Computational Logical Frameworsk and

Generic Program Analysis Technologies

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign



Motivation

The technologies developed to solve the verifying compiler
grand challenge should be generic: not tied to a particular
language but widely applicable to many languages.

Such technologies should also be semantics-based, that is,
based on a rigorous formal semantics of the languages.

For this, a computational logical framework with efficient
executability and a spectrum of meta-tools can serve as a
computational semantic framework to develop generic
program analysis techniques that can generate powerful
analysis tools for each language of interest.

Not all logical frameworks can serve such purposes well. 1
list some specific requirements that I think are important:



Logical Framework Requirements

. good data representation capabilities,

. support for concurrency and nondeterminism,

. simplicity of the formalism,

. efficient implementability, and efficient meta-tools

. support for reflection,

. Initial model semantics, to suport inductive reasoning.



The Rewriting Logic/Maude Experience

At UIUC, Grigore Rosu and I, together with several
students, are developing semantic definitions of
programming languages based on rewriting logic (RWL)
and executed in the Maude RWL language to generate
analysis tools for free for a wide range of languages such as:
Java and the JVM, Scheme, ML, Haskell, and bc.

Rewriting logic meets the requirements mentioned above,
and supports semantic definition of programming languages
that combine algebraic denotational semantics and SOS
semantics is a seamless way. Given a language L its
semantics is a rewrite theory

7?/L — (ZLa EL7 RL)



The Rewriting Logic/Maude Experience (II)

When executed in Maude the RWL formal semantics R of
language L automatically becomes an efficient interpreter
for L. for example, faster than the Linux bc interpreter, and
1/2 the speed of the Scheme interpreter.

Furthermore, Maude's formal tools, such as its inductive
theorem prover, LTL model checker, and breadth-first
search capability then become meta-tools from which we
derive useful program analysis tools for L using Ry,.

We are furthermore developing new generic program
analysis technologies such as, for example, a generic
partial-order reduction technique than can apply to any
language L with threads, and does not require any changes
to an underlying model checker.



The Rewriting Logic/Maude Experience (III)

The cost of generating tools for a language L this way using
its formal semantic definition Ry is much lower (in the order
of weeks) than that of building similar language specific
analysis tools (man years). For example, it took Feng Chen
at UIUC only three weeks to develop R for a large subset
of Java including multithreading, inheritance, polymorphism,
object references, and dynamic object allocation.

Furthermore, the formal analysis tools obtained for free
from R are competitive with similar language-specific tools
such a NASA-Ames’' Java Path Finder and Stanford’'s Java
model checker. Similarly, our generic partial order reduction
technique can achieve rates of space and time reduction
similar to those of language-specific tools such as SPIN.



Future Directions Related to the Grand Challenge

The above results, although encouraging, are very much

work in progress; we would like to advance in addition the
following directions:

1. Generation of provably correct compilers from the
formal semantics Ry of a language L.

2. Language-generic theorem proving environments.
3. Language-generic program abstraction techniges.

4. Modular programming language definitions in the spirit
of MSOS.



