
Nano Steps and Baby Challenges
within the Grand Challenge

Deepak Kapur

Department of Computer Science

University of New Mexico

Albuquerque, New Mexico, USA



Automating Induction Theorem Proving

An extremely difficult problem

Issues:

• Induction variable(s)

• Induction schema to be used

• Determining intermediate lemmas Needed

Baby Challenge: Can we characterize conjectures which can be decided automatically

(without user interaction) using inductive methods?



Structural Conditions on Recursive Definitions

A recursive definition of f is theory-based if all terms in the definition are from the theory

except for occurrences of f .

append(nil, y) = y
append(cons(a, x), y) = cons(a, append(x, y))

0 ∗ y = 0
s(x) ∗ y = (x ∗ y) + x

Compatibility of function definitions:

When functions are composed and their arguments are instantiated in a subgoal of an

induction proof attempt, it should be possible to simplify them so that the induction

hypothesis is applicable and the simplified subgoal is a formula in a decidable theory.



Decidable Conjectures

exp2(log(x)) = x
log(exp2(x)) = x
bton(pad0(ntob(x))) = x
last(ntob(double(x))) = 0
log(exp2(x)) = x
bton(pad0(ntob(x))) = x
last(ntob(double(x))) = 0
double(u + v) = u + double(v)
double(u + v) = double(u) + double(v)
(u + v) + w = u + (v + w)
len(append(u, v)) = len(u) + len(v)
min(u + v, u + w) = u + min(v, w)
s(len(append(u, v))) = len(append(u, cons(n, v)))
u ∗ (v + w) = u ∗ v + u ∗ w

double(x) = x ⇒ x = 0
double(half(x)) = x ⇒ even(x) = true

Details can be found in

Kapur and Subramaniam (CADE-2000), Kapur and Giesl (IJCAR-2001) and Kapur and

Giesl (CADE-2003)



What Next?

Extend classes of recursive definitions and relationship between them.

Extend classes of conjectures that can be handled automatically.

Bootstrapping: Extended decision procedures and multilevel induction proof attempts

needed lemmas.



Automatic Generation of Polynomial Loop Invariants

1. Quantifier-Elimination: Eliminating Program Variables from

Parameterized Formulas Hypothesized as Assertions

2. Ideal-Theoretic Methods:

Polynomial Invariants Form an Ideal

a) Intersection of Invariant Ideals Corresponding to

All Paths of Execution of a Program

b) Program Construct Semantics using Ideal Operations



Polynomial Invariants Form an Ideal

States at a program point ≡ set of values variables take

Characterize states by a conjunction of polynomial equations

(p1 = 0 ∧ · · · ∧ pk = 0).

The set of values which make the above formula true can be characterized by the radical

ideal of {p1, · · · , pk}, denoted as IV(p1, · · · , pk).

If p = 0, q = 0 are invariants, so are s p = 0 for any polynomial s as well as p + q = 0.

Objective: Invoking Hilbert’s finite basis theorem, a finite basis of the invariant ideal

corresponding to program states at a control point exists. How to compute this ideal?



Table of Examples

PROGRAM COMPUTING VARIABLES BRANCHES TIMING

freire1 2
√ 2 1 < 3 s.

freire2 3
√ 3 1 < 5 s.

cohencu cube 4 1 < 5 s.
cousot toy 2 2 < 4 s.
divbin division 3 2 < 5 s.
dijkstra 2

√ 3 2 < 6 s.
fermat2 factor 3 2 < 4 s.
wensley2 division 4 2 < 5 s.
euclidex2 gcd 6 2 < 6 s.
lcm2 lcm 4 2 < 5 s.
factor factor 4 4 < 20 s.

PC Linux Pentium 4 2.5 Ghz Details can be found in

E. Rodŕıguez-Carbonell and D. Kapur, “Automatic Generation of Polynomial Loop

Invariants: Algebraic Foundations,” Proc. International Symposium on Symbolic and

Algebraic Computation (ISSAC-2004), July 2004, Santander Spain



Table of Examples

PROGRAM COMPUTING d VARS IF’S LOOPS DEPTH TIME

cohencu cube 3 5 0 1 1 2.45
dershowitz real division 2 7 1 1 1 1.71
divbin integer division 2 5 1 2 1 1.91
euclidex1 Bezout’s coefs 2 10 0 2 2 7.15
euclidex2 Bezout’s coefs 2 8 1 1 1 3.69
fermat divisor 2 5 0 3 2 1.55
prod4br product 3 6 3 1 1 8.49
freire1 integer sqrt 2 3 0 1 1 0.75
hard integer division 2 6 1 2 1 2.19
lcm2 lcm 2 6 1 1 1 2.03
readers simulation 2 6 3 1 1 4.15

PC Linux Pentium 4 2.5 Ghz

Details can be found in

E. Rodŕıguez-Carbonell and D. Kapur, “An Abstract Interpretation Approach for
Automatic Generation of Polynomial Invariants,” Proc. 11th Static Analysis Symposium
(SAS-2004), September 2004, Verona, Italy.



Main Result

THEOREM. In a loop with assignments x̄ := fi(x̄), if tests are ignored and each fi is a

solvable mapping with positive rational eigenvalues, the algorithm computes the strongest

invariant in at most 2m + 1 steps, where m is the number of program variables in the loop.



Role of Algebraic Geometry

Soundness and Completeness of methods are proved using results from algebraic geometry:

Hilbert’s finite basis theorem for polynomial ideals,

Dimensional analysis of ideals and how iterations of the loop give more and more

information that reducing the dimension of ideals approximating the invariant ideal, and

Finite dimensionality of vector spaces.



a := 0; s := 1; t := 1;

while (s ≤ N) do

a := a + 1; s := s + t + 2; t := t + 2;

end while



Quantifier-Elimination Method

a := 0; s := 1; t := 1;

while (s ≤ N) do

{I(a, s, t) = (u1 a2 + u2 s2 + u3 t2 + u4 as + u5 at + u6 st + u7 a + u8 s + u9 t + u10 = 0)}
a := a + 1; s := s + t + 2; t := t + 2;

end while



Example: Square Root Program

a := 0; s := 1; t := 1;

while (s ≤ N) do

{I(a, s, t) = (u1 a2 + u2 s2 + u3 t2 + u4 as + u5 at + u6 st + u7 a + u8 s + u9 t + u10 = 0)}
a := a + 1; s := s + t + 2; t := t + 2;

end while

Quantifier elimination on the verification condition gives:

u1 = −u5, u7 = −2u3 − u5 + 2u10, u8 = −4u3 − u5, u9 = 3u3 + u5 − u10



Example: Square Root Program

a := 0; s := 1; t := 1;

while (s ≤ N) do

{I(a, s, t) = (u1 a2 + u2 s2 + u3 t2 + u4 as + u5 at + u6 st + u7 a + u8 s + u9 t + u10 = 0)}
a := a + 1; s := s + t + 2; t := t + 2;

end while

Quantifier elimination on the verification condition gives:

u1 = −u5, u7 = −2u3 − u5 + 2u10, u8 = −4u3 − u5, u9 = 3u3 + u5 − u10

Making exactly one of u5, u3, u10 to be 1, and other parameters to be 0, the following

independent invariants are generated:

2a − t + 1 = 0, a2 − at + a + s − t = 0, t2 − 2a − 4s + 3t = 0



Quantifier-Elimination Methods

Generalized Presburger Arithmetic (for invariants expressed using linear inequalities)

Parametric Gröbner Basis Algorithm (Kapur, 1994)

• (similar to Weispfenning’s Comprehensive Gröbner Basis Algorithms)

Quantifier Elimination Techniques for Real Closed Fields (REDLOG, QEPCAD)



What Next?

Algebraic Geometry is a powerful theory about polynomials (built from numbers,

variables and operations including +, ∗) and it is very useful for automatically generating

invariants for a small class of programs.

How can similar theories be developed for other data structures - arrays, records,

sequences, lists, objects?


