Nano Steps and Baby Challenges within the Grand Challenge

Deepak Kapur

Department of Computer Science University of New Mexico Albuquerque, New Mexico, USA

Automating Induction Theorem Proving

- An extremely difficult problem
- Issues:
 - Induction variable(s)
 - Induction schema to be used
 - Determining intermediate lemmas Needed
- Baby Challenge: Can we characterize conjectures which can be decided automatically (without user interaction) using inductive methods?

Structural Conditions on Recursive Definitions

A recursive definition of f is theory-based if all terms in the definition are from the theory except for occurrences of f.

$$append(nil, y) = y$$

 $append(cons(a, x), y) = cons(a, append(x, y))$

$$0 * y = 0$$

 $s(x) * y = (x * y) + x$

Compatibility of function definitions:

When functions are composed and their arguments are instantiated in a subgoal of an induction proof attempt, it should be possible to simplify them so that the induction hypothesis is applicable and the simplified subgoal is a formula in a decidable theory.

Decidable Conjectures

exp2(log(x)) = xlog(exp2(x)) = xbton(padO(ntob(x))) = xlast(ntob(double(x))) = 0log(exp2(x)) = xbton(pad0(ntob(x))) = xlast(ntob(double(x))) = 0double(u + v) = u + double(v) double(u + v) = double(u) + double(v) (u + v) + w = u + (v + w) len(append(u, v)) = len(u) + len(v) min(u + v, u + w) = u + min(v, w)s(len(append(u, v))) = len(append(u, cons(n, v))) $\begin{array}{rcl} u * (v + w) & = & u * v + u * w \\ \Rightarrow x & = & 0 \end{array}$ $double(x) = x \Rightarrow x$ $double(half(x)) = x \Rightarrow even(x)$ = true

Details can be found in

Kapur and Subramaniam (CADE-2000), Kapur and Giesl (IJCAR-2001) and Kapur and Giesl (CADE-2003)

What Next?

- Extend classes of recursive definitions and relationship between them.
- Extend classes of conjectures that can be handled automatically.
- Bootstrapping: Extended decision procedures and multilevel induction proof attempts needed lemmas.

Automatic Generation of Polynomial Loop Invariants

- 1. Quantifier-Elimination: Eliminating Program Variables from Parameterized Formulas Hypothesized as Assertions
- 2. Ideal-Theoretic Methods:

Polynomial Invariants Form an Ideal

- a) Intersection of Invariant Ideals Corresponding to
 All Paths of Execution of a Program
- b) Program Construct Semantics using Ideal Operations

Polynomial Invariants Form an Ideal

- States at a program point \equiv set of values variables take
- Characterize states by a conjunction of polynomial equations

$$(p_1 = 0 \land \cdots \land p_k = 0).$$

The set of values which make the above formula true can be characterized by the radical ideal of $\{p_1, \dots, p_k\}$, denoted as $IV(p_1, \dots, p_k)$.

• If p = 0, q = 0 are invariants, so are s p = 0 for any polynomial s as well as p + q = 0.

Objective: Invoking Hilbert's finite basis theorem, a finite basis of the invariant ideal corresponding to program states at a control point exists. How to compute this ideal?

Table of Examples

PROGRAM	COMPUTING	VARIABLES	BRANCHES	TIMING
freire1	$\sqrt{2}$	2	1	< 3 s.
freire2	$\sqrt[3]{}$	3	1	< 5 s.
cohencu	cube	4	1	< 5 s.
cousot	toy	2	2	< 4 s.
divbin	division	3	2	< 5 s.
dijkstra	$\sqrt{2}$	3	2	< 6 s.
fermat2	factor	3	2	< 4 s.
wensley2	division	4	2	< 5 s.
euclidex2	gcd	6	2	< 6 s.
lcm2	Icm	4	2	< 5 s.
factor	factor	4	4	< 20 s.

PC Linux Pentium 4 2.5 Ghz Details can be found in

E. Rodríguez-Carbonell and D. Kapur, "Automatic Generation of Polynomial Loop Invariants: Algebraic Foundations," Proc. *International Symposium on Symbolic and Algebraic Computation (ISSAC-2004)*, July 2004, Santander Spain

Table of Examples

PROGRAM	COMPUTING	d	VARS	IF'S	LOOPS	DEPTH	TIME
cohencu	cube	3	5	0	1	1	2.45
dershowitz	real division	2	7	1	1	1	1.71
divbin	integer division	2	5	1	2	1	1.91
euclidex1	Bezout's coefs	2	10	0	2	2	7.15
euclidex2	Bezout's coefs	2	8	1	1	1	3.69
fermat	divisor	2	5	0	3	2	1.55
prod4br	product	3	6	3	1	1	8.49
freire1	integer sqrt	2	3	0	1	1	0.75
hard	integer division	2	6	1	2	1	2.19
Icm2	Icm	2	6	1	1	1	2.03
readers	simulation	2	6	3	1	1	4.15

PC Linux Pentium 4 2.5 Ghz

Details can be found in

E. Rodríguez-Carbonell and D. Kapur, "An Abstract Interpretation Approach for Automatic Generation of Polynomial Invariants," Proc. *11th Static Analysis Symposium (SAS-2004)*, September 2004, Verona, Italy.

Main Result

THEOREM. In a loop with assignments $\bar{x} := f_i(\bar{x})$, if tests are ignored and each f_i is a solvable mapping with positive rational eigenvalues, the algorithm computes the strongest invariant in at most 2m + 1 steps, where m is the number of program variables in the loop.

Role of Algebraic Geometry

Soundness and Completeness of methods are proved using results from algebraic geometry:

- Hilbert's finite basis theorem for polynomial ideals,
- Dimensional analysis of ideals and how iterations of the loop give more and more information that reducing the dimension of ideals approximating the invariant ideal, and
- Finite dimensionality of vector spaces.

a := 0; s := 1; t := 1;while $(s \le N)$ do

a := a + 1; s := s + t + 2; t := t + 2;end while

Quantifier-Elimination Method

 $\begin{array}{ll} a:=0; & s:=1; & t:=1; \\ \text{while } (s\leq N) \ \text{do} \\ \{I(a,s,t)=(u_1 \ a^2+u_2 \ s^2+u_3 \ t^2+u_4 \ as+u_5 \ at+u_6 \ st+u_7 \ a+u_8 \ s+u_9 \ t+u_{10}=0)\} \\ & a:=a+1; \qquad s:=s+t+2; \qquad t:=t+2; \\ \text{end while} \end{array}$

Example: Square Root Program

 $\begin{array}{ll} a:=0; & s:=1; & t:=1; \\ \text{while } (s\leq N) \ \text{do} \\ \{I(a,s,t)=(u_1 \ a^2+u_2 \ s^2+u_3 \ t^2+u_4 \ as+u_5 \ at+u_6 \ st+u_7 \ a+u_8 \ s+u_9 \ t+u_{10}=0)\} \\ & a:=a+1; \qquad s:=s+t+2; \qquad t:=t+2; \\ \text{end while} \end{array}$

Quantifier elimination on the verification condition gives:

 $u_1 = -u_5$, $u_7 = -2u_3 - u_5 + 2u_{10}$, $u_8 = -4u_3 - u_5$, $u_9 = 3u_3 + u_5 - u_{10}$

Example: Square Root Program

 $\begin{array}{ll} a:=0; & s:=1; & t:=1; \\ \text{while } (s\leq N) \ \text{do} \\ \{I(a,s,t)=(u_1 \ a^2+u_2 \ s^2+u_3 \ t^2+u_4 \ as+u_5 \ at+u_6 \ st+u_7 \ a+u_8 \ s+u_9 \ t+u_{10}=0)\} \\ & a:=a+1; \qquad s:=s+t+2; \qquad t:=t+2; \\ \text{end while} \end{array}$

Quantifier elimination on the verification condition gives:

$$u_1 = -u_5$$
, $u_7 = -2u_3 - u_5 + 2u_{10}$, $u_8 = -4u_3 - u_5$, $u_9 = 3u_3 + u_5 - u_{10}$

Making exactly one of u_5, u_3, u_{10} to be 1, and other parameters to be 0, the following independent invariants are generated:

$$2a - t + 1 = 0$$
, $a^2 - at + a + s - t = 0$, $t^2 - 2a - 4s + 3t = 0$

Quantifier-Elimination Methods

- Generalized Presburger Arithmetic (for invariants expressed using linear inequalities)
- Parametric Gröbner Basis Algorithm (Kapur, 1994)
 - (similar to Weispfenning's Comprehensive Gröbner Basis Algorithms)
- Quantifier Elimination Techniques for Real Closed Fields (REDLOG, QEPCAD)

What Next?

- Algebraic Geometry is a powerful theory about polynomials (built from numbers, variables and operations including +,*) and it is very useful for automatically generating invariants for a small class of programs.
- How can similar theories be developed for other data structures arrays, records, sequences, lists, objects?