Nano Steps and Baby Challenges
within the Grand Challenge

Deepak Kapur

Department of Computer Science
University of New Mexico
Albuquerque, New Mexico, USA

Automating Induction Theorem Proving

m An extremely difficult problem

m [ssues:
e Induction variable(s)

e Induction schema to be used

e Determining intermediate lemmas Needed

m Baby Challenge: Can we characterize conjectures which can be decided automatically
(without user interaction) using inductive methods?

Structural Conditions on Recursive Definitions

A recursive definition of f is theory-based if all terms in the definition are from the theory
except for occurrences of f.

append(nil,y)
append(cons(a,x),y)

Yy
cons(a, append(x,y))

0
(zxy) +x

O xy
s(x) *xy

Compatibility of function definitions:

When functions are composed and their arguments are instantiated in a subgoal of an
induction proof attempt, it should be possible to simplify them so that the induction
hypothesis is applicable and the simplified subgoal is a formula in a decidable theory.

Decidable Conjectures

exp2(log(z))
log(exp2(z))
bton(padO(ntob(x)))
last(ntob(double(x)))
log(exp2(z))
bton(pad0(ntob(x)))
last(ntob(double(x)))
double(u + v)
double(u + v)
(u+v) +w
len(append(u,v))
min(u + v,u + w)
s(len(append(u,v)))
u* (v+ w)
double(zx) =2 = x
double(half(x)) =z = even(x)

o8 8 O8&8 8 8

u + double(v)

double(u) + double(v)
u—+ (v+ w)

len(u) + len(v)

u + min(v, w)
len(append(u, cons(n,v)))
u*xv -+ u*xw

0

true

Details can be found in

Kapur and Subramaniam (CADE-2000), Kapur and Giesl (IJCAR-2001) and Kapur and
Giesl (CADE-2003)

What Next?

m Extend classes of recursive definitions and relationship between them.
m Extend classes of conjectures that can be handled automatically.

m Bootstrapping: Extended decision procedures and multilevel induction proof attempts
needed lemmas.

Automatic Generation of Polynomial Loop Invariants

1. Quantifier-Elimination: Eliminating Program Variables from
Parameterized Formulas Hypothesized as Assertions
2. Ideal-Theoretic Methods:
Polynomial Invariants Form an Ideal

a) Intersection of Invariant Ideals Corresponding to
All Paths of Execution of a Program
b) Program Construct Semantics using Ideal Operations

Polynomial Invariants Form an Ideal

m States at a program point = set of values variables take

m Characterize states by a conjunction of polynomial equations

(p1 =0A---App=0).

T he set of values which make the above formula true can be characterized by the radical
ideal of {p1,---,pr}, denoted as IV(p1, - ,pr).

m If p=0,9g =0 are invariants, so are s p = 0 for any polynomial s as well as p 4+ g = 0.

Objective: Invoking Hilbert’s finite basis theorem, a finite basis of the invariant ideal
corresponding to program states at a control point exists. How to compute this ideal?

Table of Examples

PROGRAM | COMPUTING | VARIABLES | BRANCHES | TIMING
freirel D 2 1 < 3 s.
freire2 v 3 1 < b s.
cohencu cube 4 1 < b s.
cousot toy 2 2 < 4 s.
divbin division 3 2 < b s.
dijkstra N 3 2 < 6 s.
fermat?2 factor 3 2 < 4 s.
wensley?2 division 4 2 < b s.
euclidex? gcd 6 2 < 6 S.
lcm?2 lcm 4 2 < b s.
factor factor 4 4 < 20 s.

PC Linux Pentium 4 2.5 Ghz Details can be found in

E. Rodriguez-Carbonell and D. Kapur, “Automatic Generation of Polynomial Loop
Invariants: Algebraic Foundations,” Proc. International Symposium on Symbolic and
Algebraic Computation (ISSAC-2004), July 2004, Santander Spain

Table of Examples

PROGRAM | COMPUTING d | VARS | IF'S | LOOPS | DEPTH | TIME
cohencu cube 3|5 0 1 1 2.45
dershowitz real division 2|7 1 1 1 1.71
divbin integer division | 2 | 5 1 2 1 1.91
euclidex1 Bezout's coefs | 2 | 10 0 2 2 7.15
euclidex?2 Bezout's coefs | 2 | 8 1 1 1 3.69
fermat divisor 2|5 0] 3 2 1.55
prod4br product 3|6 3 1 1 8.49
freirel integer sqrt 213 0 1 1 0.75
hard integer division | 2 | 6 1 2 1 2.19
lcm?2 lcm 216 1 1 1 2.03
readers simulation 216 3 1 1 4.15

PC Linux Pentium 4 2.5 Ghz
Details can be found in
E. Rodriguez-Carbonell and D. Kapur, “An Abstract Interpretation Approach for

Automatic Generation of Polynomial Invariants,” Proc. 11th Static Analysis Symposium
(SAS-2004), September 2004, Verona, Italy.

Main Result

THEOREM. In a loop with assignments z := f;(x), if tests are ignored and each f; is a
solvable mapping with positive rational eigenvalues, the algorithm computes the strongest
invariant in at most 2m + 1 steps, where m is the number of program variables in the loop.

Role of Algebraic Geometry

Soundness and Completeness of methods are proved using results from algebraic geometry:

m Hilbert’s finite basis theorem for polynomial ideals,

m Dimensional analysis of ideals and how iterations of the loop give more and more
information that reducing the dimension of ideals approximating the invariant ideal, and

m Finite dimensionality of vector spaces.

a.—=0;, s:=1; t:=1;
while (s < N) do

a.—a-+1; s =s—+t+ 2; t =t-+ 2;
end while

Quantifier-Elimination Method

a. =0, s:=1; t.=1;
while (s < N) do
{I(a,s,t) = (uy a®+us s°+uz t2+ug as +us at + ug st +uy a4+ ug s +ug t +u1g = 0)}

a.—a-+1; s =s—+t+ 2; t:=t-+ 2;
end while

Example: Square Root Program
a. =0, s:=1;, t:=1;
while (s < N) do

{I(a,s,t) = (u1 a®+ us s +uz t° 4+ ug as + us at +ug st +u7 a+ug s+ ug t +u1g = 0)}

a.—a-+1; s =s—+t+ 2; t . =t-+ 2;
end while

Quantifier elimination on the verification condition gives:

u] = —us, uy = —2u3 —us + 2u19, ug = —4uz —us, ug = 3uz + us — U1Q

Example: Square Root Program
a. =0, s:=1; t.=1;
while (s < N) do
{I(a,s,t) = (uyg a®+ us s° +uz t2 +ug as +us at + ug st +u7 a+ug s+ ug t +uy1g = 0)}
a.—a-+1; s =s—+t+ 2; t :=t-+ 2;

end while

Quantifier elimination on the verification condition gives:
ul = —us, uy = —2u3z —us+ 2uig, ug = —4uz —us, uUg = 3u3z I uUs — U1Q

Making exactly one of us,u3,u1g to be 1, and other parameters to be 0O, the following
independent invariants are generated:

2a —t+ 1 =0, az—at—l—a—l—s—t:O, t2—2a—43—|—3t=O

Quantifier-Elimination Methods

m Generalized Presburger Arithmetic (for invariants expressed using linear inequalities)
s Parametric Grobner Basis Algorithm (Kapur, 1994)
e (similar to Weispfenning's Comprehensive Grobner Basis Algorithms)

s Quantifier Elimination Techniques for Real Closed Fields (REDLOG, QEPCAD)

What Next?

s Algebraic Geometry is a powerful theory about polynomials (built from numbers,

variables and operations including +, %) and it is very useful for automatically generating
invariants for a small class of programs.

m How can similar theories be developed for other data structures - arrays, records,
sequences, lists, objects?

