4, increasing stbound causes

ttoAttack to decrease, and the decrement in ttoAttack as we go from stbound = 1 to

stbound = 2 is signficant. Note that the value stbound = 2, where we start getting

benefit of a stealth mode, is close to the “edge” of the safety envelope, which was

7

Tiwari

defined by the value 2.1 from the plot in Figure 1.

4 Adaptive Cruise Controller

We now briefly present the model we used for performing the experiments described

above.

As mentioned before, we use the adaptive cruise controller model from [10]. The

state variables are gap, vf , vl, af , al, where gap denotes the gap between the leader

(subscript l) and the follower (subscript f), vf , af are the velocity and acceleration

of the follower, and vl, al are the velocity and acceleration of the leader.

The plant model is simple:

dgap

dt
= vl − vf(12)

dvl
dt

= al(13)

dvf
dt

= af(14)

daf
dt

= u(15)

The variable al is an input (disturbance), but it is assumed that al is constrained to

be within −5m/s2 and 2m/s2. The velocities vl, vf are always non-negative. The

variable u is the output of the controller.

The controller sets the variable u as follows:

u = −3af − 3(vf − vl) + gap− (vf + 10)

The controller is engaged whenever the following condition holds; in other words,

the following is the set Init of initial states.

gap ≥ 5, 0 ≤ vl, vf ≤ 30, gap− 0.1(v2
f − v2

l)− 10− (vf − vi) ≥ 0

Since there is a nonlinear term in the third expression above, in our analysis we

used a linear under-approximation of it under the constraint 0 ≤ vl, vf ≤ 30:

(vf ≥ vl∧gap−10−(vf−vl)−0.1∗(vf−vl)∗60 ≥ 0) ∨ (vf ≤ vl∧gap−10−(vf−vl) ≥ 0)

The set of safe states is defined by the constraint gap ≥ 0.

4.1 Sensor Attacks

We assume that the velocity sensor of the following car can be spoofed. Hence,

instead of seeing the velocity vf , the controller gets a value vf + attack from the

sensor. As a result, the controller actually computes the following control output:

u = −3 ∗ ai− 3 ∗ (vf − vl) + gap− (vf + 10)− 4 ∗ attack

In the stealth mode, the value of the variable attack is constrained to lie between

−stbound and stbound. In the evident mode, the value of the variable attack is

constrained to lie between −evbound and evbound.

8

Tiwari

We model the complete system in HybridSal [12]. The model has two modes. In

the model, we also have a parameter tstealth and the model remains in stealth mode

for time tstealth. The complete HybridSal model is presented in the Appendix.

4.2 Abstraction and Bounded Model Checking

We generated the data for the plots shown in Section 3 using the two-step verification

process supported by HybridSal. In the first step, the model is abstracted to an

infinite-state discrete state transition system. In the second step, the abstract model

is model-checked.

Since we are interested in finding attacks and the time required to take the

system to an unsafe state, we used HybridSal to create a timed relational abstrac-

tion [14] of the system. Given a time duration ∆, a timed relational abstraction

consists of a transition relation that relates two states if the second state is reach-

able from the first in exactly ∆ units of time. The benefit of using them is that

they are precise: relatively precise timed relational abstractions are computed by

HybridSal. On the other hand, the drawback is that we may miss detecting a path

to an unsafe state if every such path takes a duration that is not an integer multiple

of ∆.

For our results reported in Section 3, we used ∆ = 2, and that is the reason why

tstealth and ttoAttack are both multiples of 2 always.

The abstract system is model checked using the SAL infinite bounded model

checker [3]. The bounded model checker uses Yices as its constraint solver [11]. In

our experiments, we used ∆ = 2, and tstealth + ttoAttack was mostly at most 40, so

most of the bounded checking runs used a depth less-than or equal to 20. Only a

few of these runs took more-than a few minutes of real time.

We remark here that the choice of the sensor under attack is insignificant for

our results. If, for example, the sensor for gap was compromised (rather than the

sensor for vf), then we would obtain the same results, but for a constant factor in

the values of stbound and evbound.

5 Conclusion

We studied the problem of sensor spoofing in a feedback control system. We assumed

a scenario wherein the control system was actively guarded by a runtime monitor

that rejected sensor values that were ostensibly spurious. In our model, the attacker

had the option of staying in stealth mode and launching mild attacks on sensor

values before launching into a full-blown attack. We used a formal model of a

cruise controller, abstraction and bounded model checking to find the relationship

between different parameters and the existence of attacks. The main conclusion

is that a feedback controller is most susceptible when it is just engaged – that is,

at discrete switches of a supervisory controller. Moreover, weak attacks in stealth

mode are not too helpful for the attacker since the feedback controller is able to

handle them (as it handles noise). Strong attacks in stealth mode can help the

attacker by reducing the time required in evident mode to reach an unsafe state,

but they make the attacker more susceptible to detection even in stealth mode.

9

Tiwari

References

[1] Wikipedia, the free encyclopedia. en.wikipedia.org/wiki/Iran-U.S._RQ-170_incident.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A. C. an,
F. Roesner, and T. Kohno. Comprehensive experimental analyses of automotive attack surfaces. In
USENIX Security, 2011.

[3] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari. Sal 2. In R. Alur and
D. Peled, editors, Computer-Aided Verification, CAV, volume 3114 of LNCS, pages 496–500. Springer,
July 2004.

[4] H. Fawzi, P. Tabuada, and S. N. Diggavi. Secure estimation and control for cyber-physical systems
under adversarial attacks. IEEE Trans. Automat. Contr., 59(6):1454–1467, 2014.

[5] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham, and S. Savage. Experimental security analysis of a modern automobile.
In Proceedings of the IEEE Symposium and Security and Privacy, Oakland, CA, 2010.

[6] F. Miao, Q. Zhu, M. Pajic, and G. J. Pappas. Coding sensor outputs for injection attacks detection.
In 53rd IEEE Conference on Decision and Control (CDC), 2014.

[7] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee, and G. J. Pappas. Robustness of attack-
resilient state estimators. In 5th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS), 2014.

[8] J. Park, R. Ivanov, J. Weimer, M. Pajic, and I. Lee. Sensor attack detection in the presence of transient
faults. In 6th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), 2015.

[9] F. Pasqualetti, F. Dorfler, and F. Bullo. Attack detection and identification in cyber-physical systems.
IEEE Trans. on Automatic Control, 58(11):2715–2729, 2013.

[10] A. Puri and P. Varaiya. Driving safely in smart cars. In Proceedings of the 1995 American Control
Conference, 1995.

[11] SRI International. Yices: An SMT solver. http://yices.csl.sri.com/.

[12] A. Tiwari. Hybridsal relational abstracter. In Proc. CAV, volume 7358 of LNCS, 2012. http://www.
csl.sri.com/~tiwari/relational-abstraction/.

[13] A. Tiwari, B. Dutertre, D. Jovanovic, T. de Candia, P. Lincoln, J. M. Rushby, D. Sadigh, and S. A.
Seshia. Safety envelope for security. In 3rd International Conference on High Confidence Networked
Systems (part of CPS Week), HiCoNS ’14, Berlin, Germany, April 15-17, 2014, pages 85–94. ACM,
2014.

[14] A. Zutshi, S. Sankaranarayanan, and A. Tiwari. Timed relational abstractions for sampled data control
systems. In Proc. CAV, volume 7358 of LNCS, pages 343–361, 2012.

A HybridSal Model

For completeness, we include the HybridSal model here.

PVAtt: CONTEXT =

BEGIN

tstealth: REAL = 4; % time in stealth mode

stbound : REAL = 2; % attack bound in stealth mode

evbound : REAL = 2.8; % attack bound in evident mode

DeltaT : REAL = 2; % Sampling period for observation

control: MODULE =

BEGIN

LOCAL gap, vf, vl, af, time: REAL

INPUT al, attack: REAL

INITIALIZATION

10

en.wikipedia.org/wiki/Iran-U.S._RQ-170_incident
http://yices.csl.sri.com/
http://www.csl.sri.com/~tiwari/relational-abstraction/
http://www.csl.sri.com/~tiwari/relational-abstraction/

Tiwari

time = 0;

af IN {x:REAL | -5 <= x AND x <= 2};

vf IN {x:REAL | 0 <= x AND x <= 30};

vl IN {x:REAL | 0 <= x AND x <= 30};

gap IN {x:REAL | x >= 5 AND (

(vf >= vl AND x - 10 - (vf - vl) - 0.1 * (vf - vl) * 60 >= 0) OR

(vf <= vl AND x - 10 - (vf - vl) - 0.1 * (vf - vl) * 0 >= 0))};

TRANSITION

[

vl >= 0 AND al >= -5 AND al <= 2 AND vl’ >= 0 AND vl’-vl = al*DeltaT AND

attack <= stbound AND attack >= -stbound AND

time < tstealth AND time’ <= tstealth -->

afdot’ = -3*af - 3*(vf - vl) + gap - (vf + 10) - 4*attack ;

vfdot’ = af ;

gapdot’ = vl - vf ;

vldot’ = al;

timedot’ = 1;

[]

vl >= 0 AND al >= -5 AND al <= 2 AND vl’ >= 0 AND vl’-vl = al*DeltaT AND

attack <= evbound AND attack >= -evbound AND time >= tstealth -->

afdot’ = -3*af - 3*(vf - vl) + gap - (vf + 10) - 4*attack;

vfdot’ = af ;

gapdot’ = vl - vf ;

vldot’ = al;

timedot’ = 1;

]

END;

correct : THEOREM

control |- G(gap >= 0 OR vf <= vl);

END

11

	Introduction
	Related Work

	Problem Description
	Sensor Attacks

	Main Results
	No Stealth Mode
	Attacker Silent in Stealth Mode
	Attacker Conservative in Stealth Mode
	Attacker Incautious in Stealth Mode

	Adaptive Cruise Controller
	Sensor Attacks
	Abstraction and Bounded Model Checking

	Conclusion
	References
	HybridSal Model

